JPH0241646B2 - - Google Patents

Info

Publication number
JPH0241646B2
JPH0241646B2 JP13070782A JP13070782A JPH0241646B2 JP H0241646 B2 JPH0241646 B2 JP H0241646B2 JP 13070782 A JP13070782 A JP 13070782A JP 13070782 A JP13070782 A JP 13070782A JP H0241646 B2 JPH0241646 B2 JP H0241646B2
Authority
JP
Japan
Prior art keywords
pressure
valve
spool
chamber
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13070782A
Other languages
Japanese (ja)
Other versions
JPS5919706A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13070782A priority Critical patent/JPS5919706A/en
Publication of JPS5919706A publication Critical patent/JPS5919706A/en
Publication of JPH0241646B2 publication Critical patent/JPH0241646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • F15B13/0417Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、圧力流体源の吐出流体圧力の変動、
あるいはアクチユエータに作用する負荷の変動等
に対応して作動し、方向切換弁の上流側と下流側
の流体圧力差を常に一定圧に補償する圧力補償弁
を備えた流量制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to variations in the discharge fluid pressure of a pressure fluid source;
Alternatively, the present invention relates to a flow control device equipped with a pressure compensating valve that operates in response to fluctuations in the load acting on an actuator and always compensates for a fluid pressure difference between upstream and downstream sides of a directional switching valve to a constant pressure.

従来、この種の流量制御装置としては、特公昭
47―28839号公報に開示するものが提案されてい
る。これは第2図に示すように、流入口1と流出
口2a又は2bとの間に絞りδ2を形成するスプ
ール3を備える方向切換弁4と、圧力流体源5の
吐出側と方向切換弁4との間に設けられ、前記流
入口1に接続する圧力室7と、前記流出口2a又
は2bに接続しばね9を有するばね室10と、ば
ね室10内の流体圧力による押圧力にばね9の押
圧力を加えた押圧力と圧力室7内の流体圧力によ
る押圧力とが対向して作用し圧力流体源5とタン
ク6との間に絞りδ1を形成する制御スプール1
1とを備える圧力補償弁13とから構成される。
なお、12はシリンダであり、そのシリンダ室1
2a,12bは前記方向切換弁4の流出口2a,
2bに各々接続し、ロツド12cには負荷Wが作
用する。また、2c,2c′はスプール3によつて
流出口2a,2bに各々接続する排出口であつて
タンク6に接続している。8はシヤトル弁であつ
て、シリンダ12の高圧側を圧力補償弁13のば
ね室10内に接続するものである。
Conventionally, this type of flow control device was developed by
It is proposed to be disclosed in Publication No. 47-28839. As shown in FIG. 2, this consists of a directional control valve 4 equipped with a spool 3 forming a restriction δ2 between an inlet 1 and an outlet 2a or 2b, and a directional control valve 4 provided with a spool 3 on the discharge side of a pressure fluid source 5. a pressure chamber 7 connected to the inflow port 1; a spring chamber 10 connected to the outflow port 2a or 2b and having a spring 9; A control spool 1 in which a pressing force obtained by adding a pressing force of
1 and a pressure compensating valve 13.
In addition, 12 is a cylinder, and its cylinder chamber 1
2a, 12b are the outlet ports 2a, 12b of the directional control valve 4;
2b, and a load W acts on the rod 12c. Further, 2c and 2c' are discharge ports connected to the outlet ports 2a and 2b, respectively, by a spool 3, and are connected to the tank 6. 8 is a shuttle valve that connects the high pressure side of the cylinder 12 to the inside of the spring chamber 10 of the pressure compensation valve 13.

この構成からなる従来の流量制御装置におい
て、まず、方向切換弁4が図示の状態(中立位
置)とすると、圧力流体源5からの吐出圧力流体
は、方向切換弁4の流入口1が閉鎖されているた
めに圧力補償弁13の圧力室7内に流入し、圧力
室7内の流体圧力を上昇させる。すると、制御ス
プール11は、圧力室7内の流体圧力による押圧
力と、シヤトル弁8を介してばね室10内に作用
するシリンダ室12b内の流体圧力(負荷Wの負
荷圧力)にばね9の押圧力を加えた押圧力とがバ
ランスする図中破線位置まで移動し、その大径部
14の左肩部14aが絞りδ1を形成して圧力流
体源5から吐出圧力流体をタンク6に排出し、方
向切換弁4の上流側の流体圧力を、負荷Wの負荷
圧力よりもばね9の押圧力に応じた流体圧力分だ
け高く補償する。
In the conventional flow rate control device having this configuration, first, when the directional control valve 4 is in the state shown in the figure (neutral position), the pressure fluid discharged from the pressure fluid source 5 is discharged when the inlet 1 of the directional control valve 4 is closed. Therefore, the fluid flows into the pressure chamber 7 of the pressure compensating valve 13 and increases the fluid pressure within the pressure chamber 7. Then, the control spool 11 applies the pressure of the spring 9 to the pressing force due to the fluid pressure in the pressure chamber 7 and the fluid pressure in the cylinder chamber 12b (load pressure of the load W) acting on the spring chamber 10 via the shuttle valve 8. It moves to the position indicated by the broken line in the figure where the applied pressing force is balanced, and the left shoulder part 14a of the large diameter part 14 forms a restriction δ1 to discharge the discharged pressurized fluid from the pressurized fluid source 5 to the tank 6, The fluid pressure on the upstream side of the directional switching valve 4 is compensated to be higher than the load pressure of the load W by the fluid pressure corresponding to the pressing force of the spring 9.

次に、方向切換弁4のスプール3を図中左方向
に操作して図中破線位置まで移動させると、その
大径部15の右肩部15bが流入口1と流出口2
bとの間に絞りδ2を形成し、流出口2aと排出
口2Cとを接続する。すると、圧力流体源5から
の吐出圧力流体は、圧力補償弁13、方向切換弁
4の流入口1,絞りδ2、流出口2bを経てシリ
ンダ12のシリンダ室12b内に流入するが、圧
力補償弁13が方向切換弁4の上流側の流体圧力
を、負荷Wの負荷圧力よりもばね9の押圧力に応
じた流体圧力分だけ高く補償、つまり、絞りδ2
の上流側の流体圧力を、下流側の流体圧力(負荷
Wの負荷圧力)よりもばね9の押圧力に応じた流
体圧力分だけ高く補償するように作動するため、
シリンダ12のシリンダ室12b内に流入する圧
力流体は、絞りδ2の開口面積に応じた流量で流
入し、シリンダ12はその流量に応じた速度で負
荷Wを図中左方向に移動させる。
Next, when the spool 3 of the directional control valve 4 is operated to the left in the figure and moved to the position shown by the broken line in the figure, the right shoulder part 15b of the large diameter part 15 is connected to the inlet 1 and the outlet 2.
A throttle δ2 is formed between the outlet 2a and the outlet 2C, and the outlet 2a and the outlet 2C are connected. Then, the discharged pressure fluid from the pressure fluid source 5 flows into the cylinder chamber 12b of the cylinder 12 through the pressure compensation valve 13, the inlet 1 of the directional control valve 4, the throttle δ2, and the outlet 2b. 13 compensates for the fluid pressure on the upstream side of the directional control valve 4 to be higher than the load pressure of the load W by the fluid pressure corresponding to the pressing force of the spring 9, that is, the throttle δ2
In order to compensate for the fluid pressure on the upstream side of , which is higher than the fluid pressure on the downstream side (load pressure of the load W) by the fluid pressure corresponding to the pressing force of the spring 9,
Pressure fluid flows into the cylinder chamber 12b of the cylinder 12 at a flow rate corresponding to the opening area of the throttle δ2, and the cylinder 12 moves the load W to the left in the figure at a speed corresponding to the flow rate.

しかしながら、この流量制御装置にあつては、
シリンダ12を徴速動作させる場合に、方向切換
弁4を操作して絞りδ2の開口面積を非常に小さ
く形成すると、絞りδ2の流過抵抗によつてその
開口面積に応じた流量が得らず、シリンダ12の
作動速度を任意に制御できないという欠点があ
る。このことは、建設機械等において、例えば、
クレーンによつて吊り下げた重量物を微少距離だ
け昇降動させる場合に、重量物の位置精度が悪く
なるという問題となる。
However, in this flow control device,
When the cylinder 12 is operated to collect speed, if the directional control valve 4 is operated to make the opening area of the throttle δ2 very small, a flow rate corresponding to the opening area cannot be obtained due to the flow resistance of the throttle δ2. However, there is a drawback that the operating speed of the cylinder 12 cannot be arbitrarily controlled. This applies to construction machinery, etc., for example.
When a heavy object suspended by a crane is moved up and down by a small distance, the problem arises that the positioning accuracy of the heavy object deteriorates.

本発明は上記の問題点を解決するものであり、
方向切換弁に形成される絞りに影響されることな
く、微速動作するアクチユエータの速度を任意に
制御することを目的とするものである。
The present invention solves the above problems,
The purpose of this invention is to arbitrarily control the speed of an actuator that operates at a very low speed without being affected by a restriction formed in a directional switching valve.

本発明は上記目的を達成するために、圧力補償
弁に、方向切換弁の流入口に常時接続する内部通
を設け、この内部通路の一端を圧力室に接続する
とともに他端をばね室方向を順方向とする逆止
弁、および固定絞りを介してばね室に接続し、方
向切換弁を操作した時、少なくとも開口面積に応
じた流量を得ることのできる絞りを形成する前
に、アクチユエータと前記圧力補償弁のばね室と
を接続する構成とし、この構成によつて、方向切
換弁を操作した時、圧力流体源からの吐出圧力流
体の一部を、圧力補償弁の制御スプールの内部通
路、逆止弁、固定絞り、ばね室を介してアクチユ
エータにバイパス供給し、前記固定絞り前後の流
体圧力差をばね室に設けたばねの押圧力に応じた
流体圧力値として、アクチユエータに供給する流
量を固定絞りの開口面積に応じた値とする。
In order to achieve the above object, the present invention provides a pressure compensating valve with an internal passage that is always connected to the inlet of the directional control valve, and connects one end of the internal passage to the pressure chamber and the other end that connects the spring chamber. The actuator is connected to the spring chamber through a forward direction check valve and a fixed throttle, and the actuator and the With this configuration, when the directional control valve is operated, a part of the pressure fluid discharged from the pressure fluid source is transferred to the internal passage of the control spool of the pressure compensation valve. A bypass supply is supplied to the actuator via a check valve, a fixed throttle, and a spring chamber, and the flow rate supplied to the actuator is fixed by using the fluid pressure difference before and after the fixed throttle as a fluid pressure value corresponding to the pressing force of a spring provided in the spring chamber. The value corresponds to the aperture area of the diaphragm.

本発明は上述する構によつて、以下のような特
有の効果を有する。
The present invention has the following unique effects due to the above-described structure.

本発明の目的は、従来技術(第2図)の構成
に、スプール3のランドに形成されるノツチの数
を増やして絞りδ2の開口面積の変化率を小さく
する構成を付加すれば、絞りδ2の流過抵抗の影
響を受けない操作範囲でシリンダ12の微速動作
の速度を任意に制御でき、負荷Wの位置精度が向
上する。しかし、この構成では、ノツチの距離が
長くなるためにスプール3のランド幅を長く取ら
ねばならず、方向切換弁4の操作範囲が大きくな
り、弁体の大型化を招くという欠点を有する。
The object of the present invention is to increase the number of notches formed in the lands of the spool 3 to the configuration of the prior art (FIG. 2) to reduce the rate of change in the opening area of the aperture δ2. The speed of the slow operation of the cylinder 12 can be arbitrarily controlled within an operation range that is not affected by the flow resistance of the cylinder 12, and the positional accuracy of the load W is improved. However, this configuration has the drawback that since the distance between the notches is long, the land width of the spool 3 must be made long, and the operating range of the directional control valve 4 becomes large, leading to an increase in the size of the valve body.

本発明は、圧力補償弁に、方向切換弁の流入口
に常時接続する内部通路を設け、この内部通路の
一端を圧力室に接続するとともに他端をばね室方
向を順方向とする逆止弁、および固定絞りを介し
てばね室に接続し、方向切換弁を操作した時、少
なくとも開口面積に応じた流量を得ることのでき
る絞りを形成する前に、アクチユエータと前記圧
力補償弁のばね室とを接続する構成であるため、
圧力流体源の吐出圧力流体が方向切換弁の絞りを
流れる前に、圧力流体を、圧力補償弁の制御スプ
ールの内部通路、逆止弁、固定絞り、ばね室を介
してアクチユエータにバイパス供給することがで
き、本来、持つている方向切換弁の操作範囲を有
効に利用することができる。
The present invention provides a pressure compensating valve with an internal passage that is always connected to an inlet of a directional switching valve, and has one end of the internal passage connected to a pressure chamber, and the other end of the internal passage as a check valve whose forward direction is in the direction of the spring chamber. , and the spring chamber of the pressure compensating valve before forming the throttle which can obtain a flow rate corresponding to at least the opening area when the directional control valve is operated. Because the configuration connects
Bypassing the pressure fluid to the actuator via the internal passage of the control spool of the pressure compensating valve, the check valve, the fixed throttle and the spring chamber before the discharge pressure fluid of the pressure fluid source flows through the throttle of the directional valve. This allows effective use of the operating range of the directional control valve.

以下、本発明の一実施例を示す図面に基いて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図において、流量制御装置は、圧力流体源
5が接続する供給部体18と、タンク6が接続す
る排出部体19と、この供給部体18と排出部体
19との間に設けられる圧力補償弁2および方向
切換弁21とから構成される。
In FIG. 1, the flow rate control device is provided between a supply body 18 to which the pressure fluid source 5 is connected, a discharge body 19 to which the tank 6 is connected, and the supply body 18 and the discharge body 19. It is composed of a pressure compensation valve 2 and a directional switching valve 21.

前記圧力補償弁20は、その上流側が供給部体
18を介して圧力流体源5に接続し、下流側が方
向切換弁21の流入口23を介してタンク6に接
続する弁体22を有し、この弁体22内に、制御
スプール26を摺動自在に嵌入している。この制
御スプール26の両端には、圧力室24と、ばね
25を設けたばね室40とを形成し、この圧力室
24内の流体圧力による押圧力と、ばね室40側
の押圧力とが対向して制御スプール26を図中左
右方向に移動させるようになつている。制御スプ
ール26には、方向制御弁21の流入孔23に、
孔26aを介して常時接続し、その一端が前記圧
力室24に接続し、他端が前記ばね室40側方向
を順方向とする逆止弁28、および固定絞り29
を介してばね室40に接続する内部通路30を設
け、前記ばね室40を方向切換弁21の通路31
に接続する。また、制御スプール26には、肩部
27bを有する大径部27を設けてあり、この肩
部27bによつて圧力流体源5とタンク6との間
に絞りδ1を形成する。
The pressure compensating valve 20 has a valve body 22 that is connected to the pressure fluid source 5 via the supply body 18 on the upstream side and to the tank 6 via the inlet 23 of the directional control valve 21 on the downstream side, A control spool 26 is slidably fitted into the valve body 22. A pressure chamber 24 and a spring chamber 40 provided with a spring 25 are formed at both ends of the control spool 26, and the pressing force due to the fluid pressure in the pressure chamber 24 and the pressing force on the spring chamber 40 side are opposed to each other. The control spool 26 is moved in the left and right directions in the figure. The control spool 26 has an inflow hole 23 of the directional control valve 21,
A check valve 28 that is always connected through the hole 26a, one end of which is connected to the pressure chamber 24, and the other end of which is directed toward the spring chamber 40, and a fixed throttle 29.
An internal passage 30 is provided which connects the spring chamber 40 to the passage 31 of the directional control valve 21.
Connect to. The control spool 26 is also provided with a large diameter portion 27 having a shoulder 27b, which forms a restriction δ1 between the pressure fluid source 5 and the tank 6.

前記方向切換弁21は、その流入口23を排出
部体19を介してタンク6に接続する通路33、
負荷Wが接続するアクチユエータ32に接続する
流出口34a,34b、タンク6に接続する排出
口35a,35b、および通路31を備える弁体
36を有し、この弁体36内には、肩部38a,
39bを有する大径部38,39を設けたスプー
ル37を摺動自在に嵌入している。
The directional switching valve 21 has a passage 33 connecting its inlet 23 to the tank 6 via the discharge body 19;
It has a valve body 36 that includes an outlet 34a, 34b connected to the actuator 32 to which the load W is connected, an outlet 35a, 35b connected to the tank 6, and a passage 31. ,
A spool 37 provided with large diameter portions 38 and 39 having a diameter of 39b is slidably fitted therein.

従つて、スプール37が第1図の中立位置にあ
る時、流入口23を通路33に接続すると共に、
流出口34a,34bを閉鎖し、図中右方向に操
作された時、流入口23と通路33との間を閉鎖
すると共に、流出口34aと排出口35aを接続
し、流出口34bと通路31とを接続する。この
とき、スプール37に設けた大径部38の左肩部
38aが流入口23と通路31との間に絞りδ2
を形成するが、それよりも前に流出口34bと通
路31とを接続する関係となつている。
Thus, when spool 37 is in the neutral position of FIG. 1, it connects inlet 23 to passage 33 and
When the outflow ports 34a and 34b are closed and the operation is performed in the right direction in the figure, the space between the inflow port 23 and the passage 33 is closed, the outflow port 34a and the discharge port 35a are connected, and the outflow port 34b and the passage 31 are closed. Connect with. At this time, the left shoulder portion 38a of the large diameter portion 38 provided on the spool 37 is inserted between the inflow port 23 and the passage 31 with a restriction δ2.
However, before that, the outlet 34b and the passage 31 are connected to each other.

また、スプール37を図中左方向に操作した時
には、流入口23と通路33との間を閉鎖すると
共に、流出口34bと排出口35bを接続し、流
出口34aと通路31とを接続する。このとき、
スプール37に設けた大径部39の右肩部39b
が流入口23と通路31との間に絞りδ′2を形成
するが、前述と同様、それよりも前に流出口34
aと通路31とを接続する関係となつている。
Further, when the spool 37 is operated to the left in the drawing, the space between the inlet 23 and the passage 33 is closed, the outlet 34b and the outlet 35b are connected, and the outlet 34a and the passage 31 are connected. At this time,
Right shoulder portion 39b of large diameter portion 39 provided on spool 37
forms a restriction δ'2 between the inlet 23 and the passage 31, but as before, the outlet 34
a and the passage 31 are connected to each other.

上述する構成からなる本発明の実施例の作動に
ついて説明する。
The operation of the embodiment of the present invention having the above-mentioned configuration will be explained.

まず、方向切換弁21のスプール37が第1図
の中立位置にある時、圧力流体源5からの吐出圧
力流体は、供給部体18、圧力補償弁20、方向
切換弁21の流入口23および通路33、排出部
体19を介してタンク6に排出されており、アク
チユエータ32は停止した状態となつている。
First, when the spool 37 of the directional control valve 21 is in the neutral position shown in FIG. The liquid is discharged into the tank 6 via the passage 33 and the discharge body 19, and the actuator 32 is in a stopped state.

今、方向切換弁21のスプール37を図中左方
向に操作し、絞りδ′2を形成せずに流入口23と
通路31との間を閉鎖するとともに、流出口34
aと通路31、流出口34bと排出口35bとを
各々接続すると、流入口23と通路33との間は
閉鎖されているために流入口23の流体圧力は上
昇し、その流入口23内の圧力流体は、圧力補償
弁20の制御スプール26の孔26a、内部通路
30、逆止弁28、固定絞り29、ばね室40、
流出口34aを経てアクチユエータ32内に流入
する。すると、前記固定絞り29を通過する圧力
流体によつて固定絞り29の上流側と下流側との
間に流体圧力差を生じ、上流側の流体圧力を内部
通路30を介して圧力室24に作用し、下流側の
流体圧力はばね室40に作用する。このため、ば
ね室40内の流体圧力による押圧力にばね25の
押圧力を加えた押圧力と、圧力室24内の流体圧
力による押圧力とが対向して制御スプール26に
作用し、制御スプール26を図中左方向に移動さ
せてその大径部27の肩部27bが圧力流体源5
とタンク6との間に絞りδ1を形成し、圧力流体
源5からの吐出圧力流体をタンク6に排出してば
ね室40と圧力室34との流体圧力が同圧となる
ように制御スプール26をバランスさせる。従つ
て、流入口23内の流体圧力は、負荷Wが作用し
ているアクチユエータ32の負荷圧力よりもばね
25の押圧力に応じた流体圧力値だけ高く補償さ
れているため、流入口23内の圧力流体は、孔2
6a、内部通路30、固定絞り29の開口面積に
応じた流量でアクチユエータ32に供給されるこ
とになり、アクチユエータ32は、その流量に応
じた速度で図中矢印A方向に始動することができ
る。
Now, operate the spool 37 of the directional control valve 21 to the left in the figure to close the space between the inlet 23 and the passage 31 without forming the restriction δ'2, and at the same time close the space between the inlet 23 and the passage 31.
When a and the passage 31 are connected, and the outlet 34b and the outlet 35b are connected, the fluid pressure in the inlet 23 increases because the inlet 23 and the passage 33 are closed, and the fluid pressure in the inlet 23 increases. The pressure fluid flows through the hole 26a of the control spool 26 of the pressure compensation valve 20, the internal passage 30, the check valve 28, the fixed throttle 29, the spring chamber 40,
It flows into the actuator 32 through the outlet 34a. Then, the pressure fluid passing through the fixed throttle 29 creates a fluid pressure difference between the upstream side and the downstream side of the fixed throttle 29, and the fluid pressure on the upstream side is applied to the pressure chamber 24 through the internal passage 30. However, the fluid pressure on the downstream side acts on the spring chamber 40. Therefore, the pressing force obtained by adding the pressing force of the spring 25 to the pressing force due to the fluid pressure in the spring chamber 40 and the pressing force due to the fluid pressure in the pressure chamber 24 act on the control spool 26 in opposition, and the control spool 26 to the left in the figure, the shoulder 27b of the large diameter portion 27 is connected to the pressure fluid source 5.
A control spool 26 is configured to form a restriction δ1 between the pressure fluid source 5 and the tank 6, and discharge the discharged pressure fluid from the pressure fluid source 5 into the tank 6 so that the fluid pressures in the spring chamber 40 and the pressure chamber 34 are the same. balance. Therefore, the fluid pressure in the inlet 23 is compensated to be higher than the load pressure of the actuator 32 on which the load W acts by the fluid pressure value corresponding to the pressing force of the spring 25. Pressure fluid flows through hole 2
The actuator 32 is supplied with a flow rate corresponding to the opening area of the internal passage 30 and the fixed throttle 29, and the actuator 32 can be started in the direction of arrow A in the figure at a speed corresponding to the flow rate.

更に、方向切換弁21のスプール37を図中左
方向に操作して流入口23と通路31との間に絞
りδ′2を形成すると、流入口23内の圧力流体
は、絞りδ′2、通路31、流出口34aを経てア
クチユエータ32内に流入するため、方向切換弁
21の操作に対応してアクチユエータ32の速度
を制御できる。
Furthermore, when the spool 37 of the directional control valve 21 is operated to the left in the figure to form a restriction δ'2 between the inlet 23 and the passage 31, the pressure fluid in the inlet 23 is caused to flow through the restriction δ'2, Since it flows into the actuator 32 through the passage 31 and the outlet 34a, the speed of the actuator 32 can be controlled in response to the operation of the directional switching valve 21.

なお、この実施例では、方向切換弁21の流入
口23と通路31との間を接続する前に、アクチ
ユエータ32と圧力補償弁20のばね室40とを
接続する構成としたが、本発明は、流入口23と
通路31との間に形成される絞りδ′2がその開口
面積に応じた流量を得ることのできる大きさとな
る前に、アクチユエータ32とばね室40とを接
続する構成であるため、それ以前では、どの様な
状態でもよい訳だから例えば、単なる微少通路が
接続する形で流入口23と通路31との間を接続
すると同時に、又は流入口23と通路31とを接
続した後に、アクチユエータ32とばね室40と
を接続する構成としても良く、この実施例に限定
されるものではない。
In this embodiment, the actuator 32 and the spring chamber 40 of the pressure compensation valve 20 are connected before connecting the inlet 23 of the directional control valve 21 and the passage 31, but the present invention , the actuator 32 and the spring chamber 40 are connected before the throttle δ'2 formed between the inlet 23 and the passage 31 becomes large enough to obtain a flow rate corresponding to its opening area. Therefore, any state may be used before that, so for example, at the same time as connecting the inlet 23 and the passage 31 in the form of a simple micro passage, or after connecting the inlet 23 and the passage 31. , the actuator 32 and the spring chamber 40 may be connected, and the present invention is not limited to this embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の圧力補償弁付流量
制御装置の断面図を含む回路図、第2図は従来の
圧力補償弁付流量制御装置の断面図を含む回路図
である。 5……圧力流体源、6……タンク、〔24……
圧力室、25……ばね、26……制御スプール、
28……逆止弁、29……固定絞り、30……内
部通路、40……ばね室、δ1……絞り、23…
…流入口〕20……圧力補償弁、〔34a,34
b……流出口、37……スプール、δ2,δ′2…
…絞り〕21……方向切換弁。
FIG. 1 is a circuit diagram including a sectional view of a flow rate control device with a pressure compensation valve according to an embodiment of the present invention, and FIG. 2 is a circuit diagram including a sectional view of a conventional flow rate control device with a pressure compensation valve. 5... Pressure fluid source, 6... Tank, [24...
Pressure chamber, 25... spring, 26... control spool,
28... Check valve, 29... Fixed throttle, 30... Internal passage, 40... Spring chamber, δ1... Throttle, 23...
...Inflow port] 20...Pressure compensation valve, [34a, 34
b... Outlet, 37... Spool, δ2, δ'2...
... Throttle] 21 ... Directional switching valve.

Claims (1)

【特許請求の範囲】 1 圧力流体源が接続する流入口と、アクチユエ
ータが接続する流出口と、この流出口と流入口と
の間に絞りを形成するスプールとを備えた方向切
換弁と、圧力流体源と方向切換弁との間に設けら
れ前記流入口に接続する圧力室と、前記流出口に
接続しばねを有するばね室と、このばね室内の流
体圧力による押圧力にばねの押圧力を加えた押圧
力と前記圧力室内の流体圧力による押圧力とが対
抗して作用し、圧力流体源とタンクとの間に絞り
を形成する制御スプールとを備えた圧力補償弁
と、からなる圧力補償弁付流量制御装置におい
て、 前記圧力補償弁に、方向切換弁の流入口に常時
接続する内部通路を設け、この内部通の一端を圧
力室に接続するとともに他端をばね室方向を順方
向とする逆止弁および固定絞りを介してばね室に
接続し、方向切換弁を、そのスプールを操作した
時、少なくとも開口面積に応じた流量をえる事が
できる絞りを形成する前に、アクチユエータと圧
力補償弁のばね室とを接続する構成とした圧力補
償弁付流量制御装置。
[Claims] 1. A directional control valve including an inlet to which a pressure fluid source is connected, an outlet to which an actuator is connected, a spool that forms a restriction between the outlet and the inlet, and a pressure fluid source. a pressure chamber provided between the fluid source and the directional control valve and connected to the inflow port; a spring chamber connected to the outflow port and having a spring; a pressure compensating valve comprising a control spool on which the applied pushing force and the pushing force due to the fluid pressure in the pressure chamber act against each other and form a restriction between the pressure fluid source and the tank; In the flow control device with a valve, the pressure compensating valve is provided with an internal passage that is always connected to the inflow port of the directional switching valve, one end of this internal passage is connected to the pressure chamber, and the other end is configured such that the spring chamber direction is the forward direction. The directional control valve is connected to the spring chamber through a check valve and a fixed throttle, and when the spool is operated, the actuator and pressure are A flow control device with a pressure compensation valve configured to be connected to the spring chamber of the compensation valve.
JP13070782A 1982-07-27 1982-07-27 Flow rate control device with pressure compensation valve Granted JPS5919706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13070782A JPS5919706A (en) 1982-07-27 1982-07-27 Flow rate control device with pressure compensation valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13070782A JPS5919706A (en) 1982-07-27 1982-07-27 Flow rate control device with pressure compensation valve

Publications (2)

Publication Number Publication Date
JPS5919706A JPS5919706A (en) 1984-02-01
JPH0241646B2 true JPH0241646B2 (en) 1990-09-18

Family

ID=15040691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13070782A Granted JPS5919706A (en) 1982-07-27 1982-07-27 Flow rate control device with pressure compensation valve

Country Status (1)

Country Link
JP (1) JPS5919706A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956734B (en) * 2010-10-21 2012-08-08 宁波广天赛克思液压有限公司 Balance speed regulating integrated valve

Also Published As

Publication number Publication date
JPS5919706A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
US2987050A (en) Compensated flow control valve
US5097746A (en) Metering valve
JPS58160577A (en) Controller for variable volume type pump
US4168721A (en) Pressure control valve
US3561488A (en) Fluid flow control valve
US4787294A (en) Sectional flow control and load check assembly
JP2547734B2 (en) Control device for at least one hydraulically operated actuator
US3255777A (en) Directional control valve
GB2065928A (en) Pilot-operated pressure regulating valve
US4676273A (en) Electro-hydraulic pressure regulating valve
EP0008523B1 (en) Improvements relating to hydraulic control systems
US4487018A (en) Compensated fluid flow control
US3028880A (en) Fluid flow control valve
JPH0241646B2 (en)
JPS62269211A (en) Hydraulic controller
US3128789A (en) Fluid control valve
JPH01261581A (en) Control valve
JPS59113379A (en) Counterbalance valve
JPS61228172A (en) Insensitive zone time shortening device in directional control valve
JPS6124802A (en) Control circuit for hydraulic pressure device
JPH0235162B2 (en) SAISEIOYOBYUSENKENYOYUATSUSEIGYOSOCHI
US4325289A (en) Load responsive fluid control valve
JP2847399B2 (en) Pressure compensation valve device
JPH059525Y2 (en)
US4836089A (en) Series spool pressure regulator arrangement for a double-acting hydraulic actuator