JPH0243477B2 - - Google Patents

Info

Publication number
JPH0243477B2
JPH0243477B2 JP13063582A JP13063582A JPH0243477B2 JP H0243477 B2 JPH0243477 B2 JP H0243477B2 JP 13063582 A JP13063582 A JP 13063582A JP 13063582 A JP13063582 A JP 13063582A JP H0243477 B2 JPH0243477 B2 JP H0243477B2
Authority
JP
Japan
Prior art keywords
biological sample
sample liquid
measured
column
immobilized enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13063582A
Other languages
Japanese (ja)
Other versions
JPS5921396A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13063582A priority Critical patent/JPS5921396A/en
Publication of JPS5921396A publication Critical patent/JPS5921396A/en
Publication of JPH0243477B2 publication Critical patent/JPH0243477B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 本発明は固定化酵素を用いた生体成分の定量法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quantifying biological components using immobilized enzymes.

従来、生体成分、例えば血清中に微量に存在す
る胆汁酸等を定量する際に、胆汁酸等の被測定成
分を例えば蛍光光度計等の検出器によつて直線検
出することが困難な場合には、酵素の触媒作用を
利用して、被測定成分の酵素の存在下に反応する
反応物を予め加えておいた試料液を担体に固定化
された酵素が充填されたカラム(これを固定化酵
素カラムと称する)に導き、そこで被測定成分と
反応物を反応させ還元型補酵素を生成させ、これ
を蛍光検出器により検出し、試料液中に含まれる
被測定成分の量を算出することが行われている。
Conventionally, when quantifying biological components such as bile acids that exist in trace amounts in serum, it is difficult to linearly detect the components to be measured such as bile acids using a detector such as a fluorometer. utilizes the catalytic action of an enzyme to transfer a sample solution to which a reactant that reacts in the presence of the enzyme to be measured is added to a column filled with an enzyme immobilized on a carrier. (referred to as an enzyme column), where the component to be measured reacts with the reactant to produce a reduced coenzyme, which is detected by a fluorescence detector and the amount of the component to be measured contained in the sample solution is calculated. is being carried out.

例えば電磁波の定量においては、予めニコチン
酸アミドアデニンジヌクレオチド(以下NAD+
と略す)を加えた試料液を、酵素3α−ヒドロキ
システロイドデヒドロゲナーゼ(以下3α−HSD
と略す)が固定化された担体が充填された固定化
酵素カラムに通してそこで胆汁酸とNAD+とを
反応させ、その結果、胆汁酸と等モル量の蛍光物
質NADHを生成させて該NADHを蛍光光度計で
検出するか、又は、上記で発生させたNADHを
レサズリンの共存下で酵素ジアホラーゼの作用に
よつてNADに酸化させると同時にレサズリンを
還元させて蛍光物質であるレゾルフインを生成さ
せ、該レゾルフインの蛍光を測定することが行わ
れている。
For example, in quantifying electromagnetic waves, nicotinamide adenine dinucleotide (NAD+
The sample solution to which the enzyme 3α-hydroxysteroid dehydrogenase (hereinafter referred to as 3α-HSD) has been added is
) is passed through an immobilized enzyme column packed with a carrier on which bile acids are immobilized, and the bile acids and NAD+ are reacted there. As a result, the fluorescent substance NADH is generated in an equimolar amount with the bile acids, and the NADH is It can be detected with a fluorometer, or the NADH generated above is oxidized to NAD by the action of the enzyme diaphorase in the presence of resazurin, and at the same time resazurin is reduced to produce resorufin, a fluorescent substance. The fluorescence of resorufin has been measured.

しかしながら生体試料液が固定化酵素カラムを
通過しない場合に示す測定値であるブランク値を
測定しなければ正確な被測定成分量の定量が出来
ないものとなるので、従来はブランク値の測定の
為に固定化酵素カラムを設けない測定装置を別途
用意していた。しかしこの場合はブランク値の測
定及び固定化酵素カラムを通過した生体試料液の
検出値を求めるために、生体試料を2度に分けて
採取する必要があり、又検出器を別々にしている
ため秤量誤差を生じやすく、しかも測定時間が長
くなる欠点があつた。
However, the amount of the component to be measured cannot be accurately quantified unless the blank value, which is the measured value shown when the biological sample solution does not pass through the immobilized enzyme column, is measured. A measurement device without an immobilized enzyme column was prepared separately. However, in this case, in order to measure the blank value and obtain the detected value of the biological sample liquid that has passed through the immobilized enzyme column, it is necessary to collect the biological sample twice, and the detectors are separate. The drawbacks were that weighing errors were likely to occur and the measurement time was long.

本発明はかゝる欠点を解消することを目的とす
るものであり、その要旨とするところは、被測定
成分を含む生体試料液を固定化酵素カラムが接続
されている分岐流路と固定化酵素カラムが接続さ
れていない分岐流路に分流させ、固定化酵素カラ
ムが接続されている分岐流路を流れる生体試料液
をカラム内で固定化酵素と接触させて被測定成分
との反応を生じさせ、前記の各分岐流路を流通し
た生体試料液を合流させ、前記の各分岐流路を流
通した生体試料液を時間差をおいて同じ検出器に
到達させることにより生体試料液のブランク値及
び反応生成物を含有する生体試料液の検出値を順
次検出し、これらの検出値に基づいて被測定成分
量を定量することを特徴とする、固定化酵素を用
いた生体成分の定量法に存する。
The purpose of the present invention is to eliminate such drawbacks, and its gist is to immobilize a biological sample solution containing a component to be measured between a branch flow path to which an immobilized enzyme column is connected. The biological sample liquid flowing through the branch channel to which the immobilized enzyme column is connected is diverted to a branch channel to which the enzyme column is not connected, and is brought into contact with the immobilized enzyme within the column to cause a reaction with the analyte component. The biological sample liquids that have passed through each of the branch channels are merged, and the biological sample liquids that have passed through each of the branch channels are made to reach the same detector with a time difference, thereby obtaining the blank value and the biological sample liquid. A method for quantifying a biological component using an immobilized enzyme, which is characterized by sequentially detecting detected values of a biological sample solution containing reaction products and quantifying the amount of the component to be measured based on these detected values. .

次に本発明固定化酵素を用いた生体成分の定量
法について図面を参照しながら更に詳細に説明す
る。
Next, a method for quantifying biological components using the immobilized enzyme of the present invention will be described in more detail with reference to the drawings.

1は緩衝液槽であり、槽内の緩衝液には酵素の
作用により被測定成分と反応しうる成分、例えば
胆汁酸分析の場合はNAD+等が加えられている。
2は定流量ポンプであり、緩衝液を定流量で送液
するために設けられる。
Reference numeral 1 denotes a buffer tank, and the buffer in the tank contains a component capable of reacting with the component to be measured by the action of an enzyme, such as NAD+ in the case of bile acid analysis.
Reference numeral 2 denotes a constant flow pump, which is provided to feed the buffer solution at a constant flow rate.

3は被測定成分を含む生体試料の注入器であ
り、注入器3内で生体試料と緩衝液とが合流す
る。生体試料と緩衝液は両者が均一に混合されて
生体試料液となる。生体試料液は注入器3を出た
後、分岐流路4,5に分流される。分岐流路4に
はコイル状の流通管路6を経て固定化酵素カラム
7が接続されており、又分岐流路5には前記流通
管路6と同径のコイル状の流通管路8が形成され
ている。分岐流路4,5は両者が並列に設けら
れ、ほゞ同程度の長さの流通路とされている。
Reference numeral 3 denotes a syringe for a biological sample containing a component to be measured, and the biological sample and the buffer solution are combined in the syringe 3. The biological sample and the buffer are uniformly mixed to form a biological sample liquid. After the biological sample liquid exits the injector 3, it is branched into branch channels 4 and 5. An immobilized enzyme column 7 is connected to the branch flow path 4 via a coiled flow pipe 6, and a coiled flow pipe 8 having the same diameter as the flow pipe 6 is connected to the branch flow path 5. It is formed. The branch channels 4 and 5 are both provided in parallel and have approximately the same length.

分岐流路4に分流される生体試料液はコイル状
の流通管路6を経て固定化酵素カラム7に導入さ
れ、カラム7内で固定化酵素と接触することによ
りその触媒作用を受け、被測定成分が液中の反応
成分と反応して反応生成物を生成する。分岐流路
5に分流される生体試料液はコイル状の流通管路
8を経て流通する。コイル状の流通管路6,8は
例えば内径が0.2mm、長さが10mのステンレスチ
ユーブを巻回したものでこれによる圧力損失は固
定化酵素カラム7と検出器9によるよりも著しく
大きくなるので、分岐流路4,5の流量の比は
ほゞ1:1になる。
The biological sample liquid diverted to the branch channel 4 is introduced into the immobilized enzyme column 7 through the coiled flow channel 6, and when it comes into contact with the immobilized enzyme within the column 7, it is subjected to its catalytic action, and the sample to be measured is The components react with the reactive components in the liquid to produce reaction products. The biological sample liquid branched into the branch flow path 5 flows through a coiled flow conduit 8 . The coiled flow pipes 6 and 8 are, for example, wound stainless steel tubes with an inner diameter of 0.2 mm and a length of 10 m, and the pressure loss caused by this is significantly larger than that caused by the immobilized enzyme column 7 and detector 9. , the ratio of flow rates in the branch channels 4 and 5 is approximately 1:1.

前記の各分岐流路4,5を通過した生体試料液
は合流される。合流路10には検出器9が設けら
れており、前記の分岐流路5を流通した生体試料
液がまず検出器9に到達し、次いで若干の時間差
をおいて分岐流路4を流通した生体試料液が検出
器9に到達する。
The biological sample liquids that have passed through each of the branch channels 4 and 5 are combined. A detector 9 is provided in the confluence channel 10, and the biological sample liquid that has passed through the branch channel 5 first reaches the detector 9, and then, after a slight time lag, the biological sample liquid that has passed through the branch channel 4 reaches the detector 9. The sample liquid reaches the detector 9.

そして分岐流路5を流通した生体試料液がまず
検出器9に到達することにより生体試料液のブラ
ンク値が測定され、次いで若干の時間差をおいて
分岐流路4を流通した生体試料液が検出器9に到
達することにより反応生成物を含有する生体試料
液の検出値が順次得られる。
The biological sample liquid that has passed through the branch channel 5 first reaches the detector 9 to measure the blank value of the biological sample liquid, and then, after a slight time lag, the biological sample solution that has passed through the branch channel 4 is detected. By reaching the vessel 9, detection values of the biological sample liquid containing reaction products are sequentially obtained.

検出器9による検出結果は記録計11に記録さ
れる。
The detection result by the detector 9 is recorded on the recorder 11.

このようにして反応生成物を含有する生体試料
液の検出値及びブランク値を蛍光強度−時間曲線
として求め、その面積の差を計算すると共に、別
に測定した検量線から被測定成分の量を定量する
ことができる。検出器9を出た生体試料液は系外
に排出される。
In this way, the detected value and blank value of the biological sample solution containing the reaction product are obtained as a fluorescence intensity-time curve, and the difference in area is calculated, and the amount of the component to be measured is determined from a separately measured calibration curve. can do. The biological sample liquid that has exited the detector 9 is discharged to the outside of the system.

本発明方法によれば、固定化酵素カラムを通過
した生体試料液の検出値、及び、ブランク値はい
ずれも同じ装置における同じ検出器により測定す
ることができるので、生体試料の採者は一回で済
み、又秤量誤差も生じ難いものとなり、更に測定
時間を短縮することが可能となる。
According to the method of the present invention, both the detected value and the blank value of the biological sample liquid that has passed through the immobilized enzyme column can be measured with the same detector in the same device, so the biological sample collector only needs to measure it once. Moreover, weighing errors are less likely to occur, and the measurement time can be further shortened.

実施例 粒径約80ミクロンのセルロース微粒子を担体と
して用い、該微粒子5mlにイオン交換水5ml、
2M炭酸ナトリウム水溶液10mlを加えて撹拌した
のち、これに予めシアン化ブロマイド2gを溶解
したアセトニトリル1mlを加え、激しく撹拌しつ
つ90秒間反応させた。こうして活性化させたセル
ロース微粒子をすばやく0.1M炭酸緩衝液(PH
9.5)、イオン交換水及び0.5Mの塩化ナトリウム
を含む0.1M炭酸緩衝液(PH9.5)で洗浄したの
ち、3α−HSD44mgを溶解させた0.5M塩化ナトリ
ウムを含む0.1M炭酸緩衝液(PH9.5)5mlを加
え、室温で2時間撹拌して反応させた。
Example Cellulose fine particles with a particle size of about 80 microns were used as a carrier, and 5 ml of ion-exchanged water was added to 5 ml of the fine particles.
After adding 10 ml of a 2M aqueous sodium carbonate solution and stirring, 1 ml of acetonitrile in which 2 g of cyanide bromide had been dissolved in advance was added, and the mixture was allowed to react for 90 seconds while stirring vigorously. The activated cellulose particles were quickly dissolved in 0.1M carbonate buffer (PH).
9.5), washed with ion-exchanged water and 0.1M carbonate buffer (PH9.5) containing 0.5M sodium chloride, and then washed with 0.1M carbonate buffer (PH9.5) containing 0.5M sodium chloride in which 44 mg of 3α-HSD was dissolved. 5) 5 ml was added and stirred at room temperature for 2 hours to react.

次に上記の処理により3α−HSDを固定化した
微粒子表面上なお存在する活性点をブロツクする
ため、0.05%の−メルカプトエタノールを含む
0.1Mトリス−塩酸緩衝液(PH8.0)中で4℃で2
時間反応させた。
Next, 0.05% -mercaptoethanol was added to block the active sites still present on the surface of the microparticles on which 3α-HSD was immobilized by the above treatment.
2 at 4°C in 0.1M Tris-HCl buffer (PH8.0).
Allowed time to react.

かくして得られた酵素固定化微粒子を0.5Mの
塩化ナトリウムを含む0.1M酢酸緩衝液(PH5.0)、
イオン交換水及び0.5Mの塩化ナトリウムを含む
0.1M炭酸緩衝液(PH9.5)で繰り返し洗浄したの
ち、長さ100mm、内径4mmのカラムに充填し、固
定化酵素充填カラムを用意した。
The enzyme-immobilized microparticles thus obtained were mixed with a 0.1M acetate buffer (PH5.0) containing 0.5M sodium chloride,
Contains ion-exchanged water and 0.5M sodium chloride
After repeated washing with 0.1M carbonate buffer (PH9.5), it was packed into a column with a length of 100 mm and an inner diameter of 4 mm to prepare an immobilized enzyme-packed column.

上記のようにして得たカラムを第1図のカラム
7として用い、1中にNAD+199mgを含む
0.1Mピロリン酸緩衝液(PH9.5)を緩衝液槽1に
入れ、次いで定流量ポンプ2で1.2ml/分の流量
で送液し、送液が安定した時点で建康人の血清
0.01mlを注入器3から注入し、緩衝液と混合させ
た。かくして得られた試料液は2分されて分岐流
路4,5に夫々流通し、分岐流路5に分流した試
料液は内径2mm、長さ10mのコイル状の流通管路
8を経て流通し、又分岐流路4に分流した試料液
は内径2mm、長さ10mのコイル状の流通管路6か
ら固定化酵素カラム7を経て流通し、合流路10
に達した。次いで検出器9に到達したが、この際
分岐流路5を流通した試料液は注入器3への注入
後20秒で検出器9に到達し、又分岐流路4を流通
した試料液は1,2分後に検出器9に到達した。
検出器9による検出は励起波長360nm、蛍光波長
460nmにより行ない、第2図に示す蛍光強度−時
間曲線を得た。この曲線からピーク(a)の面積−ピ
ーク(b)の面積の値を求め、これとは別に測定した
検量線から血中胆汁酸値8μモル/の値を得た。
The column obtained as above was used as column 7 in Figure 1, and 1 contained 199 mg of NAD+.
Pour 0.1M pyrophosphate buffer (PH9.5) into buffer tank 1, then pump the liquid at a flow rate of 1.2 ml/min with constant flow pump 2. When the liquid feeding stabilizes, take Yasuto's serum.
0.01 ml was injected through syringe 3 and mixed with the buffer. The sample solution thus obtained is divided into two parts and distributed to branch channels 4 and 5, respectively, and the sample solution branched to branch channel 5 is distributed through a coiled distribution pipe 8 with an inner diameter of 2 mm and a length of 10 m. In addition, the sample liquid branched into the branch channel 4 flows from a coiled flow channel 6 with an inner diameter of 2 mm and a length of 10 m through an immobilized enzyme column 7, and then flows into a confluence channel 10.
reached. Next, the sample liquid that passed through the branch channel 5 reached the detector 9 20 seconds after being injected into the syringe 3, and the sample solution that passed through the branch channel 4 reached the detector 9. , reached the detector 9 after 2 minutes.
Detector 9 detects excitation wavelength 360nm and fluorescence wavelength
The fluorescence intensity-time curve shown in FIG. 2 was obtained by using 460 nm. From this curve, the value of the area of peak (a) minus the area of peak (b) was determined, and from a separately measured calibration curve, a value of 8 μmol/blood bile acid was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施態様を示す説明図、
第2図は実施例において得られた蛍光強度−時間
曲線を示す。 符号の説明 1……緩衝液槽、2……定流量ポ
ンプ、3……注入器、4,5……分岐流路、6,
8……コイル状流通管路、7……固定化酵素カラ
ム、9……検出器、10……合流路。
FIG. 1 is an explanatory diagram showing an embodiment of the method of the present invention,
FIG. 2 shows the fluorescence intensity-time curve obtained in the example. Explanation of symbols 1... Buffer tank, 2... Constant flow pump, 3... Syringe, 4, 5... Branch flow path, 6,
8... Coiled flow pipe, 7... Immobilized enzyme column, 9... Detector, 10... Merging channel.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定成分を含む生体試料液を固定化酵素カ
ラムが接続されている分岐流路と固定化酵素カラ
ムが接続されない分岐流路に分流させ、固定化酵
素カラムが接続されている分岐流路を流れる生体
試料液をカラム内で固定化酵素と接触させて被測
定成分との反応を生じさせ、前記の各分岐流路を
流通した生体試料液を合流させ、前記の各分岐流
路を流通した生体試料液を時間差をおいて同じ検
出器に到達させることにより生体試料液のブラン
ク値及び反応生成物を含有する生体試料液の検出
値を順次検出し、これらの検出値に基づいて被測
定成分量を定量することを特徴とする、固定化酵
素を用いた生体成分の定量法。
1. Separate the biological sample solution containing the component to be measured into the branch channel to which the immobilized enzyme column is connected and the branch channel to which the immobilized enzyme column is not connected, and separate the branch channel to which the immobilized enzyme column is connected. The flowing biological sample liquid was brought into contact with the immobilized enzyme in the column to cause a reaction with the component to be measured, and the biological sample liquids that had passed through each of the branch channels were combined, and the biological sample liquid that had passed through each of the branch channels was combined. The blank value of the biological sample liquid and the detected value of the biological sample liquid containing reaction products are sequentially detected by allowing the biological sample liquid to reach the same detector with a time difference, and the measured component is determined based on these detected values. A method for quantifying biological components using immobilized enzymes, which is characterized by quantifying the amount.
JP13063582A 1982-07-26 1982-07-26 Determination of organism component using immobilized enzyme Granted JPS5921396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13063582A JPS5921396A (en) 1982-07-26 1982-07-26 Determination of organism component using immobilized enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13063582A JPS5921396A (en) 1982-07-26 1982-07-26 Determination of organism component using immobilized enzyme

Publications (2)

Publication Number Publication Date
JPS5921396A JPS5921396A (en) 1984-02-03
JPH0243477B2 true JPH0243477B2 (en) 1990-09-28

Family

ID=15038958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13063582A Granted JPS5921396A (en) 1982-07-26 1982-07-26 Determination of organism component using immobilized enzyme

Country Status (1)

Country Link
JP (1) JPS5921396A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207597A (en) * 1984-03-31 1985-10-19 Sekisui Chem Co Ltd Determination of bio-component using immobilized enzyme
JPS60241898A (en) * 1984-05-15 1985-11-30 Sekisui Chem Co Ltd Determination of biological components with immobilized enzymes

Also Published As

Publication number Publication date
JPS5921396A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
US3838011A (en) Process and apparatus for the quantitative determination of an enzymatically reactive substance
US4357420A (en) Bioluminescence methods for enzymatic determinations
JPS63294799A (en) Method for simultaneously measuring glucose and 1,5-anhydroglycitol
Li et al. Chemiluminescence flow biosensor for hydrogen peroxide with immobilized reagents
US4153513A (en) Method and apparatus for the continuous determination of the concentration of an enzyme substrate
Mattiasson et al. Enzyme thermistor assay of cholesterol, glucose, lactose and uric acid in standard solutions as well as in biological samples
JPH06105261B2 (en) Concentration gradient measuring device
US4263406A (en) Apparatus for continuously referenced analysis of reactive components in solution
Jianzhong et al. A flow-injection type chemiluminescence-based sensor for cyanide
Satoh An apoenzyme thermistor microanalysis for zinc (II) ions with use of an immobilized alkaline phosphatase reactor in a flow system
JPH0243477B2 (en)
JPS5916780B2 (en) Artificial kidney monitor device
Huang et al. Chemiluminescence flow biosensor system for cholesterol with immobilized reagents
Teixeira et al. Flow injection spectrophotometric determination of adrenaline in pharmaceutical formulations using a solid-phase reactor containing lead (IV) dioxide immobilized in a polyester resin
JPH0379997B2 (en)
JPS595000B2 (en) Biochemical analysis method using immobilized enzyme column
JPH0243475B2 (en)
JP3074361B2 (en) Quantitative analyzer
KR970001814B1 (en) Process for measuring the content of component in vital fluid
JPS6188898A (en) Simultaneous analysis of acetylcholine and choline by electrochemical detector using immobilized enzyme column
Qin et al. Plant tissue-based chemiluminescence flow biosensor for oxalate
Tabata et al. A chemiluminescence-flow injection analysis of serum 3-hydroxybutyrate using a bioreactor consisting of 3-hydroxybutyrate dehydrogenase and NADH oxidase
JPH022600B2 (en)
Danielsson et al. Biosensors based on thermistors and semiconductors and their bioanalytical applications
JPH0243476B2 (en)