JPH0242242A - Fluid transmission - Google Patents

Fluid transmission

Info

Publication number
JPH0242242A
JPH0242242A JP19223888A JP19223888A JPH0242242A JP H0242242 A JPH0242242 A JP H0242242A JP 19223888 A JP19223888 A JP 19223888A JP 19223888 A JP19223888 A JP 19223888A JP H0242242 A JPH0242242 A JP H0242242A
Authority
JP
Japan
Prior art keywords
fluid
output shaft
magnetic
conductive coil
fluid coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19223888A
Other languages
Japanese (ja)
Inventor
Minoru Kitamura
稔 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19223888A priority Critical patent/JPH0242242A/en
Publication of JPH0242242A publication Critical patent/JPH0242242A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate necessity for provision of any oil storing trough and construct in a small size by varying the current value in a coil, thereby varying the kinetic energy of magnetic fluid in a fluid joint, and by controlling the torque value on the output shaft. CONSTITUTION:Material with a low relative magnetic permeability is used to a pump impeller 2, turbine impeller 4, and casing 6. When current is supplied to a coil 5, a magnetic circuit passing magnetic fluid is formed. Change of the current value in the coil 5 will vary the kinetic energy of the magnetic fluid in fluid joint to serve controlling the output shaft torque or the revolving speed of the output shaft. This eliminates any oil storing trough and makes the construction in smaller size.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は産業機械、交通機関に利用される流体を利用す
る変速機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a transmission using fluid used in industrial machinery and transportation.

〔従来の技術〕[Conventional technology]

従来の可変速式流体継手は、入力軸の回転数を一定に保
ち流体継手回路内の作動液流量を加減して出力軸のトル
ク値を変え、出力軸の回転数を任意に制御する方法によ
っていた。
Conventional variable speed fluid couplings control the rotation speed of the output shaft arbitrarily by keeping the rotation speed of the input shaft constant and adjusting the flow rate of the hydraulic fluid in the fluid coupling circuit to change the torque value of the output shaft. there was.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題点は、上記のように従来
の可変速式流体継手は、出力軸トルク値を変えるために
作動液体の流量を加減しているため貯油槽が必要であり
、構造が大きくなる欠点があった。
The problem to be solved by the present invention is that, as mentioned above, conventional variable speed fluid couplings require an oil storage tank because the flow rate of the working fluid is adjusted to change the output shaft torque value. The disadvantage was that it became larger.

〔問題解決のための手段〕[Means for solving problems]

本発明は、上記の問題点を解決するため。 The present invention aims to solve the above problems.

流体継手の作動流体に磁性流体を使用し、流体継手の外
周に電導コイルを巻き、又は電導コイルを巻いたヨーク
を外周に配置して電導コイルに通電し、又は永久磁石を
外周に配置することにより、磁界を造り、流体継手内の
磁性流体に磁気回路がとうるよう構成する。
Using a magnetic fluid as the working fluid of a fluid coupling, winding a conductive coil around the outer periphery of the fluid coupling, or arranging a yoke wrapped around the conductive coil around the outer periphery to energize the conductive coil, or arranging a permanent magnet around the outer periphery. This creates a magnetic field, and a magnetic circuit is configured to connect to the magnetic fluid within the fluid coupling.

この場合流体継手内の磁性流体に磁気回路がとうり易く
するめ、タービン羽根車、ポンプ羽根車の材料はそれぞ
れ比透磁率の低い材質を使用し、その他の構成部品の材
料も流体継手内の磁性流体に磁気回路がとうり易くなる
よう適宜材質を選定する。
In this case, in order to make it easier for the magnetic circuit to reach the magnetic fluid in the fluid coupling, the turbine impeller and pump impeller are made of materials with low relative magnetic permeability, and the materials of other components are also Appropriate material is selected so that the magnetic circuit can be easily attached to the fluid.

一般に流体継手は入力軸回転数N1.出力軸回転数Nx
、入力軸トルクT1.出力軸トルク下2羽根車の外径り
とすると 2      f T、ミ’rz =に−N、−D で表される。
In general, fluid couplings have an input shaft rotation speed of N1. Output shaft rotation speed Nx
, input shaft torque T1. If the outer diameter of the two impellers is under the output shaft torque, it is expressed as 2 f T, M'rz =, -N, -D.

Kは回路部分の構造2作動流体の密度、速度比(N+/
Nz)によって変化する。
K is the density and velocity ratio of the structure 2 working fluid in the circuit (N+/
Nz).

他の条件が同じ場合、には作動流体の密度に比例する。Other things being equal, is proportional to the density of the working fluid.

そこで出力軸トルクを変えるためには上記の式かられか
るとうりKを変えればよい。
Therefore, in order to change the output shaft torque, it is sufficient to change K and K from the above equation.

ところで磁性流体は磁化されると、みがけの密度が高く
なる性質がある。
By the way, when magnetic fluid is magnetized, it has the property of increasing the density of its brushing.

そこで電導コイルの電流値を変化させ、又は永久磁石と
流体継手の外周との距離を変化させればば磁気回路中の
磁性流体のみかけの密度は変化し、に叩ち出力軸トルク
T2を変化させることができる。
Therefore, by changing the current value of the conductive coil or changing the distance between the permanent magnet and the outer circumference of the fluid coupling, the apparent density of the magnetic fluid in the magnetic circuit will change, and the striking output shaft torque T2 will change. be able to.

このようにして電導コイルの電流値を制御し、又は永久
磁石と流体継手の外周との距離を変化させることにより
、出力軸トルクT2を割御し、出力軸の回転数を$II
mしようとするものである。
In this way, by controlling the current value of the conductive coil or changing the distance between the permanent magnet and the outer circumference of the fluid coupling, the output shaft torque T2 can be controlled and the rotation speed of the output shaft can be adjusted to $II.
m.

〔実施例〕〔Example〕

第1図は本発明の例を示す軸方向断面図であり、1は入
力軸、2はポンプ羽根車で入力軸1に固定されている。
FIG. 1 is an axial sectional view showing an example of the present invention, in which 1 is an input shaft, and 2 is a pump impeller fixed to the input shaft 1. In FIG.

3は出力軸、4はタービン羽根車で出力軸3に固定され
ている。
3 is an output shaft, and 4 is a turbine impeller fixed to the output shaft 3.

上記の構造は一般に利用されている公知の流体継手と何
ら変わり無いが1作動流体に磁性流体を使用する。
The above structure is no different from commonly used known fluid couplings, but uses a magnetic fluid as one working fluid.

5は電導コイルであり、固定したケーシング6の外周に
沿って巻いである。
5 is a conductive coil, which is wound along the outer periphery of the fixed casing 6.

7はヨークである。7 is a yoke.

作動流体に磁性流体を使用する。Uses magnetic fluid as the working fluid.

ポンプ羽根車2.タービン羽根車4及び、ケーシング6
に比透磁率の低い材質を使用し。
Pump impeller 2. Turbine impeller 4 and casing 6
Uses materials with low relative magnetic permeability.

電導】イル5に通電すると図の点線で示すように磁性流
体をとうる磁気回路が構成される。
When electricity is applied to the coil 5, a magnetic circuit is formed which conducts magnetic fluid as shown by the dotted line in the figure.

電導コイル5の電流値を変えることにより磁性流体のみ
かけの密度は変化し、従って。
By changing the current value of the conductive coil 5, the apparent density of the magnetic fluid changes, and therefore.

〔問題解決のための手段〕の項で説明したようにに、即
ち出力軸トルクT2を$制御できる。
As explained in the section [Means for solving the problem], the output shaft torque T2 can be controlled by $.

第2図はヨークに電導コイルを巻いて外周に配置した場
合の例である。
FIG. 2 shows an example in which a conductive coil is wound around the yoke and arranged around the yoke.

電導コイル5を巻いた分割ヨーク8を外周に配列する。Split yokes 8 around which conductive coils 5 are wound are arranged around the outer periphery.

第1図の例と同様、電導コイル5に通電すると点線のよ
うに磁気回路が構成される。
As in the example shown in FIG. 1, when the conductive coil 5 is energized, a magnetic circuit is formed as shown by the dotted line.

電導コイル5の電流値を変えることにより磁性流体のみ
かけの密度は変化し、従って。
By changing the current value of the conductive coil 5, the apparent density of the magnetic fluid changes, and therefore.

〔問題解決のための手段〕の項で説明したようにに、即
ち出力軸トルクT2を制御できる。
In other words, the output shaft torque T2 can be controlled as explained in the section [Means for solving the problem].

永久磁石を使用して磁気回路を構成し流体継手内の磁性
流体を磁化する方法の例は図示してないが、構造は第2
図とほぼ同様であるので第2図によって説明する。
Although an example of a method of configuring a magnetic circuit using permanent magnets and magnetizing the magnetic fluid in the fluid coupling is not shown, the structure is similar to that of the second example.
Since it is almost the same as the figure, it will be explained with reference to FIG.

第2図において、電導コイル5を除き1分割ヨーク8を
永久磁石と想定し、外周に2分割又は円環状にして配置
する。
In FIG. 2, except for the conductive coil 5, the one-segment yoke 8 is assumed to be a permanent magnet, and is arranged in two parts or in an annular shape around the outer periphery.

出力軸トルクT zを制御する場合は、外周方向又は軸
方向に永久磁石を移動させることにより、@界を変化さ
せて行う。
When controlling the output shaft torque Tz, the @ field is changed by moving a permanent magnet in the outer circumferential direction or in the axial direction.

〔発明の効果〕〔Effect of the invention〕

本発明により次のような効果がある。 The present invention has the following effects.

(1)電導コイルの電流値を制御し、又は永久磁石と流
体継手の外周との距離を変化させることにより2出力軸
トルクを制御できるので貯油槽が不要となる。
(1) The two output shaft torques can be controlled by controlling the current value of the conductive coil or by changing the distance between the permanent magnet and the outer periphery of the fluid coupling, so an oil storage tank is not required.

(2)電導コイルの電流値を高め、又は永久磁石を流体
継手の外周に近づけることにより、出力軸トルクを増加
できるので形状を小型化できる。
(2) By increasing the current value of the conductive coil or moving the permanent magnet closer to the outer periphery of the fluid coupling, the output shaft torque can be increased and the size can be reduced.

(3)従来の可変速式流体継手の問題点であるドラグト
ルク(入力軸が回転し、出力軸が停止する状態)が過大
にならないよう小型化することにより防止でき、任意の
回転数において必要な出力軸トルクは電導コイルの電流
値を高め、又は永久磁石を流体継手の外周に近づけるこ
とにより得られる。
(3) Drag torque (a condition in which the input shaft rotates and the output shaft stops), which is a problem with conventional variable speed fluid couplings, can be prevented from becoming excessive by making it smaller, and is necessary at any rotation speed. A suitable output shaft torque can be obtained by increasing the current value of the conductive coil or by bringing the permanent magnet closer to the outer periphery of the fluid coupling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流体変速機で外周にコイルを巻いた場
合の実施例を示す軸方向断面図である。 第2図は本発明の流体変速機で外周に電導コイルを巻い
たヨークを配置した場合の実施例を示す軸方向断面図で
ある。 符号表 1・・−入力軸 2・・・ポンプ羽根車 3・・・出力軸 4・・・タービン羽根車 5−・・電導コイル 6・・・ケーシング 7・・・ヨーク 8・・・分割ヨーク 図  面
FIG. 1 is an axial cross-sectional view showing an embodiment of the fluid transmission of the present invention in which a coil is wound around the outer periphery. FIG. 2 is an axial cross-sectional view showing an embodiment of the fluid transmission of the present invention in which a yoke having a conductive coil wound around its outer periphery is arranged. Code table 1...-Input shaft 2...Pump impeller 3...Output shaft 4...Turbine impeller 5--Conducting coil 6...Casing 7...Yoke 8...Split yoke drawing

Claims (2)

【特許請求の範囲】[Claims] (1)入力軸に付属するポンプ羽根車と、出力軸に付属
するタービン羽根車とで構成する流体継手の外周に電導
コイルを巻き、又は当該外周に電導コイルを巻いたヨー
クを配置し、作動流体に磁性流体を使用し、当該電導コ
イルに通電した場合、当該流体継手内の磁性流体に磁気
回路がとうるよう構成し、当該電導コイルの電流値を変
化させることにより当該流体継手内の磁性流体のみかけ
の密度を変化させ、出力軸のトルク値を制御することに
より出力軸回転数を制御することを特徴とする流体変速
機。
(1) A conductive coil is wound around the outer circumference of a fluid coupling consisting of a pump impeller attached to the input shaft and a turbine impeller attached to the output shaft, or a yoke with a conductive coil wound around the outer circumference is arranged, and the fluid coupling is operated. When a magnetic fluid is used as the fluid and the conductive coil is energized, a magnetic circuit is configured to connect to the magnetic fluid in the fluid coupling, and by changing the current value of the conductive coil, the magnetic property in the fluid coupling is reduced. A fluid transmission characterized by controlling the output shaft rotation speed by changing the apparent density of the fluid and controlling the torque value of the output shaft.
(2)入力軸に付属するポンプ羽根車と、出力軸に付属
するタービン羽根車とで構成する流体継手の外周に永久
磁石を配置し、作動流体に磁性流体を使用し、当該流体
継手内の磁性流体に磁気回路がとうるよう構成し、当該
永久磁石と当該流体継手外周との距離を変化させること
により、当該流体継手内の磁性流体のみかけの密度を変
化させ、出力軸のトルク値を制御することにより出力軸
回転数を制御することを特徴とする流体変速機。
(2) A permanent magnet is placed around the outer periphery of a fluid coupling consisting of a pump impeller attached to the input shaft and a turbine impeller attached to the output shaft, and a magnetic fluid is used as the working fluid. By configuring the magnetic fluid to have a magnetic circuit and changing the distance between the permanent magnet and the outer periphery of the fluid coupling, the apparent density of the magnetic fluid within the fluid coupling is changed, and the torque value of the output shaft can be changed. A fluid transmission characterized in that the output shaft rotation speed is controlled by controlling the rotation speed of the output shaft.
JP19223888A 1988-08-01 1988-08-01 Fluid transmission Pending JPH0242242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19223888A JPH0242242A (en) 1988-08-01 1988-08-01 Fluid transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19223888A JPH0242242A (en) 1988-08-01 1988-08-01 Fluid transmission

Publications (1)

Publication Number Publication Date
JPH0242242A true JPH0242242A (en) 1990-02-13

Family

ID=16287953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19223888A Pending JPH0242242A (en) 1988-08-01 1988-08-01 Fluid transmission

Country Status (1)

Country Link
JP (1) JPH0242242A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177541A (en) * 2004-12-21 2006-07-06 Takao Ukita Device for transmitting torque by using fluidized mixture of steel spherical particles and machine oil
WO2012120966A1 (en) * 2011-03-07 2012-09-13 ジヤトコ株式会社 Fluid joint
CN103075484A (en) * 2011-10-26 2013-05-01 加特可株式会社 Torque converter using magnetic viscous fluid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177541A (en) * 2004-12-21 2006-07-06 Takao Ukita Device for transmitting torque by using fluidized mixture of steel spherical particles and machine oil
WO2012120966A1 (en) * 2011-03-07 2012-09-13 ジヤトコ株式会社 Fluid joint
JP5619272B2 (en) * 2011-03-07 2014-11-05 ジヤトコ株式会社 Fluid coupling
CN103075484A (en) * 2011-10-26 2013-05-01 加特可株式会社 Torque converter using magnetic viscous fluid
EP2587094A1 (en) * 2011-10-26 2013-05-01 JATCO Ltd Torque converter using magnetic viscous fluid as working fluid
US8640840B2 (en) 2011-10-26 2014-02-04 Jatco Ltd Torque converter using magnetic viscous fluid as working fluid
CN103075484B (en) * 2011-10-26 2015-08-12 加特可株式会社 Use the torque-converters of magnetic viscous fluid

Similar Documents

Publication Publication Date Title
US5179308A (en) High-speed, low-loss antifriction bearing assembly
US5292284A (en) Reluctance torque coupler
US5481147A (en) Synchronous inductor electric motor
US4634191A (en) Radial and torsionally controlled magnetic bearing
US4528533A (en) Actuator with compensating flux path
US4947066A (en) High speed variable reluctance motor with equal tooth ratios
JPS5833410B2 (en) Dengejijikuukeyouso
KR920703991A (en) Rotary actuator
US4596970A (en) Limited angle torque motor with high stiffness and natural frequency
EP1009091A3 (en) Actuator device with valve
US3249777A (en) Magnetic drive or coupling
JPH0242242A (en) Fluid transmission
CN100383896C (en) High pressure resistant bilaterally rotating permanent proportion electro-magnet
US3333127A (en) Magnetic drive or coupling
US3456139A (en) Wobble drum step motor
JPH0226311A (en) Magnetic thrust bearing
US2739278A (en) Slave motor
US4857785A (en) Torque coupling device
JPH02214431A (en) Permanent magnet rotary machine
US2779548A (en) Magnetic torque transmission
JPH0242241A (en) Torque converter
JPH08232955A (en) Magnetic bearing
JPH0648009B2 (en) Controlled axial magnetic bearing device
JPS5597172A (en) Face-opposed motor
US3235759A (en) Constant speed drives