JPH0241776A - Gas shielded arc welding method - Google Patents
Gas shielded arc welding methodInfo
- Publication number
- JPH0241776A JPH0241776A JP19109388A JP19109388A JPH0241776A JP H0241776 A JPH0241776 A JP H0241776A JP 19109388 A JP19109388 A JP 19109388A JP 19109388 A JP19109388 A JP 19109388A JP H0241776 A JPH0241776 A JP H0241776A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- electrode
- control
- output
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 123
- 238000000034 method Methods 0.000 title claims description 11
- 239000002893 slag Substances 0.000 claims abstract description 22
- 238000007711 solidification Methods 0.000 claims abstract description 14
- 230000008023 solidification Effects 0.000 claims abstract description 14
- 239000010953 base metal Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 12
- 230000007423 decrease Effects 0.000 abstract description 12
- 230000003111 delayed effect Effects 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 239000007789 gas Substances 0.000 description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Arc Welding Control (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、消耗性電極によって被溶接母材をガスシール
ドアーク溶接するガスシールドアーク溶接方法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas-shielded arc welding method for gas-shielded arc welding a base material to be welded using a consumable electrode.
〔従来の技術)
従来、消耗1陵電極によって被溶接母料をガスシールド
アーク溶接する場合、シールドガスには、アルゴン、ヘ
リウムなどの高価な不活性ガスの代わシに、安価な炭酸
ガスを用いることが望まれる。[Prior art] Conventionally, when gas-shielded arc welding is performed on base metals to be welded using a consumable single electrode, inexpensive carbon dioxide gas is used as the shielding gas instead of expensive inert gas such as argon or helium. It is hoped that
そして、炭酸ガスを用いたガスシールドアーク溶接を行
う場合、電極送給モータの駆動により。When performing gas-shielded arc welding using carbon dioxide, by driving the electrode feed motor.
ワイヤ状の消耗性電極がトーチを介して被溶接母材の方
向(下方)に送給されるとともに、1・−チ先端のノズ
ルからシールドガスとしての炭酸ガスが母材の方向に供
給される。A wire-shaped consumable electrode is fed in the direction (downward) of the base metal to be welded via a torch, and carbon dioxide gas as a shielding gas is supplied in the direction of the base metal from the nozzle at the tip of the 1-chi. .
また、電極と母材が形成する溶接負荷には、フィードバ
ック制御される直流の溶接出力が供給される。Further, a feedback-controlled DC welding output is supplied to the welding load formed by the electrode and the base metal.
そして、電極の先端が母材に短絡し、短絡アークが発生
してアーク起動されると、前記フィードバック制御によ
って溶接出力が定電圧に制御され、起動状態から定常状
態に移行し、以降、母材と電極との間で短絡とアーク発
生とが交互にくり返えされ、このとき、電極先端の溶融
金属が母材に溶着して母材がアーク溶接される。Then, when the tip of the electrode short-circuits to the base metal, a short-circuit arc is generated, and the arc is started, the welding output is controlled to a constant voltage by the feedback control, and the starting state shifts to a steady state. A short circuit and arc generation are alternately repeated between the electrode and the electrode, and at this time, the molten metal at the tip of the electrode is welded to the base metal, and the base metal is arc-welded.
なお、溶接中には、l・−チ又は母材が溶接の進行にし
たがって移動される。Note that during welding, the l/-chi or the base metal is moved as welding progresses.
また、溶接の終了あるいは中断により、トーチスイッチ
がオフされて溶接停止が指令されると、電極送給モータ
の駆動が停止されるとともに、前記フィードバック制御
が停止きれて溶接出力が遮断され、母相の溶接が停止さ
れる。Furthermore, when the torch switch is turned off and a command is given to stop welding due to the completion or interruption of welding, the driving of the electrode feed motor is stopped, the feedback control is completely stopped, the welding output is cut off, and the parent phase welding is stopped.
ガスシールドアーク溶接のシールドガスに電位傾度の大
きなガス、たとえば炭酸ガスを用いた場合、その電位傾
度にもとづき、アーク発生中には第5図に示すように、
消耗性電極(1)の先端の溶融部(2)が球状に成長す
るとともに、その下側表面の一部の微小な発生点領域(
2トとlN14J (3)との間でアーク(A)が発生
する。When a gas with a large potential gradient, such as carbon dioxide gas, is used as a shielding gas in gas-shielded arc welding, based on the potential gradient, during arc generation, as shown in Figure 5,
The melted part (2) at the tip of the consumable electrode (1) grows into a spherical shape, and a part of the lower surface of the melted part (2) grows into a small point area (
An arc (A) occurs between 2 and lN14J (3).
また、常温で不活性のlj5酸ガヌは、高温のアーク雰
囲気中において、その一部が一酸化炭素と酸素に解離す
る。Further, lj5 acid Ganu, which is inactive at room temperature, partially dissociates into carbon monoxide and oxygen in a high-temperature arc atmosphere.
そして、アーク発生中には、前記酸素が溶融部(2)に
含有されたシリコン マンガンなどの不純物と結合し、
不純物が酸化ケイ素、酸化マンガンを主成分とするスラ
グとして溶融部(2)から排出され、この作用にもとづ
き、健全な溶融金属が母材(3)に溶着し、良好なアー
ク溶接が行われる。Then, during arc generation, the oxygen combines with impurities such as silicon and manganese contained in the molten part (2),
Impurities are discharged from the fusion zone (2) as slag mainly composed of silicon oxide and manganese oxide, and based on this action, healthy molten metal is deposited on the base metal (3), resulting in good arc welding.
ところで、溶融部(2)に作用する力には、第5図に示
すように、重力Fg1表面張力Fs及びアーク力Faが
ある。By the way, as shown in FIG. 5, the forces acting on the molten part (2) include gravity Fg1 surface tension Fs and arc force Fa.
そして1重力Fgは一定の下向きの力として作用し、表
面張力Fsは温度などに依存して変化するゴニ向きの力
として作用する。One gravitational force Fg acts as a constant downward force, and the surface tension Fs acts as a downward force that changes depending on the temperature and the like.
まだ、アークの発生中にのみ生じるアーク力Faは、発
生点領域(2)′の直径が電極(1)の直径より小さく
なる炭酸ガス雰囲気中などにおいて、上向きの力として
作用する。However, the arc force Fa generated only during arc generation acts as an upward force in a carbon dioxide atmosphere where the diameter of the generation point region (2)' is smaller than the diameter of the electrode (1).
そして、溶接中には、表面張力Fs及びアーク力Faに
もとづき、前述したように〆副1部(2)が球状に成長
する。Then, during welding, based on the surface tension Fs and the arc force Fa, the sub-finish portion 1 (2) grows into a spherical shape as described above.
一方、溶接停止によってアーク(A)が消滅し、アーク
力Faが零になると、溶融部(2)には」二向きの力と
して表面張力Fsのみが作用し、主に1表面張力Fsに
よって溶融部(2)の凝固形状が決まシ、凝固時間が短
いときには溶融部(2)が球状に凝固する。On the other hand, when the arc (A) is extinguished by stopping welding and the arc force Fa becomes zero, only the surface tension Fs acts on the molten part (2) as a force in two directions, and the melting occurs mainly due to the single surface tension Fs. The solidification shape of the portion (2) is determined, and when the solidification time is short, the molten portion (2) solidifies into a spherical shape.
まだ、前記スラグの融点が溶融部(2)の金属より低く
、しかも、前記スラグの比重が溶融部(2)の金属より
大きいだめ、とくに、溶接出力の電流(溶接電流)が1
50A以下程度の中、小電流のときには、アーク(A)
の消滅によって球状に凝固した溶融部(2)の最下端表
面に、第5図に示すように、フィルム状に凝固したスラ
グ(4)が付着する。However, the melting point of the slag is lower than that of the metal in the molten zone (2), and the specific gravity of the slag is higher than that of the metal in the molten zone (2), especially when the welding output current (welding current) is 1
When the current is medium to low, about 50A or less, the arc (A)
As shown in FIG. 5, the slag (4) solidified into a film is attached to the lowermost surface of the molten zone (2), which has solidified into a spherical shape due to the disappearance of the slag.
そして、スラグ(4)は常温で電気的不導体になり、再
び溶接を開始する場合、溶融部(2) Kスラグ(4)
が付着していると、スラグ(4)によってアーク(A)
の発生がb目止され、アーク発生率が低下するとともに
、発生したアークが定常状態に達する前に消滅し易いた
め、とくに、溶接電流が前述の中、小電流のときには、
再起動のアークスタート特性が悪化し、再起動が極めて
困難になる。Then, the slag (4) becomes an electrical non-conductor at room temperature, and when welding is started again, the molten part (2) K slag (4)
If the slag (4) adheres to the arc (A)
The occurrence of the welding current is reduced, the rate of arc occurrence is reduced, and the generated arc is likely to disappear before reaching a steady state.
The arc start characteristics of restart will deteriorate, making restart extremely difficult.
ところで、溶接電流と電極(1)の送給速度とが比例関
係を有するとともに、溶接停止によって電極送給モータ
の駆動が停止されても、溶接電流に比例した時間、前記
モータの慣性によって電極(1)が送給され続ける。By the way, the welding current and the feed speed of the electrode (1) have a proportional relationship, and even if the drive of the electrode feed motor is stopped due to stopping welding, the inertia of the motor causes the electrode ( 1) continues to be fed.
まだ、溶接電流が大きくなる程、溶接停止によって沿接
出力が減少して遮断されるまでに時U慣を要する。However, as the welding current increases, it takes more time for the welding output to decrease and be cut off by stopping the welding.
そして、溶接電流が20OA以」二の大電流になるとき
は、前記モータの大きな慣性力にもとづき、溶接停止が
指令されてから比較的長い時間、電極(1)が母材(3
)の方向に送給され続け、しかも、そのアーク(A)の
消滅後に溶融部(2)を上方に引き上げて溶融部(2)
の凝固形状を制御し、スラグ(4)の付着位置を制御す
ることが可能になる。When the welding current becomes a large current of 20 OA or more, the electrode (1) remains in contact with the base metal (3
), and after the arc (A) is extinguished, the molten part (2) is pulled upward and the molten part (2)
It becomes possible to control the solidified shape of the slag (4) and the adhesion position of the slag (4).
また、溶接電流が大電流になる溶接出力の大きなときは
、溶融部(2)の幌固形状、スラグ(4)の付着位置が
中、小電流のときと同一であっても、再起動時に、溶接
出力の大きなエネルギによって比較的容易にアーク(A
)が発生し、再起動が比較的容易に行える。In addition, when the welding power is large and the welding current is large, even if the solid shape of the molten part (2) and the adhesion position of the slag (4) are the same as when the welding current is medium or small, when restarting , it is relatively easy to create an arc (A
) occurs, and restarting is relatively easy.
しかし、溶接電流が中、小電流になる溶接出力の小さな
ときには、前記モータの慣性力が小さく、溶接停止が指
令されてから短時間で電極(1)の送給が停止され、し
かも、溶接出力が迅速に遮断されるため、前述の燃え上
り現象を発生させることができず、前記したように球状
に凝固した溶融部(2)の下側表面にスラグ(4)が付
着し、かつ、溶接出力のエネルギが小さいだめ、再起動
が極めて困難になる。However, when the welding output is small and the welding current is medium or small, the inertia of the motor is small, and the feeding of the electrode (1) is stopped in a short time after the welding stop command is issued, and the welding output Since the slag (4) is quickly cut off, the above-mentioned flare-up phenomenon cannot occur, and the slag (4) adheres to the lower surface of the molten part (2) which has solidified into a spherical shape as described above, and the welding Since the output energy is small, restarting is extremely difficult.
そこで、とくに、溶接電流が150A程度以下の中、小
電流になるときには、再起動時、前処理として、電極(
1)の先端を斜めに切断し、アークが発生し易いように
金属表面が露出しだ鋭利な形状に加工する煩雑な作業が
必要になる。Therefore, especially when the welding current is low, such as about 150 A or less, the electrode (
1) It is necessary to cut the tip diagonally and process it into a sharp shape that exposes the metal surface so that arcing is easy to occur.
そして、前処理を施しても再起動が確実に行えるとは限
らず、そのため、溶接ロボツ)Xどの自動装置と組合わ
せて溶接作業を行う場合にも、アークスタートに失敗し
たときに備えて作業員を必ず配置する必要があり、溶接
作業の無人化が図れない。Even if pre-treatment is performed, it is not always possible to restart the machine reliably, so even when performing welding work in combination with a welding robot (X) and any automatic equipment, preparations must be made in case arc start fails. It is necessary to always have a staff member on hand, making it impossible to unattend welding work.
本発明は、溶接電流が中、小電流であっても、前処理と
しての電極の切断加工などを行うことなく再起動が確実
に行えるようにし、溶接ロボットなどと組合わせて溶接
作業の無人化が図れるガスシールドアーク溶接方法を提
供することを目的とする。Even if the welding current is medium or small, the present invention can reliably restart the welding process without cutting the electrodes as pre-processing, and in combination with a welding robot etc., welding work can be automated. The purpose of the present invention is to provide a gas-shielded arc welding method that enables the following.
前記目的を達成するための手段を以下に説明する。 The means for achieving the above object will be explained below.
本発明は、電極送給モータの駆動によって送給される消
耗性電極と被溶接母材とが形成する溶接負荷に、定電圧
にフィードバック制御された溶接出力を供給し、前記母
材と前記電極との間で短絡とアーク発生とを交互にくり
返すとともに、発生したアークをガスシールドして前記
母材を溶接するガスシールドアーク溶接方法において、
溶接停止にもとづいて前記モータの駆動及び前記溶接出
力の定電圧制御が停止されるときに、前記溶接停止から
所定の凝固制御時間が経過するまで、前記溶接出力を定
電流にフィードバック制御し、前記電極の先端の凝固形
状を制御してスラグの付着位置を制御するという技術的
手段を講じている。The present invention supplies a welding output feedback-controlled to a constant voltage to a welding load formed by a consumable electrode fed by driving an electrode feeding motor and a base material to be welded, and In a gas-shielded arc welding method in which short circuits and arc generation are alternately repeated between
When the driving of the motor and the constant voltage control of the welding output are stopped based on the welding stop, the welding output is feedback-controlled to a constant current until a predetermined solidification control time has elapsed from the welding stop; A technical measure is taken to control the position of slag adhesion by controlling the solidified shape of the tip of the electrode.
〔作 用〕
溶接停止にもとづいて電極送給モータの駆動及び溶接出
力の定電圧制御が停止されると、モータの慣性によって
電極が送給され続けるとともに、溶接停止から所定の凝
固制御時間が経過するまで溶接出力が定電流制御され、
溶接電流が中、小電流であっても、電極先端の溶融部に
エネルギが与えられて凝固速度が遅くなるように制御さ
れ、このとき、電極の送給と表面張力の作用とにもとづ
き、溶融部の形状が球形から変形してスラグの付着位置
が電極の最下端からずれる。[Function] When the drive of the electrode feed motor and the constant voltage control of the welding output are stopped based on the welding stop, the electrode continues to be fed due to the inertia of the motor, and a predetermined coagulation control time has elapsed since the welding stop. Welding output is controlled at constant current until
Even if the welding current is medium or small, it is controlled so that energy is given to the molten part at the tip of the electrode and the solidification rate is slowed down. The shape of the part changes from a spherical shape, and the slag attachment position shifts from the bottom end of the electrode.
そのため、再起動時には、スラグによってアークの発生
がm止されず、しかも1発生したアークが消えることも
なく、アークスタート特性が向上して確実に再起動が行
える。Therefore, at the time of restart, the slag does not stop the generation of an arc, and furthermore, the arc that has already occurred does not go out, so that the arc start characteristics are improved and the restart can be performed reliably.
1実施例について第1図ないし第4図を参照して以下に
説明する。One embodiment will be described below with reference to FIGS. 1 to 4.
第1図はシールドガスに炭酸ガスを用いた場合を示し、
同図において、 (4) 、 (5)は溶接装置(6)
の第1、第2電源端子であり、それぞれ商用交流電源な
どの交流電源に接続される。(7)は電源端子(4)に
接続されたワイヤ送給制御部であり、電極送給そ−タ(
8)の駆動を制御し、ワイヤ状の電極(1)をトーチ(
9)を介して母材(3)の方向(下方)に送給する。Figure 1 shows the case where carbon dioxide gas is used as the shielding gas.
In the same figure, (4) and (5) are welding equipment (6)
The first and second power supply terminals are connected to an AC power source such as a commercial AC power source, respectively. (7) is a wire feeding control unit connected to the power supply terminal (4), and the electrode feeding controller (
8), and the wire-shaped electrode (1) is connected to the torch (
9) in the direction (downward) of the base material (3).
00)は電源端子(5)に接続された制御出力部であり
、サイリスタ整流又はインバータ駆動によって形成され
た直流の溶接出力を電極(1)、母材(3)が形成する
溶接負荷0υに供給する。02.θ■は負荷電流、負荷
電圧それぞれを検出する電流検出器、電圧検出器である
。00) is a control output unit connected to the power supply terminal (5), which supplies DC welding output generated by thyristor rectification or inverter drive to the welding load 0υ formed by the electrode (1) and base metal (3). do. 02. θ■ is a current detector and a voltage detector that detect the load current and load voltage, respectively.
Q4)は検出器α4.(1■の電流、電圧の検出信号が
入力される定常制御部であり、電流の検出信号が過電流
検出基準値以下になる通常時に、電圧の検出信号と定常
状態の定電圧基準信号との差分信号を定電圧制御信号と
して出力する。00は検出器02)の電流の検出信号が
入力される定電流制御部であり。Q4) is the detector α4. (This is a steady-state control unit to which the current and voltage detection signals in 1. The difference signal is output as a constant voltage control signal. 00 is a constant current control unit to which the current detection signal of the detector 02) is input.
αQは制御部(14) 、 Q!9の出力信号が入力さ
れる制御切換部であり1両制御部α4) 、 0句の出
力信号の大きい方(制御量の大きい方)を選択し、選択
した出力信号を出力部αQにフィードバック制御信号と
して供給する。αQ is the control unit (14), Q! It is a control switching unit into which the output signal of 9 is input, and the 1-car control unit α4) selects the larger output signal (the one with the larger control amount) of the 0-phrase output signal, and feeds back the selected output signal to the output unit αQ. Supplied as a signal.
α力は溶接開始、溶接終了によってオン、オフされるト
ーチスイッチ、08)はスイッチaカを介して電源端子
(5)に接続された動作制御リレーであり、通電によっ
て制御部(7)、α4) 、 05)に接続された接点
(+8a)、(+8b)、(+8c)をオンし、制御部
(’?)、(143,(+5)を起動する。α power is a torch switch that is turned on and off when welding starts and ends, and 08) is an operation control relay connected to the power supply terminal (5) via switch a. ), 05) are turned on, and the control units ('?), (143, (+5) are activated.
なお、トーチ(9)の先端のノズルからは、アーク(A
)をシールドする炭酸ガヌ(G)が母材(3)の方向に
噴射される。Note that an arc (A) is emitted from the nozzle at the tip of the torch (9).
) is injected in the direction of the base material (3).
そして、第2図(a)に示すように、スイッチ(171
が+1時にオンにロックされ、溶V開始が指令されると
、リレーα8)が通電されて接点(+8a)〜(+SC
)がオンし、制御部(7) 、 Q4) 、 OF9が
起動される。Then, as shown in FIG. 2(a), a switch (171
is locked on at +1, and when the melt V start is commanded, relay α8) is energized and contacts (+8a) to (+SC
) is turned on, and the control units (7), Q4), and OF9 are activated.
ところで、起動された制御部(7)は初期のアーク起動
期間に低レベルの起動送給用制御信号をモータ(8)に
供給し、その後、高レベルの定常送給用制御信号をモー
タ(8)に供給する。By the way, the activated control unit (7) supplies a low-level startup feed control signal to the motor (8) during the initial arc startup period, and then supplies a high-level steady-state feed control signal to the motor (8). ).
そして、−Tl:−タ(8)は第2図(′l:1)VC
示すように、動作遅れ時間だけ遅れて+2時に低速Ka
で回転し始め。And -Tl:-ta (8) is ('l:1) VC in Figure 2
As shown, low speed Ka is delayed by the operation delay time at +2 o'clock.
It starts to rotate.
アーク起動期間が終了する13時まで電極(1)を母材
(3)の方向にゆっくりと送給し、13時になると、高
速Kbで回転して電極(1)を定常速度で母材(3)の
方向に送給する。The electrode (1) is slowly fed in the direction of the base material (3) until 13:00 when the arc starting period ends, and at 13:00, it is rotated at high speed Kb and the electrode (1) is fed at a steady speed toward the base material (3). ).
一方、溶接開始が指令された直後は、溶接電流。On the other hand, immediately after the command to start welding, the welding current changes.
電圧が零であシ、このとき、制御部(14)で形成され
る定電圧制御信号より制御部00で形成される定電流制
御信号の方がレベルが高くなり、制御部a均の出力信号
が切換部O@を介して制御部Oυに供給される。When the voltage is zero, at this time, the level of the constant current control signal generated by the control unit 00 is higher than the constant voltage control signal generated by the control unit (14), and the output signal of the control unit a is supplied to the control unit Oυ via the switching unit O@.
そして、切換部00の出力信号にもとづき、 +2時に
なると、出力部α0)が定常状態のときより大容量の溶
接出力を負荷0υに供給し、このとき、電極(1)と母
材(3)Kアーク(A)が発生しておらず、負荷インピ
ーダンスが高いだめ、第2図(C)に示すように、母材
(3)を正、電極(1)を負とする溶接電圧(負荷電圧
)が高電圧Vaに制御される。Then, based on the output signal of the switching unit 00, at +2 o'clock, the output unit α0) supplies a larger welding output to the load 0υ than in the steady state, and at this time, the electrode (1) and the base material (3) Since the K arc (A) is not occurring and the load impedance is high, the welding voltage (load voltage) with the base material (3) positive and the electrode (1) negative, as shown in Figure 2 (C) ) is controlled to a high voltage Va.
すなわち、溶接開始が指令されると、制御部00の定電
流制御信号が起動用の高電圧制御信号として出力部00
)に供給され、出力部00の溶接出力によって負荷0υ
に高電圧が印加される。That is, when a command is given to start welding, a constant current control signal from the control section 00 is sent to the output section 00 as a high voltage control signal for starting.
), and the load 0υ is supplied by the welding output of the output section 00.
A high voltage is applied to the
そして、電極(1)が母材(3)に近づいて短絡アーク
(A)が発生し、13時にホットスタートでアーク起動
が行われると、溶接電流が増加するとともに溶接電圧が
低下し、制御部α0の出力信号が制御部(14)の定電
圧制御信号より低レベルになり、制御部(イ)の出力信
号が切換部00を介して出力部00に供給される。When the electrode (1) approaches the base metal (3) and a short-circuit arc (A) is generated, and the arc is activated by hot start at 1:00 p.m., the welding current increases and the welding voltage decreases, causing the control unit to The output signal of α0 becomes lower in level than the constant voltage control signal of the control section (14), and the output signal of the control section (A) is supplied to the output section 00 via the switching section 00.
そのだめ、起動状態から定常状態に移行する13時にな
ると、第2図(C)に示すように、制御部(14)の出
力信号にもとづき、溶接出力が定常′電圧vbにフィー
ドバック制御される。However, at 13:00 when the starting state shifts to the steady state, the welding output is feedback-controlled to the steady voltage vb based on the output signal of the control section (14), as shown in FIG. 2(C).
なお、定電流基準信号は、定常状態の溶接電流よシ少し
低い電流にもとづいて設定され、定常状態の溶接中に、
制御部00の出力信号が制御部Q4)の出力信号よシ大
きくなることはない。Note that the constant current reference signal is set based on a current that is slightly lower than the steady state welding current, and during steady state welding,
The output signal of the control section 00 is never larger than the output signal of the control section Q4).
そして、定常電圧vbにフィードバック制御された溶接
出力にもとづき、従来と同様に、母材(3)と電極(1
)との間で短絡とアーク発生とが交互にくり返えされ、
電極(1)の先端の溶融金属が母材(3)に溶着して母
材(3)がアーク溶接される。Then, based on the welding output that is feedback-controlled to the steady voltage vb, the base material (3) and the electrode (1
), short circuits and arcing occur alternately,
The molten metal at the tip of the electrode (1) is welded to the base metal (3), and the base metal (3) is arc welded.
なお、溶接中には、トーチ(9)又は母材(3)が移動
されて溶接個所が移動する。Note that during welding, the torch (9) or the base material (3) is moved to move the welding location.
また、何らかの原因によって溶接電流が過大になると、
出力部00の保護などを図るだめ、制御部04)が定電
圧制御信号の代わりに、過電流保護用の電流クランプ信
号を切換部叫を介して出力部θOに供給し、溶接電流を
たとえば定格最大電流Iaに制御する。Also, if the welding current becomes excessive for some reason,
In order to protect the output section 00, the control section 04) supplies a current clamp signal for overcurrent protection to the output section θO instead of the constant voltage control signal through the switching section, so that the welding current is adjusted to the rated value, for example. Control to the maximum current Ia.
すなわち、溶接出力の電圧、電流特性は第3図の実線の
ようになり、通常の溶接中の溶接出力の電圧、電流は実
線」−の点αの電圧■b、電流Ibになる。That is, the voltage and current characteristics of the welding output are as shown by the solid line in FIG. 3, and the voltage and current of the welding output during normal welding are the voltage ■b and current Ib at point α on the solid line.
つぎに、第2図(a)に示すようにスイッチα力がt4
時にオフされ、リレー08)の通電が停止されて接点(
18a) −(18c)がオフし、制御部(7) 、
(14) 、 (l K溶接停止が指令されると、この
とき、制御部(7)の動作が停止して制御部(7)から
の制御信号は遮断されるが、第2図(b)に示すように
、モータ(8)が慣性によって15時を過ぎるまで回転
し、電極(1)が送給され続ける。Next, as shown in Fig. 2(a), the switch α force becomes t4.
When the relay 08) is de-energized, the contact (
18a) - (18c) are turned off, and the control unit (7),
(14), (l) When a command is given to stop welding, the operation of the control section (7) is stopped and the control signal from the control section (7) is cut off, but as shown in Fig. 2(b) As shown in , the motor (8) rotates due to inertia until after 3:00 pm, and the electrode (1) continues to be fed.
まだ、制御部α4)の動作も停止し、このとき、制御部
04)の出力信号のレベルが低下して溶接電圧が第2図
(C)に示すように低下する。The operation of the control unit α4) is still stopped, and at this time, the level of the output signal of the control unit 04) decreases, and the welding voltage decreases as shown in FIG. 2(C).
そして、電極(1)の送給速度の低下と溶接出力の電圧
低下とにもとづき、溶接電流も第3図の破線に示すよう
に減少する。Then, based on the decrease in the feeding speed of the electrode (1) and the decrease in the voltage of the welding output, the welding current also decreases as shown by the broken line in FIG. 3.
一方、制御部00は内部の遅延手段によって動作の停止
タイミングが接点(18C)のオフタイミングから所定
の凝固制御時間だけ遅れ、第2図(d)に示すように、
制御部α■は15時まで動作する。On the other hand, in the control unit 00, the timing of stopping the operation is delayed by a predetermined coagulation control time from the off timing of the contact (18C) by an internal delay means, as shown in FIG. 2(d).
The control unit α■ operates until 15:00.
そして、溶接電流の減少によって制御部0eの出力信号
が大きくなり、はぼ、溶接停止が指令された直後に、制
御部04)の出力信号より制御部a■の出力信号の方が
高レベルになり、出力部00に制御部αOの出力信号が
供給される。Then, as the welding current decreases, the output signal of the control section 0e increases, and immediately after the welding stop command is issued, the output signal of the control section a becomes higher than the output signal of the control section 04). The output signal of the control unit αO is supplied to the output unit 00.
そのだめ、溶接停止が指令されると、前記凝固制御時間
が経過する15時までの間、溶接出力は制御部αυの出
力信号によって定電流にフィードバック制御され、溶接
電流の減少が阻止される。However, when a welding stop is commanded, the welding output is feedback-controlled to a constant current by the output signal of the control unit αυ until 15:00 when the solidification control time has elapsed, and a decrease in the welding current is prevented.
したがって、溶接停止が指令されても、一定の時間、次
第に減速されながら送給される電極(1)に凝固制御用
のエネルギが供給され続け、溶接電流が150A以下で
あっても、第4図に示すように電極(1)の先端の溶融
部(2)の急速な澁固が防止され、このとき、表面張力
にもとづき、溶融部(2)の形状が制御され、溶融部(
2)が球形から変形し、その表面に凝固して付着するス
ラグ(4)の位置が電極(1)の下端面(1)′からず
れる。Therefore, even if a welding stop is commanded, energy for coagulation control continues to be supplied to the electrode (1), which is fed while being gradually decelerated for a certain period of time, and even if the welding current is 150 A or less, as shown in FIG. As shown in , rapid solidification of the melted part (2) at the tip of the electrode (1) is prevented, and at this time, the shape of the melted part (2) is controlled based on surface tension, and the melted part (2) is prevented from solidifying rapidly.
2) is deformed from its spherical shape, and the position of the slag (4) that solidifies and adheres to its surface is shifted from the lower end surface (1)' of the electrode (1).
そして、スラグ(4)が下端面(1)′からずれて付着
し。Then, the slag (4) shifts from the lower end surface (1)' and adheres to it.
下端面(1)′に金属表面が露出するだめ、つぎにスイ
ッチ0力をオンして再起動したときには、従来の前処理
による電極(1)の切断加工などを施すことなく、アー
ク(A)が発生して確実に再起動される。Since the metal surface is exposed on the lower end surface (1)', the next time the switch is turned on and restarted, the arc (A) occurs and will definitely restart.
なお、凝固制御時間は溶接電流の大きさなどにもとづい
て設定すればよい。Note that the solidification control time may be set based on the magnitude of the welding current, etc.
また、慣性による電極(1)の送給時間が著しく短いと
きなどには、制御部(7)の制御信号の出力遮断タイミ
ングを遅延して調整してもよい。Further, when the feeding time of the electrode (1) due to inertia is extremely short, the output cutoff timing of the control signal of the control section (7) may be delayed and adjusted.
そして、シールドガスが炭酸ガス以外のときに適用でき
るのけ勿論である。Of course, this method can also be applied when the shielding gas is other than carbon dioxide.
つぎに、実験結果について説明する。Next, the experimental results will be explained.
(A)電極(1)に1.2]@の市販の炭酸ガス溶接用
ワイヤを使用するとともに、溶接電流を10OAにし、
凝固制御時間Tを0 、200m5ecのいずれかにし
て再起動を行うことにより、再起動の成功率、失敗率、
瞬時アーク不良率がつぎの第1表のようになった。(A) Use a commercially available carbon dioxide welding wire of 1.2] @ for the electrode (1), and set the welding current to 10OA,
By restarting the coagulation control time T to either 0 or 200 m5ec, the success rate, failure rate,
The instantaneous arc failure rate was as shown in Table 1 below.
(B)電極(1)、溶接電流を(A)と同一の条件にし
、凝固遅延時間Tを+00m5ec 、 200m5e
c 、 300m5ecにして再起動を行うことにより
、つぎの第2表の結果が得られた。(B) Electrode (1), welding current under the same conditions as in (A), solidification delay time T +00m5ec, 200m5e
By restarting the engine at 300m5ec, the following results in Table 2 were obtained.
第1表
第2表
(C)電極(1)に1.0凸の市販の炭酸ガス溶接用ワ
イヤを使用し、溶接電流+00 A 、 @固制御時間
T2O0m5ecの条件で再起動をくり返すことにより
、つぎの第3表の結果が得られた。Table 1 Table 2 (C) By using a commercially available carbon dioxide welding wire with a convexity of 1.0 as the electrode (1) and repeatedly restarting the welding current under the conditions of +00 A and fixed control time T2O0m5ec. , the results shown in Table 3 below were obtained.
(2行 余 白)
第3表
〔発明の効果〕
本発明は、以上説明したように構成されているだめ、以
下に記載するような効果を奏する。(2 lines, blank space) Table 3 [Effects of the Invention] Since the present invention is constructed as described above, it produces the effects described below.
溶接停止にもとづいて電極送給モータの駆動及び溶接出
力の定電圧制御が停止されたときに、そ−タの慣性によ
って電極が送給され続けるとともに、溶接停止から所定
の凝固制御時間が経過するまで溶接出力が定電流制御さ
れ、溶接電流が中。When the drive of the electrode feeding motor and the constant voltage control of the welding output are stopped based on the welding stop, the electrode continues to be fed due to the inertia of the motor, and a predetermined solidification control time elapses from the welding stop. The welding output is constant current controlled until the welding current is medium.
小電流であっても、電極先端の溶融部にエネルギが与え
られて凝固速度が遅くなるように制御され。Even with a small current, it is controlled so that energy is given to the molten part at the tip of the electrode, slowing down the solidification rate.
このとき、電極の送給と表面張力の作用とにもとづき、
溶融部の形状が球形から変形してスラグの付着位置記、
電極の最下端からずらすことができ、そのだめ、再起動
時には、スラグによるアークの発生が目止されず、しか
も1発生したアークが消えることもなく、アークスター
ト特性が向上して確実に再起動が行え、溶接ロボッ1−
などと組合せてg接作業の無人化を図ることなどができ
る。At this time, based on the feeding of the electrode and the effect of surface tension,
The shape of the molten zone changes from a spherical shape, and the slag adheres to the
The electrode can be moved from the bottom end, so when restarting, the generation of arc due to slag will not be detected, and the arc that has already occurred will not disappear, improving the arc starting characteristics and ensuring restart. Welding robot 1-
In combination with other devices, G-contact work can be automated.
第1図ないし第4図は本発明のガスシールドアーク溶接
方法の1実施例を示し、第1図はブロック図、第2図(
a)〜(d)は動作説明用のタイミングチャート、第3
図は溶接電流と溶接電圧との関係図。
第4図は電極先端の凝固形状説明図、第5図は従来のガ
スシールドアーク溶接方法の電極先端の形状説明図であ
る。
(1)・・消耗性電極、(3)・・被溶接母料、(8)
・・・電極送給モータ。
代理人 弁理士 藤田f’A−j大部t5
第
図
陣・1 to 4 show one embodiment of the gas shielded arc welding method of the present invention, FIG. 1 is a block diagram, and FIG. 2 (
a) to (d) are timing charts for explaining the operation;
The figure shows the relationship between welding current and welding voltage. FIG. 4 is an explanatory diagram of the solidified shape of the electrode tip, and FIG. 5 is an explanatory diagram of the shape of the electrode tip in a conventional gas-shielded arc welding method. (1)...Consumable electrode, (3)...Base material to be welded, (8)
... Electrode feeding motor. Agent Patent Attorney Fujita f'A-j Obe T5
Claims (1)
電極と被溶接母材とが形成する溶接負荷に、定電圧にフ
ィードバック制御された溶接出力を供給し、前記母材と
前記電極との間で短絡とアーク発生とを交互にくり返す
とともに、発生したアークをガスシールドして前記母材
を溶接するガスシールドアーク溶接方法において、 溶接停止にもとづいて前記モータの駆動及び前記溶接出
力の定電圧制御が停止されるときに、前記溶接停止から
所定の凝固制御時間が経過するまで、前記溶接出力を定
電流にフィードバック制御し、前記電極の先端の凝固形
状を制御してスラグの付着位置を制御するようにしたこ
とを特徴とするガスシールドアーク溶接方法。(1) A welding output feedback-controlled to a constant voltage is supplied to the welding load formed by the consumable electrode fed by the drive of the electrode feeding motor and the base material to be welded, and In a gas-shielded arc welding method in which a short circuit with an electrode and arc generation are alternately repeated, and the generated arc is shielded with gas to weld the base metal, the motor is driven and the welding is performed based on a welding stop. When the constant voltage control of the output is stopped, the welding output is feedback-controlled to a constant current until a predetermined solidification control time has elapsed from the welding stop, and the solidification shape of the tip of the electrode is controlled to control the slag. A gas shielded arc welding method characterized in that the adhesion position is controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19109388A JPH0241776A (en) | 1988-07-29 | 1988-07-29 | Gas shielded arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19109388A JPH0241776A (en) | 1988-07-29 | 1988-07-29 | Gas shielded arc welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0241776A true JPH0241776A (en) | 1990-02-09 |
JPH0358828B2 JPH0358828B2 (en) | 1991-09-06 |
Family
ID=16268736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19109388A Granted JPH0241776A (en) | 1988-07-29 | 1988-07-29 | Gas shielded arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0241776A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160105319A (en) | 2015-02-27 | 2016-09-06 | 가부시키가이샤 고베 세이코쇼 | Arc welding method, arc welding apparatus, and arc welding controller |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62160221U (en) * | 1986-03-31 | 1987-10-12 | ||
JPH0596112A (en) * | 1991-10-03 | 1993-04-20 | Matsushita Electric Ind Co Ltd | Dust collecting system |
JPH06182254A (en) * | 1992-12-22 | 1994-07-05 | Nippon Zeon Co Ltd | Dust collecting method |
JP3094917U (en) * | 2002-12-26 | 2003-07-11 | コーア株式会社 | Storage box |
-
1988
- 1988-07-29 JP JP19109388A patent/JPH0241776A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62160221U (en) * | 1986-03-31 | 1987-10-12 | ||
JPH0596112A (en) * | 1991-10-03 | 1993-04-20 | Matsushita Electric Ind Co Ltd | Dust collecting system |
JPH06182254A (en) * | 1992-12-22 | 1994-07-05 | Nippon Zeon Co Ltd | Dust collecting method |
JP3094917U (en) * | 2002-12-26 | 2003-07-11 | コーア株式会社 | Storage box |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160105319A (en) | 2015-02-27 | 2016-09-06 | 가부시키가이샤 고베 세이코쇼 | Arc welding method, arc welding apparatus, and arc welding controller |
EP3067146A1 (en) | 2015-02-27 | 2016-09-14 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Arc welding method, arc welding apparatus, and arc welding controller |
US9962786B2 (en) | 2015-02-27 | 2018-05-08 | Kobe Steel, Ltd. | Arc welding method, arc welding apparatus, and arc welding controller |
Also Published As
Publication number | Publication date |
---|---|
JPH0358828B2 (en) | 1991-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0655268A (en) | Welding robot | |
US4618760A (en) | Shielded arc welding using auxiliary voltage | |
JPH0241776A (en) | Gas shielded arc welding method | |
JP4490011B2 (en) | Arc start control method | |
JPS6365433B2 (en) | ||
JPS626775A (en) | Consumable electrode type arc welding machine | |
JPS6127152B2 (en) | ||
JPH0362508B2 (en) | ||
JPH05261535A (en) | Method for controlling consumable electrode ac arc welding machine | |
JP2002178146A (en) | Arc start control method | |
JPS5978779A (en) | Welding method for preventing melt-down in end part of welding in tig welding | |
JP2001239368A (en) | Arc welding equipment and method and welding torch used therefor | |
JP3948767B2 (en) | High frequency AC TIG welding machine | |
JPS6343197B2 (en) | ||
JPS6255472B2 (en) | ||
JPH0254189B2 (en) | ||
JPH0550238A (en) | Arc actuation control method in arc welding | |
JP2017213578A (en) | Non-consumable electrode type arc welding control method | |
JP3221177B2 (en) | Consumable electrode arc welding machine | |
JPH0329512B2 (en) | ||
JPH08215846A (en) | Arc welding equipment | |
JPH05200555A (en) | Nonconsumable electrode arc welding method and equipment | |
JP2015062935A (en) | Finish control method for two-wire welding | |
JPS59202175A (en) | Controlling method of current for welding accompanying short circuit | |
JPS62203673A (en) | Feeding control method for consumable electrode in direct current welding equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |