JPH024164B2 - - Google Patents

Info

Publication number
JPH024164B2
JPH024164B2 JP2878283A JP2878283A JPH024164B2 JP H024164 B2 JPH024164 B2 JP H024164B2 JP 2878283 A JP2878283 A JP 2878283A JP 2878283 A JP2878283 A JP 2878283A JP H024164 B2 JPH024164 B2 JP H024164B2
Authority
JP
Japan
Prior art keywords
points
spiral antenna
polarized waves
plane
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2878283A
Other languages
Japanese (ja)
Other versions
JPS59154803A (en
Inventor
Takashi Kataki
Shinichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2878283A priority Critical patent/JPS59154803A/en
Publication of JPS59154803A publication Critical patent/JPS59154803A/en
Publication of JPH024164B2 publication Critical patent/JPH024164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Description

【発明の詳細な説明】 この発明は軸比の良いスパイラルアンテナに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spiral antenna with a good axial ratio.

なお、ここでは説明の便宜上スパイラルアンテ
ナは2線式円形スパイラルアンテナとし、平面ス
パイラルアンテナとした場合について説明する。
Note that, for convenience of explanation, the spiral antenna is assumed to be a two-wire circular spiral antenna, and a case where a planar spiral antenna is used will be described here.

まず、従来のスパイラルアンテナについて説明
する。
First, a conventional spiral antenna will be explained.

第1図は従来の2線式円形スパイラルアンテナ
の構成図である。第1図において1,2は給電点
である。給電点1,2を逆相で励振するとき、点
A,B,C,Dではそれぞれ電流3a,3b,3
c,3dが流れる。また、点E,F,G,Hでは
それぞれ電流3e,3f,3g,3hが流れる。
ここに、点A,C間の円弧に沿つた長さは半波長
であり、同様に、点B,D間、点E,G間、点
F,H間の円弧に沿つた長さも半波長である。い
ま、垂直偏波4が入射したとき、点A,B,C,
Dで受信され、また、水平偏波5が入射したと
き、点E,F,G,Hで受信される。点A,B,
C,Dを含み、紙面に垂直な面を考え、その面内
で垂直偏波4、水平偏波5が種々の方向から入射
した場合を考える。第1図の紙面に垂直な方向か
らの角度θが0゜より大きくなると、垂直偏波4と
水平偏波5の受信レベルは異なる。このことは、
点A,B,C,D,E,F,G,Hに第1図に示
すような電流分布があるとしてアレーアンテナの
理論から説明される。すなわち、点A,B,C,
Dの波源による放射パターンのビーム幅はアレー
フアクタ(配列係数)のために点E,F,G,H
の波源による放射パターンのビーム幅より小さ
い。したがつて円偏波を送受信する場合にも軸比
が悪い。
FIG. 1 is a block diagram of a conventional two-wire circular spiral antenna. In FIG. 1, 1 and 2 are power feeding points. When feeding points 1 and 2 are excited in opposite phases, currents 3a, 3b, and 3 are generated at points A, B, C, and D, respectively.
c, 3d flows. Furthermore, currents 3e, 3f, 3g, and 3h flow at points E, F, G, and H, respectively.
Here, the length along the arc between points A and C is a half wavelength, and similarly, the length along the arc between points B and D, between points E and G, and between points F and H is also a half wavelength. It is. Now, when vertically polarized wave 4 is incident, points A, B, C,
It is received at points E, F, G, and H when the horizontally polarized wave 5 is incident. Points A, B,
Consider a plane including C and D and perpendicular to the plane of the paper, and consider a case where vertically polarized waves 4 and horizontally polarized waves 5 are incident from various directions within that plane. When the angle θ from the direction perpendicular to the plane of FIG. 1 becomes greater than 0°, the reception levels of the vertically polarized waves 4 and the horizontally polarized waves 5 are different. This means that
This will be explained from the theory of array antennas assuming that there is a current distribution at points A, B, C, D, E, F, G, and H as shown in FIG. That is, points A, B, C,
The beamwidth of the radiation pattern due to the wave source at D is the point E, F, G, H due to the array factor.
is smaller than the beamwidth of the radiation pattern caused by the wave source. Therefore, the axial ratio is also poor when transmitting and receiving circularly polarized waves.

この発明は、この欠点を除くためになされたも
のであり、以下実施例を示すことによつて説明す
る。
This invention was made to eliminate this drawback, and will be explained below by showing examples.

第2図はこの発明の実施例を示す図である。第
2図において1,2,4,5は第1図のものと同
じである。第2図の場合にも点A,C間、点B,
D間、点E,G間、点F,H間それぞれの曲線に
沿つた長さは半波長であるとする。第2図の場合
の点A,C間、点B,D間の直線距離は第1図の
場合の直線距離より小さく、したがつて、点A,
B,C,Dを含み、紙面に垂直な面を考えたと
き、点A,B,C,Dの波源による放射パターン
のビーム幅は第1図の場合のビーム幅より大きく
なる。
FIG. 2 is a diagram showing an embodiment of the invention. In FIG. 2, 1, 2, 4, and 5 are the same as those in FIG. In the case of Fig. 2, between points A and C, point B,
It is assumed that the lengths along the curves between D, between points E and G, and between points F and H are half a wavelength. The straight line distances between points A and C and between points B and D in the case of Figure 2 are smaller than the straight line distances in the case of Figure 1, so the points A,
When considering a plane including B, C, and D and perpendicular to the plane of the paper, the beam width of the radiation pattern from the wave sources at points A, B, C, and D is larger than the beam width in the case of FIG.

このことは、水平偏波5、点A,B,C,Dを
含む面とスパイラルアンテナの交線の長さが、垂
直偏波4、点E,F,G,Hを含む面とスパイラ
ルアンテナの交線の長さよりも短くすることによ
り、点A,B,C,Dに波源があることによるア
レーフアクタの影響を小さくしたことになる。点
A,C間、点B,D間の直線距離を適当に選ぶこ
とにより、垂直偏波4、水平偏波5に対するビー
ム幅を等しくすることができる。
This means that the length of the intersection line between the plane containing horizontal polarization 5 and points A, B, C, and D and the spiral antenna is the same as the length of the intersection line between the plane containing vertical polarization 4 and points E, F, G, and H and the spiral antenna. By making the length shorter than the length of the intersection line, the influence of the array actor due to the presence of wave sources at points A, B, C, and D is reduced. By appropriately selecting the linear distances between points A and C and between points B and D, the beam widths for vertically polarized waves 4 and horizontally polarized waves 5 can be made equal.

なお、以上は、いわゆるひようたん形について
説明したが、目的によつては楕円形、長方形など
の変形も考えられる。
Although the so-called gourd shape has been described above, modifications such as an ellipse or a rectangle may be considered depending on the purpose.

以上のように、この発明によれば、互いに直交
する二つの直線偏波を含む互いに直交した二つの
面とスパイラルアンテナの交線の長さを異ならせ
ることにより、軸比を良くすることができ、これ
を広帯域なアンテナとして用いた場合にその効果
は著しく大きい。
As described above, according to the present invention, the axial ratio can be improved by making the lengths of the lines of intersection of the spiral antenna and two mutually orthogonal planes containing two mutually orthogonal linearly polarized waves different. The effect is extremely large when this is used as a broadband antenna.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の2線式円形スパイラルアンテナ
の構成図、第2図はこの発明の実施例を示す図で
ある。図中、1,2は給電点、3a〜3hは電
流、4は垂直偏波、5は水平偏波である。なお、
図中、同一あるいは相当部分には同一符号を付し
て示してある。
FIG. 1 is a block diagram of a conventional two-wire circular spiral antenna, and FIG. 2 is a diagram showing an embodiment of the present invention. In the figure, 1 and 2 are feeding points, 3a to 3h are currents, 4 is vertical polarization, and 5 is horizontal polarization. In addition,
In the drawings, the same or corresponding parts are denoted by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 互いに直交する二つの直線偏波を受信するス
パイラルアンテナにおいて、上記直線偏波を含む
互に直交した二つの面と上記スパイラルアンテナ
の交線の長さを異ならせて構成したことを特徴と
するスパイラルアンテナ。
1. A spiral antenna that receives two mutually orthogonal linearly polarized waves, characterized in that the lengths of the lines of intersection between the two mutually orthogonal planes containing the linearly polarized waves and the spiral antenna are different. spiral antenna.
JP2878283A 1983-02-23 1983-02-23 Spiral antenna Granted JPS59154803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2878283A JPS59154803A (en) 1983-02-23 1983-02-23 Spiral antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2878283A JPS59154803A (en) 1983-02-23 1983-02-23 Spiral antenna

Publications (2)

Publication Number Publication Date
JPS59154803A JPS59154803A (en) 1984-09-03
JPH024164B2 true JPH024164B2 (en) 1990-01-26

Family

ID=12257979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2878283A Granted JPS59154803A (en) 1983-02-23 1983-02-23 Spiral antenna

Country Status (1)

Country Link
JP (1) JPS59154803A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079740A1 (en) * 2002-03-18 2003-09-25 Tokyo Electron Limited Plasma device
KR100958959B1 (en) * 2008-04-29 2010-05-20 엘에스엠트론 주식회사 Spiral antenna of end-fed planer type
US10923825B2 (en) * 2017-07-12 2021-02-16 Src, Inc. Spiral antenna system

Also Published As

Publication number Publication date
JPS59154803A (en) 1984-09-03

Similar Documents

Publication Publication Date Title
Kraus The corner-reflector antenna
JP3113510B2 (en) Elliptical beam antenna device
JPH024164B2 (en)
Chu et al. Quasi‐Optical Polarization Diplexing of Microwaves
US3413641A (en) Dual mode antenna
LaLonde et al. A high-performance line source feed for the AIO spherical reflector
Barrick et al. Rough surface scattering using specular point theory
US3833908A (en) Back-fire loop antenna
Sheftman et al. Experimental study of subreflector support structures in a Cassegrainian antenna
JPH0680976B2 (en) Waveguide slot antenna
JP2734264B2 (en) Mirror modified antenna
JP3790570B2 (en) Antenna device
JPH0783207B2 (en) Circularly polarized array antenna and power feeding method for the antenna
JP2567448B2 (en) Polarization grid
JPH06152234A (en) Array antenna
JP2573321B2 (en) Beam scanning reflector antenna
JPS59194512A (en) Parabolic antenna for circular polarized wave
JPH0349204B2 (en)
JPH05183325A (en) Antenna for mobile radio equipment
JPH09102708A (en) Primary radiator for paraboloidal antenna
JPS62203401A (en) Piping method for waveguide for polarizer
JPS61205006A (en) Circularly polarized wave antenna
JPS6184905A (en) Antenna system
SU1515223A1 (en) Aerial with offset mirror
JPH03277002A (en) Thin profile antenna