JPH0242531B2 - - Google Patents

Info

Publication number
JPH0242531B2
JPH0242531B2 JP60096743A JP9674385A JPH0242531B2 JP H0242531 B2 JPH0242531 B2 JP H0242531B2 JP 60096743 A JP60096743 A JP 60096743A JP 9674385 A JP9674385 A JP 9674385A JP H0242531 B2 JPH0242531 B2 JP H0242531B2
Authority
JP
Japan
Prior art keywords
membrane
hours
formula
solvent
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60096743A
Other languages
Japanese (ja)
Other versions
JPS61257202A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60096743A priority Critical patent/JPS61257202A/en
Publication of JPS61257202A publication Critical patent/JPS61257202A/en
Publication of JPH0242531B2 publication Critical patent/JPH0242531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は耐薬品性、特に有機性液体に対する耐
久性にすぐれた分離膜に関する。詳しくは、芳香
族トリカルボン酸無水物又は、その誘導体と芳香
族ジアミンとの縮合によつて得られる主として一
般式 (式中、Rは
[Industrial Application Field] The present invention relates to a separation membrane having excellent chemical resistance, particularly durability against organic liquids. In detail, mainly general formulas obtained by condensation of aromatic tricarboxylic acid anhydride or its derivative with aromatic diamine (In the formula, R is

【式】【formula】

【式】【formula】

【式】【formula】

〔従来の技術〕[Conventional technology]

一般に気体同志、液体同志、液体と溶質等の分
離に透過膜が使用されるが、膜に接する気体又は
液体に対して透過膜が耐久性を有することが重要
である。膜に接する物質が通常の気体や水などの
場合には通常の高分子材料から製膜した膜でも耐
久性を有する為、それ程問題がないが、膜に接す
る物質が有機液体の場合や、強酸性や強アルカリ
性の場合にはこれらの物質に対する膜の耐久性は
非常に重要である。これらの膜の耐久性の問題は
被分離対象物が有機液体の場合のみならず、気体
分離に於ても促進輸送と称する、特定の気体と親
和性を有するキヤリヤーを用いる分離膜の場合に
は重要である。即ちこれらのキヤリヤーやそれを
構成する配位子、又はそれらを溶解する溶媒とし
て有機液体がしばしば使用され、これらキヤリヤ
ーの有機液体を支える膜の耐久性が劣る場合には
キヤリヤー溶液を膜の透過側に漏出させるという
問題が起こる。従つて、キヤリヤー溶液を支える
基膜としてはキヤリヤー溶液に対して耐久性を有
することが不可欠であり、しかも基膜は被分離物
質の透過に対するバリヤーが問題にならない程度
の薄い膜(ここでは多孔質層に支えられた緻密層
の厚さを意味する。)に於ても充分耐久性を有す
ることが求められる。 〔発明の目的〕 本発明者等は上記の必要性から鋭意検討した結
果、芳香族トリカルボン酸無水物又はその誘導体
と芳香族ジアミンとの縮合によつて得られる主と
して一般式 (式中、Rは
Generally, permeable membranes are used to separate gases, liquids, liquids and solutes, etc., but it is important that the permeable membrane has durability against the gas or liquid that comes into contact with the membrane. If the substance in contact with the membrane is an ordinary gas or water, there is no problem because the membrane made from ordinary polymeric materials is durable, but if the substance in contact with the membrane is an organic liquid or a strong acid In the case of strong alkalinity or strong alkalinity, the durability of the membrane against these substances is very important. Problems with the durability of these membranes arise not only when the object to be separated is an organic liquid, but also in the case of separation membranes that use a carrier that has an affinity for a specific gas, which is called facilitated transport in gas separation. is important. That is, organic liquids are often used as carriers, their constituent ligands, or solvents for dissolving them, and when the durability of the membrane supporting the organic liquid of these carriers is poor, the carrier solution is used on the permeate side of the membrane. The problem of leakage occurs. Therefore, it is essential that the base membrane that supports the carrier solution has durability against the carrier solution, and that the base membrane is thin enough that the barrier to permeation of the substance to be separated is not a problem (in this case, a porous membrane is used). (meaning the thickness of the dense layer supported by the layer) is also required to have sufficient durability. [Purpose of the Invention] As a result of intensive studies based on the above-mentioned needs, the present inventors have found that the present inventors have developed a compound mainly of the general formula obtained by condensing an aromatic tricarboxylic acid anhydride or its derivative with an aromatic diamine. (In the formula, R is

【式】【formula】

【式】【formula】

【式】【formula】

〔発明の構成〕[Structure of the invention]

以下、本発明をさらに詳細に説明する。 本発明で使用するポリアミドイミド樹脂は、ト
リメリツト酸と芳香族ジアミンの反応によつて得
られる。主として前示一般式で示される構造単位
からなるもので、このようなポリアミドイミド樹
脂は芳香環とイミド結合の組み合わせをもつため
に優れた熱安定性を示し、又アミド結合をも有す
るために柔軟性と強靭さを示す。 上記ポリアミドイミド樹脂は、 (式中、Rは前示一般式におけるRと同意義) で示される構造単位を少量含んでいてもよい。 製膜は各種の有機溶剤に上記のポリアミドイミ
ド樹脂を溶解して得た製膜溶液を直接紡糸、キヤ
スト又は支持基材に塗布して後、場合によつては
不活性ガスの気流下及び/又は加熱によつて有機
溶剤の少くとも一部を蒸発させて後、凝固溶剤に
浸漬させて行うことができる。製膜溶液はある種
の添加剤を含有していてもよい。膜の形態として
は製膜は各種の有機溶剤に上記のポリアミドイミ
ド樹脂を溶解して得たドーブを基板上にキヤスト
するか、紡糸するか、又は支持体基材に塗布し、
場合によるが有機溶剤の少くとも一部を蒸発させ
て後、適当な溶媒に浸漬し、重合体を凝固させて
行うことができる。 製膜に使用する有機溶剤は上記のポリアミドイ
ミド樹脂を溶解し得る溶媒であればよく、特に限
定しないが、沸点が30〜300℃程度の溶媒が選ば
れ、例えばジメチルホルムアミド、ジメチルアセ
トアミド、ジメチルスルホキシド、N−メチルピ
ロリドンなどから選ばれる。又、複数の溶媒を混
合してもよい。又、場合によつてはこれに無機塩
類などを添加してもよい。 ドーブ中に含有する上記ポリアミドイミド樹脂
の濃度は特に限定しないが、5〜40重量%で行う
ことが好ましい。ドーブから製膜するに際し、膜
の形態はシート状、管状、中空糸状のいずれでも
よい。又上記のポリアミドイミド樹脂のみから膜
を形成してもよいし、平板状又は管状の支持体基
材の上にキヤストし、支持体基材と一体化した複
合膜にすることも出来る。支持体基材としては多
孔性の基材が好ましく有機、無機の各種の高分子
材料、セラミツクス、金属などが材料として選ば
れる。又、織物などの上にドーブをキヤストして
膜を補強することも出来る。場合によつてはシー
ト状、管状、又は中空糸状に製膜して後、膜表面
に緻密層を形成する為に若干の乾燥処理を行うこ
とが望ましい。この場合膜表面の雰囲気を加熱や
気流により溶媒の蒸発を促進し得る状態にするこ
とも出来る。蒸発時間は限定しないが一般的には
10分以内の時間が好ましい。次にこれらのキヤス
トした膜を適当な溶媒に浸漬して凝固及び製膜用
溶媒の除去を行うが、凝固用の溶媒としては上記
ポリアミドイミド樹脂にとつては非溶媒で化学的
に不活性であり、製膜用溶媒又は無機塩などの添
加物に対しては相溶性のある溶媒が好ましい。こ
れらの溶媒としては、水、アルコール類、エーテ
ル類、炭化水素、ハロゲン化炭化水素、グリコー
ル類、ケトン類、アルキルセロソルブなどが例示
される。勿論複数の溶媒を混合してもよい。浸漬
温度は一般にその溶媒の沸点未満の温度で行わ
れ、通常0〜150℃、好ましくは5〜100℃であ
る。浸漬時間は特に限定しないがドーブ中の溶
媒、又は添加物を除去するに充分長い時間が好ま
しい。浸漬溶媒の種類及び浸漬温度によつても異
なるが、通常0.1秒〜100時間の範囲が好ましい。
又、途中で浸漬する溶媒を変えて行うことも出来
る。かくして得られた膜は最後に好ましくは水に
浸漬し、充分有機溶媒を除いて後乾燥する。乾燥
条件は水が蒸発する条件であればよく特に限定し
ないが5℃以上〜300℃未満の条件で行うことが
好ましい。水、又は微量残存する有機溶媒を蒸発
し易くするために減圧下又は不活性ガスの気流下
に行うこともできる。本発明においては、このよ
うにして得られた膜を、直接300〜450℃に加熱し
て処理してもよいが、ポリアミドイミド樹脂の性
能を充分引き出すためには上記加熱処理に先立つ
て後キユアーしておくことが好ましい。即ち後キ
ユアーの過程で高分子量化し、その物性を高める
ことができる。代表的な後キユアーは150〜280
℃、1〜100時間の範囲で行われ、例えば165℃20
時間、更に245℃24時間、最後に260℃24時間とい
つた条件が例示される。後キユアーの温度は低い
温度から高い温度へ段階的に上げていくことが望
ましい。従つて乾燥工程にひきつづいてあるいは
乾燥工程と兼ねて後キユアーを実施することがで
きる。 このような300℃までの後キユアーによつて膜
の物性は向上するが、しかし耐薬品性という面で
は不充分であり、このまま有機溶剤に接触すると
溶解又は膨潤する。 本発明では上述のようにした得られた膜を直接
あるいは、上述の後キユアー処理したのち、300
〜450℃の条件で加熱処理を行う。温度は一度に
高温にしてもよいし、段階的に昇温してもよい。
時間は特に限定しないが0.1〜100時間が好まし
い。好ましい熱処理条件は310〜400℃で1〜10時
間である。熱処理温度が高く熱処理時間が長いと
きは膜素材を劣化し膜性能を低下させる。又、逆
に熱処理温度が低く、熱処理時間が短かいときは
熱処理効果が不充分であり、耐溶剤性が改良され
ない。 〔実施例〕 次に本発明の内容を実施例により具体的に設明
するが、本発明は以下の実施例に拘束されない。 比較例 無水トリメリツト酸と芳香族ジアミンの反応に
よつて主として で示される構造単位からなる得られたポリアミド
イミド樹脂(商品名“TORLON”、グレード名
4000T、TORLONは登録商標)の多孔質中空糸
膜(外径700μm、内径500μm)を165℃12時間、
245℃−12時間、265℃24時間と順次温度を上げて
加熱処理を行つた。この加熱処理した中空糸をジ
メチルスルホキシド、及びN−メチルイミダゾー
ル中にそれぞれ浸漬したところ、約一時間で糸は
溶解し、それぞれの溶媒は黄色に着色した。 実施例 1 比較例で使用した“TORLON”4000Tの多孔
質中空糸膜を165℃12時間、245℃−12時間、265
℃24時間の比較例と同一の処理をして後、更に
300℃−2時間、ひきつづき350℃3時間の加熱処
理を加えて得られた糸をジメチルスルホキシド及
びN−メチルイミダゾール中に浸漬した。いずれ
の溶媒中に於ても少なくとも5ケ月間糸は膨潤も
せずそれぞれの溶媒の着色は認められなかつた。
これは300℃2時間、更に350℃−3時間の加熱処
理を加えることにより糸の溶解性が改良されたこ
とを示す。 実施例 2 比較例で使用した“TORLON”4000Tの多孔
質中空糸膜を比較例と同一の処理をして後、更に
350℃3時間の加熱処理を行つた。 (実施例1の300℃2時間の処理工程を省いた)
得られた糸はジメチルスルホキシド及びN−メチ
ルイミダゾールのいずれに対しても少なくとも5
ケ月間膨潤、溶解の現象は認められなかつた。 実施例 3 比較例で使用した“TORLON”4000Tの多孔
質中空糸膜を165℃12時間、更に350℃3時間の加
熱処理を行つた。(245℃12時間、265℃24時間の
処理工程を省いた)得られた糸は実施例1及び2
と同様、ジメチルスルホキシド及びN−メチルイ
ミダゾールのいずれに対しても少なくとも5ケ月
膨潤、溶解の現象は認められなかつた。 実施例 4 比較例で使用した“TORLON”4000Tの多孔
質中空糸膜を165℃12時間更に330℃2.5時間の加
熱処理を行つた。(実施例3に比べ処理温度を下
げた)得られた糸は実施例1,2,3と同様、ジ
メチルスルホキシド及びN−メチルイミダゾール
のいずれに対しても少なくとも5ケ月膨潤、溶解
の現象は認められなかつた。 比較例及び実施例1〜4の結果をまとめて表−
1に示す。
The present invention will be explained in more detail below. The polyamideimide resin used in the present invention is obtained by the reaction of trimellitic acid and aromatic diamine. It mainly consists of structural units represented by the general formula shown above, and such polyamide-imide resins have a combination of aromatic rings and imide bonds, so they exhibit excellent thermal stability, and they also have amide bonds, making them flexible. Demonstrates strength and strength. The above polyamideimide resin is (In the formula, R has the same meaning as R in the general formula shown above.) It may contain a small amount of a structural unit represented by the following. Film formation is performed by directly spinning, casting, or applying a film-forming solution obtained by dissolving the above-mentioned polyamide-imide resin in various organic solvents to a supporting substrate, and then, depending on the case, under a stream of inert gas and/or Alternatively, it can be carried out by evaporating at least a portion of the organic solvent by heating and then immersing it in a coagulating solvent. The membrane forming solution may contain certain additives. In terms of the form of the film, the film is formed by dissolving the above polyamide-imide resin in various organic solvents and casting the dove on the substrate, spinning it, or coating it on the support base material.
Depending on the case, the polymer may be coagulated by evaporating at least a portion of the organic solvent and then immersing it in a suitable solvent. The organic solvent used for film formation is not particularly limited as long as it can dissolve the above polyamideimide resin, but a solvent with a boiling point of about 30 to 300°C is selected, such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, etc. , N-methylpyrrolidone, etc. Alternatively, a plurality of solvents may be mixed. Further, in some cases, inorganic salts may be added thereto. The concentration of the polyamideimide resin contained in the dove is not particularly limited, but it is preferably 5 to 40% by weight. When forming a membrane from a dove, the membrane may be in the form of a sheet, a tube, or a hollow fiber. Further, a membrane may be formed only from the above-mentioned polyamide-imide resin, or it may be cast onto a flat or tubular support base material to form a composite membrane integrated with the support base material. The support base material is preferably a porous base material, and various organic and inorganic polymer materials, ceramics, metals, etc. are selected as the material. The membrane can also be reinforced by casting dove onto a fabric or the like. In some cases, after forming a film in the form of a sheet, a tube, or a hollow fiber, it is desirable to perform a slight drying treatment in order to form a dense layer on the surface of the film. In this case, the atmosphere on the surface of the membrane can be brought into a state where the evaporation of the solvent can be promoted by heating or air flow. There is no limit to the evaporation time, but in general
A time of 10 minutes or less is preferred. Next, these cast films are immersed in an appropriate solvent to coagulate and remove the film-forming solvent, but the coagulation solvent is a non-solvent and chemically inert for the polyamide-imide resin. A solvent that is compatible with additives such as a film-forming solvent or an inorganic salt is preferable. Examples of these solvents include water, alcohols, ethers, hydrocarbons, halogenated hydrocarbons, glycols, ketones, and alkyl cellosolves. Of course, a plurality of solvents may be mixed. The immersion temperature is generally below the boiling point of the solvent, usually from 0 to 150°C, preferably from 5 to 100°C. The immersion time is not particularly limited, but it is preferably long enough to remove the solvent or additives in the dove. Although it varies depending on the type of immersion solvent and the immersion temperature, the preferable range is usually 0.1 seconds to 100 hours.
It is also possible to change the solvent used for dipping midway through the process. The membrane thus obtained is finally preferably immersed in water, thoroughly removed from the organic solvent, and then dried. Drying conditions are not particularly limited as long as water evaporates, but drying is preferably carried out at a temperature of 5°C or higher and lower than 300°C. In order to facilitate the evaporation of water or a trace amount of residual organic solvent, the reaction can also be carried out under reduced pressure or under a stream of inert gas. In the present invention, the membrane thus obtained may be directly heated to 300 to 450°C for treatment, but in order to fully bring out the performance of the polyamide-imide resin, post-curing should be performed prior to the above heat treatment. It is preferable to keep it. That is, the molecular weight can be increased during the post-curing process, and its physical properties can be improved. Typical back pressure is 150-280
℃, for 1 to 100 hours, for example, 165℃ 20
Examples of conditions include further heating at 245°C for 24 hours, and finally at 260°C for 24 hours. It is desirable to raise the temperature of the post-cure stepwise from a low temperature to a high temperature. Therefore, post-curing can be performed following the drying step or concurrently with the drying step. Such post-curing up to 300° C. improves the physical properties of the film, but it is insufficient in terms of chemical resistance, and if it comes into contact with an organic solvent as it is, it will dissolve or swell. In the present invention, the film obtained as described above is cured directly or after the above-mentioned post-curing treatment.
Heat treatment is performed at ~450°C. The temperature may be raised all at once or may be raised in stages.
Although the time is not particularly limited, 0.1 to 100 hours is preferable. Preferred heat treatment conditions are 310-400°C for 1-10 hours. When the heat treatment temperature is high and the heat treatment time is long, the membrane material deteriorates and the membrane performance decreases. On the other hand, when the heat treatment temperature is low and the heat treatment time is short, the heat treatment effect is insufficient and the solvent resistance is not improved. [Examples] Next, the content of the present invention will be specifically explained by examples, but the present invention is not limited to the following examples. Comparative example Mainly by the reaction of trimellitic anhydride and aromatic diamine. The resulting polyamide-imide resin (product name “TORLON”, grade name
4000T, TORLON is a registered trademark) porous hollow fiber membrane (outer diameter 700μm, inner diameter 500μm) at 165℃ for 12 hours.
Heat treatment was performed by increasing the temperature sequentially: 245°C for 12 hours and 265°C for 24 hours. When the heat-treated hollow fibers were immersed in dimethyl sulfoxide and N-methylimidazole, the fibers were dissolved in about one hour, and the respective solvents were colored yellow. Example 1 The “TORLON” 4000T porous hollow fiber membrane used in the comparative example was heated at 165°C for 12 hours and at 245°C for 12 hours at 265°C.
After the same treatment as the comparative example for 24 hours at °C,
The yarn obtained by heat treatment at 300°C for 2 hours and then at 350°C for 3 hours was immersed in dimethyl sulfoxide and N-methylimidazole. The yarn did not swell in any of the solvents for at least 5 months, and no coloration was observed due to the respective solvents.
This indicates that the solubility of the yarn was improved by heat treatment at 300°C for 2 hours and then at 350°C for 3 hours. Example 2 The “TORLON” 4000T porous hollow fiber membrane used in the comparative example was treated in the same manner as in the comparative example, and then further treated.
Heat treatment was performed at 350°C for 3 hours. (The 2-hour treatment step at 300°C in Example 1 was omitted)
The resulting yarn has a resistance of at least 5 to both dimethyl sulfoxide and N-methylimidazole.
No swelling or dissolution phenomena were observed for several months. Example 3 The "TORLON" 4000T porous hollow fiber membrane used in the comparative example was heat treated at 165°C for 12 hours and then at 350°C for 3 hours. (The treatment steps of 245°C for 12 hours and 265°C for 24 hours were omitted) The obtained yarns were used in Examples 1 and 2.
Similarly, no swelling or dissolution phenomena were observed for either dimethyl sulfoxide or N-methylimidazole for at least 5 months. Example 4 The "TORLON" 4000T porous hollow fiber membrane used in the comparative example was heat treated at 165°C for 12 hours and then at 330°C for 2.5 hours. Similar to Examples 1, 2, and 3, the obtained yarn (treatment temperature was lowered compared to Example 3) did not exhibit swelling or dissolution phenomena for at least 5 months in both dimethyl sulfoxide and N-methylimidazole. I couldn't help it. A table summarizing the results of Comparative Examples and Examples 1 to 4.
Shown in 1.

【表】 実施例 5 実施例4と同様の熱処理条件(165℃2時間、
更に330℃2.5時間)の中空糸膜(長さ11cm)を15
本束ねてボツテイング材で末端を固め窒素及びヘ
リウムの透過性能を測定した。結果を表−2に示
す。透過速度の比から求めたヘリウムと窒素の分
離性能は12.0であつた。
[Table] Example 5 Heat treatment conditions similar to Example 4 (165°C for 2 hours,
Furthermore, 15 hollow fiber membranes (length 11 cm) were heated at 330℃ for 2.5 hours.
The bundles were bundled and the ends were sealed with bottling material to measure nitrogen and helium permeation performance. The results are shown in Table-2. The separation performance between helium and nitrogen determined from the ratio of permeation rates was 12.0.

〔発明の効果〕〔Effect of the invention〕

本発明により得られる分離膜は気体分離、液体
分離、各種の溶質を含む分離を問わず、耐薬品性
を要求される分離用の膜として有用であり、特に
促進輸送を目的とするキヤリヤー物質を含む有機
系の液体膜と組み合せて使用する場合に効果を発
揮する。
The separation membrane obtained by the present invention is useful as a membrane for separations that require chemical resistance, regardless of gas separation, liquid separation, or separation involving various solutes. It is effective when used in combination with an organic liquid film containing

Claims (1)

【特許請求の範囲】 1 芳香族トリカルボン酸無水物又はその誘導体
と、芳香族ジアミンとの縮合によつて得られる、
主として一般式 (式中、Rは【式】 【式】 【式】 【式】およびこれらの誘 導体からなる群の中から選ばれる二価の芳香族基
である。) で示される構造単位からなる重合体の膜を300〜
450℃の温度範囲で加熱処理して得られる分離膜。
[Scope of Claims] 1. Obtained by condensation of an aromatic tricarboxylic acid anhydride or a derivative thereof and an aromatic diamine,
Mainly general formulas (In the formula, R is a divalent aromatic group selected from the group consisting of [Formula] [Formula] [Formula] [Formula] and derivatives thereof.) 300~
Separation membrane obtained by heat treatment at a temperature range of 450℃.
JP60096743A 1985-05-09 1985-05-09 Separation membrane Granted JPS61257202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096743A JPS61257202A (en) 1985-05-09 1985-05-09 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096743A JPS61257202A (en) 1985-05-09 1985-05-09 Separation membrane

Publications (2)

Publication Number Publication Date
JPS61257202A JPS61257202A (en) 1986-11-14
JPH0242531B2 true JPH0242531B2 (en) 1990-09-25

Family

ID=14173170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096743A Granted JPS61257202A (en) 1985-05-09 1985-05-09 Separation membrane

Country Status (1)

Country Link
JP (1) JPS61257202A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788601B2 (en) * 1987-01-07 1995-09-27 三菱化学株式会社 Method for producing hollow fiber having finger-shaped pores
JPH0788602B2 (en) * 1987-01-08 1995-09-27 三菱化学株式会社 Copolyamide imide hollow fiber
JP2827212B2 (en) * 1988-03-29 1998-11-25 三菱化学株式会社 Polyamideimide separation membrane
JPH02198619A (en) * 1989-01-30 1990-08-07 Daicel Chem Ind Ltd Polyamide-imide preferential segregation membrane
JPH06165819A (en) * 1992-04-08 1994-06-14 Toyobo Co Ltd Hollow yarn membrane for purifying blood

Also Published As

Publication number Publication date
JPS61257202A (en) 1986-11-14

Similar Documents

Publication Publication Date Title
US5753008A (en) Solvent resistant hollow fiber vapor permeation membranes and modules
US5749943A (en) Method of selectively separating unsaturated hydrocarbon
Suzuki et al. Preparation of composite hollow fiber membranes of poly (ethylene oxide)-containing polyimide and their CO2/N2 separation properties
US20030070545A1 (en) Chemical modification of polyimides
CA2145451C (en) Process for producing composite membranes
JPS62201606A (en) Composite semipermeable membrane and its production
JPH03196822A (en) Semipermeable membrane made from homogeneously mixable polymer mixture
JPS6252604B2 (en)
JPH0242531B2 (en)
JPH0852332A (en) Composite gas separation membrane and production thereof
JPH03284335A (en) Asymmetric separation membrane and separation by pervaporization
JPS6028803A (en) Selective permeable membrane and its manufacture
JPH04110029A (en) Aromatic separating membrane
JP2022514036A (en) Porous membrane for high pressure filtration
JP2506837B2 (en) Method for manufacturing composite separation membrane
JPH0924260A (en) Poly(imidazopyrrolone-imide) compolymer separation membrane and its production
JPH02126925A (en) Laminated separating membrane
JP2022515734A (en) Porous membrane for high pressure filtration
JP2827212B2 (en) Polyamideimide separation membrane
EP0409265A2 (en) Composite polymeric membranes for gas separation and their preparation and use
JPH09239248A (en) Method for treatment of pervaporation membrane
JPH08323166A (en) Surface treatment of separating membrane
JPS6399325A (en) Hollow yarn membrane of polysulfone resin and production thereof
Fu et al. Preparation of poly (phthalazinone ether sulfone ketone) hollow fiber membrane for gas separation
NL8700758A (en) Semipermeable membrane with poly:phenylene:triazole gps, - used in micro-filtration, ultrafiltration, reversed osmosis, pervaporation, vapour permeation, and gas, liq. and vapour sepn.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term