JPH0241597B2 - - Google Patents
Info
- Publication number
- JPH0241597B2 JPH0241597B2 JP58232799A JP23279983A JPH0241597B2 JP H0241597 B2 JPH0241597 B2 JP H0241597B2 JP 58232799 A JP58232799 A JP 58232799A JP 23279983 A JP23279983 A JP 23279983A JP H0241597 B2 JPH0241597 B2 JP H0241597B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- fine particles
- current density
- wear
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007747 plating Methods 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 25
- 239000010419 fine particle Substances 0.000 claims description 21
- 239000002131 composite material Substances 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 12
- 238000009713 electroplating Methods 0.000 claims description 7
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 150000001247 metal acetylides Chemical class 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910000510 noble metal Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 3
- -1 aluminum nitrides Chemical class 0.000 claims 1
- 239000010408 film Substances 0.000 description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 10
- 229910010271 silicon carbide Inorganic materials 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229910017398 Au—Ni Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910001020 Au alloy Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000003353 gold alloy Substances 0.000 description 3
- 239000002932 luster Substances 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- MSNOMDLPLDYDME-UHFFFAOYSA-N gold nickel Chemical compound [Ni].[Au] MSNOMDLPLDYDME-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910000923 precious metal alloy Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
【発明の詳細な説明】
本発明は新規な複合めつき方法、さらに詳しく
いえば被めつき体表面に、ケイ素、チタン、ジル
コニウム、アルミニウムなどの窒化物、酸化物、
ホウ化物、炭化物のような高硬度の微粒子を均一
に複合させて成る耐摩耗性に優れかつ光沢の良好
なめつき被膜を形成させる複合めつき方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel composite plating method, more specifically, the present invention provides a novel composite plating method, in which the surface of the plated body is coated with nitrides, oxides, etc. of silicon, titanium, zirconium, aluminum, etc.
The present invention relates to a composite plating method for forming a plating film with excellent wear resistance and gloss, which is made by uniformly composite high hardness fine particles such as borides and carbides.
従来、酸性金めつき又は金合金めつきなどの貴
金属あるいは貴金属合金めつきにおいて、それら
とケイ素、チタン、ジルコニウム、アルミニウム
などの窒化物、酸化物、ホウ化物、炭化物のよう
な高硬度、高融点の微粒子とを複合させ、耐摩耗
性を向上させためつき被膜を形成させることが行
われ、これまで例えば電解液中に炭化ケイ素、酸
化アルミニウム、炭化タングステン、酸化ジルコ
ニウムなどの粉末状物質を懸濁させて、複合めつ
きする方法(特公昭36−3806号公報)、各種の炭
化物、窒化物、ホウ化物、ケイ素化物、酸化物を
1種又は2種以上共析させた金めつき若しくは金
合金めつきを施す方法(特開昭50−45735号公
報)、炭化ケイ素粉末を共析させた複合めつき方
法(特開昭52−88549号公報、同57−71812号公
報)などが知られている。 Conventionally, in the plating of precious metals or precious metal alloys such as acid gold plating or gold alloy plating, high hardness and high melting point materials such as nitrides, oxides, borides, and carbides of silicon, titanium, zirconium, and aluminum have been used. For example, powdered substances such as silicon carbide, aluminum oxide, tungsten carbide, and zirconium oxide were suspended in an electrolytic solution. and composite plating method (Japanese Patent Publication No. 36-3806), gold plating or gold alloy in which one or more of various carbides, nitrides, borides, silicides, and oxides are eutectoid. A plating method (Japanese Unexamined Patent Publication No. 50-45735), a composite plating method using eutectoid silicon carbide powder (Japanese Unexamined Patent Publications Nos. 52-88549 and 57-71812) are known. There is.
しかしながら、通常用いられている酸性めつき
浴においては、めつき時に陰極から水素ガスが発
生し、この水素ガスに耐摩耗性微粒子が吸着され
たり、あるいは水素ガスによる浴の流れなどによ
つて、陰極近傍には該微粒子が欠乏し、その結果
めつき被膜中に該微粒子が十分に複合されず、ま
た水素ガス発生を抑制するために陰極電流密度を
低くすると、該微粒子は複合されにくくなり、そ
の上めつき時間を長く要するなどの欠点があつ
て、前記方法はいずれも必ずしも満足しうる方法
とはいえない。 However, in commonly used acid plating baths, hydrogen gas is generated from the cathode during plating, and wear-resistant fine particles are adsorbed to this hydrogen gas, or due to the flow of the bath due to hydrogen gas, etc. The fine particles are lacking in the vicinity of the cathode, and as a result, the fine particles are not sufficiently combined in the plating film, and when the cathode current density is lowered to suppress hydrogen gas generation, the fine particles are difficult to be combined. Moreover, none of the above-mentioned methods can be said to be completely satisfactory, as they have drawbacks such as requiring a long plating time.
また、粒子径の小さい耐摩耗性粒子、特に平均
粒径1μm以下のものをめつき浴中に均一に分散さ
せるために、界面活性剤などの分散剤を添加する
ことか試みられているが、このような分散剤の添
加は、めつき被膜の応力を増大させ、また水素ガ
スを該被膜中に取り込む可能性があるなどの問題
を有している。さらに、好ましい複合めつき被膜
を得るためにはできるだけ細かい粒子を使用する
方がよいが0.1μm以下のサブミクロンオーダーの
粒子径をもつ耐摩耗性微粒子は、一般入手が困難
であり、また入手できたとしても極めて高価なも
のなので、工業的に実施するには不利である。 In addition, attempts have been made to add dispersants such as surfactants to uniformly disperse small-sized wear-resistant particles, especially those with an average particle size of 1 μm or less, in the plating bath. Addition of such a dispersant has problems such as increasing stress in the plated film and possibly introducing hydrogen gas into the film. Furthermore, in order to obtain a preferable composite plating film, it is better to use particles as fine as possible, but wear-resistant fine particles with a particle size on the submicron order of 0.1 μm or less are generally difficult to obtain. Even so, it is extremely expensive and is therefore disadvantageous for industrial implementation.
他方、電気めつき中に発生する水素によりめつ
き被膜がそこなわれるのを防ぐために、パルス電
流を用いることも行われているが(特開昭51−
83839号公報)、これを複合めつきに適用すると形
成されためつき被膜の金属光沢が低下するのを避
けられない。 On the other hand, in order to prevent the plating film from being damaged by the hydrogen generated during electroplating, pulsed current is also used (Japanese Patent Application Laid-Open No. 1983-1989).
83839), and when this is applied to composite plating, it is inevitable that the metallic luster of the formed plating film will decrease.
本発明者らは、これらの従来方法における問題
点を克服し、分散剤その他の薬品の添加なしに、
耐摩耗性に優れ、かつ光沢の良好な複合めつき被
膜を形成しうるめつき方法を開発すべく、鋭意研
究を重ねた結果、酸性貴金属系めつき浴中に平均
粒子1μm以下の耐摩耗性微粒子を分散させたもの
を用い、パルス電流により、その電流密度を段階
的に低下させながら電気めつきを行えばその目的
を達成しうることを見出し、この知見に基づいて
本発明をなすに至つた。 The present inventors have overcome the problems in these conventional methods and have achieved the following:
As a result of extensive research in order to develop a lubricating method that forms a composite plating film with excellent abrasion resistance and good gloss, wear-resistant fine particles with an average particle size of 1 μm or less were added to an acidic noble metal plating bath. The inventors have discovered that the objective can be achieved by performing electroplating using a dispersed material and gradually lowering the current density using a pulsed current.Based on this knowledge, the present invention has been made. .
すなわち、本発明は、所要の表面に電気めつき
を施すに当り、酸性貴金属系めつき浴に平均粒径
1μm以下の耐摩耗性微粒子を分散させ、パルス電
流を用い、かつその電流密度を段階的に低下させ
ながら電気めつきを行い、該微粒子を複合しため
つき被膜を形成させることを特徴とする複合めつ
き方法を提供するものである。 That is, in the present invention, when applying electroplating to a desired surface, the average particle size is
A composite characterized by dispersing wear-resistant fine particles of 1 μm or less and electroplating using a pulsed current while gradually lowering the current density to form a glazing film containing the fine particles. The present invention provides a plating method.
本発明方法においては、パルス電流を用いるこ
とにより、陰極における水素ガスの発生を抑制す
るとともに、さらにその電流密度を段階的に低下
させることにより、微粒子を複合したことに基づ
くめつき被膜の金属光沢の低下を防止するもので
ある。 In the method of the present invention, by using a pulsed current, the generation of hydrogen gas at the cathode is suppressed, and by lowering the current density stepwise, the metallic luster of the plating film due to the composite of fine particles is achieved. This prevents a decrease in
本発明方法において用いる酸性貴金属系めつき
浴とは、酸性の金、ロジウム、ルテニウムなどの
貴金属めつき浴及び酸性の金合金や銀合金などの
貴金属合金めつき浴であり、代表的なものとし
て、クエン酸系金−ニツケル合金めつき浴が挙げ
られる。 The acidic noble metal plating baths used in the method of the present invention include acidic precious metal plating baths such as gold, rhodium, and ruthenium, and acidic noble metal alloy plating baths such as gold alloys and silver alloys. , citric acid-based gold-nickel alloy plating bath.
本発明方法において用いる耐摩耗性微粒子とし
ては、例えばケイ素、チタン、ジルコニウム、ア
ルミニウムなどの窒化物、酸化物、ホウ化物、炭
化物のような高硬度、高融点の微粒子を挙げるこ
とができる。 Examples of the wear-resistant fine particles used in the method of the present invention include fine particles having high hardness and high melting point, such as nitrides, oxides, borides, and carbides of silicon, titanium, zirconium, and aluminum.
これらの耐摩耗性微粒子は、それぞれ単独で用
いてもよいし、2種以上組み合わせて用いてもよ
いし、2種以上組み合わせて用いてもよい。その
平均粒径は1μm以下、好ましくは0.5μm以下にす
る必要がある。これは、めつき膜厚を1.5〜2.0μm
程度にするとき、複合した粒子の粒径が1μmを超
えるとめつき被膜の耐摩耗性が劣化するためであ
る。 These wear-resistant fine particles may be used alone, in combination of two or more types, or in combination of two or more types. The average particle size must be 1 μm or less, preferably 0.5 μm or less. This reduces the plating film thickness to 1.5 to 2.0 μm.
This is because when the particle size of the composite particles exceeds 1 μm, the wear resistance of the plated film deteriorates.
本発明方法において用いるパルス電流は、整流
器で整流された直流電流をパルス発生器を通すこ
とにより得られる。通常パルス電流における波形
のモデルの1例を第1図に示す。 The pulsed current used in the method of the present invention is obtained by passing a direct current rectified by a rectifier through a pulse generator. An example of a waveform model for a normal pulse current is shown in FIG.
該パルス電流においては、ONタイムの状態で
電解が行われ、OFFタイムの状態で電解がスト
ツプする。ONタイムが長いと陰極における水素
ガスの発生が激しくなり、またOFFタイムがあ
まり短くても陰極は水素ガスが発生しやすい状態
になるため、例えば電流密度7.0A/dm2のとき
ONタイムは0.27秒以下、OFFタイムを0.27秒に
したときは0.39秒より長いことが望ましい。また
ONタイムが0.27秒より短い場合は、OFFタイム
は0.39秒以下でもよいが、めつき時間を長くする
必要がある。 In the pulsed current, electrolysis is performed during the ON time and stops during the OFF time. If the ON time is too long, hydrogen gas will be generated at the cathode, and if the OFF time is too short, the cathode will be in a state where hydrogen gas is likely to be generated.For example, when the current density is 7.0A/ dm2 ,
It is desirable that the ON time is 0.27 seconds or less, and when the OFF time is 0.27 seconds, it is longer than 0.39 seconds. Also
If the ON time is shorter than 0.27 seconds, the OFF time may be 0.39 seconds or less, but it is necessary to increase the plating time.
第2図は、本発明のパルス電流の電流密度を段
階的に低下させた場合におけるパルス波形のモデ
ルの1例である。このようにパルス電流の電流密
度を段階的に低下させていくと、めつき被膜にお
ける耐摩耗性粒子の複合量が、被めつき体の表面
から上層部に向けて逐次減少していく。したがつ
て、めつき被膜の最上層部には該微粒子が複合し
ていないような状態になすことができて、優れた
光沢のあるめつき面を得ることができる。すなわ
ち、パルス電流の電流密度を段階的に低下させる
ことによつて、耐摩耗性と光沢の両方とも優れた
めつき被膜が得られる。耐摩耗性については、前
記のように該電流密度が一定のものよりも若干劣
が、従来のめつき法のものに比べてはるかに優れ
ている。 FIG. 2 is an example of a pulse waveform model when the current density of the pulse current of the present invention is lowered stepwise. When the current density of the pulse current is reduced stepwise in this manner, the combined amount of wear-resistant particles in the plating film gradually decreases from the surface of the plated body toward the upper layer. Therefore, the uppermost layer of the plating film can be in a state in which the fine particles are not compounded, and a plated surface with excellent gloss can be obtained. That is, by lowering the current density of the pulse current in stages, it is possible to obtain a faded coating that is excellent in both wear resistance and gloss. As for the wear resistance, as mentioned above, it is slightly inferior to the case where the current density is constant, but it is much better than that of the case using the conventional plating method.
なお、本発明方法においては、このようなパル
ス電流の電流密度を段階的に低下させながら電気
めつきを行うが、その最終段階において従来のめ
つき法で用いられる電流密度を有する直流電流を
用いてもなんら差しつかえない。 In addition, in the method of the present invention, electroplating is performed while decreasing the current density of such pulsed current in stages, but in the final stage, a direct current having the current density used in the conventional plating method is used. It doesn't matter in any way.
前記のように、該電流密度を段階的に低下させ
るためには、Dk制御装置を用いることができる。 As mentioned above, a Dk controller can be used to step-down the current density.
第3図は本発明の複合めつき方法を実施するた
めのめつき系の1例を示すブロツク図であつて、
図中符号1は直流電流を得るための整流器、2は
電流計、3はパルス電流を得るためのパルス発生
器、4は電流密度を変化させるためのDk制御装
置及び5はかくはん装置6を備えた電解層であ
る。 FIG. 3 is a block diagram showing an example of a plating system for implementing the composite plating method of the present invention,
In the figure, reference numeral 1 is a rectifier for obtaining a direct current, 2 is an ammeter, 3 is a pulse generator for obtaining a pulse current, 4 is a Dk control device for changing the current density, and 5 is a stirring device 6. It is an electrolytic layer.
本発明方法においては、めつき浴中における耐
摩耗性粒子の分散性をよくするために、界面活性
剤などの分散剤を添加することもできる。 In the method of the present invention, a dispersant such as a surfactant may be added to improve the dispersibility of the wear-resistant particles in the plating bath.
本発明方法によると、パルス電流を用いること
によりめつき時の陰極における水素ガス発生を抑
えることができ、その結果一般に市販されている
研摩材などの耐摩耗性微粒子をめつき被膜中に均
一に分散させうるため、耐摩耗性が従来のめつき
法による同厚みのものに比べて3〜10倍高いめつ
き被膜が得られる。しかも、パルス電流の電流密
度を段階的に低下させることにより、耐摩耗性微
粒子の含有量が制御されるので仕上がつためつき
面は最初の電流密度で行つためつき面よりも光沢
があり、良好な耐摩耗性を有し、かつ従来のめつ
き法のものに匹敵する優れた光沢を有するめつき
被膜を得ることができる。 According to the method of the present invention, the generation of hydrogen gas at the cathode during plating can be suppressed by using pulsed current, and as a result, wear-resistant fine particles such as commercially available abrasives are uniformly deposited in the plating film. Because it can be dispersed, it is possible to obtain a plated film with wear resistance that is 3 to 10 times higher than that of the same thickness produced by conventional plating methods. Furthermore, by gradually lowering the current density of the pulsed current, the content of wear-resistant fine particles is controlled, so the finished surface is more glossy than the surface coated at the initial current density. It is possible to obtain a plated film having good abrasion resistance and an excellent gloss comparable to that of conventional plating methods.
次に実施例によつて本発明をさらに詳細に説明
する。 Next, the present invention will be explained in more detail with reference to Examples.
参考例
めつき浴としてクエン酸系Au−Ni系合金めつ
き液を、耐摩耗性微粒子として公称粒径0.5μm研
摩用SiC 100g/(めつき液)を用いて、PH4.0
前後、室温、陰極電流密度Dk7A/dm2の条件
で、かつパルス条件をONタイム0.19秒、OFFタ
イム0.39秒に設定し、めつき浴をかきまぜながら
ウオツチケースに対してめつきを施した。ONタ
イムとOFFタイムの合計で10分間めつきを行つ
て、2.0μmのめつき被膜を得た。この被膜中には
約15vol%のSiCが複合されており、この被膜の
耐摩耗性は、従来のAu−Ni合金めつき被膜
(22k2.0μm)の10倍以上であつた。ウオツチケー
スには、下地として予め2μm厚のニツケルめつき
被膜を施しておいた。Reference example Using a citric acid-based Au-Ni alloy plating solution as the plating bath and 100g/(plating solution) of SiC for polishing with a nominal particle size of 0.5μ as the wear-resistant fine particles, the pH was 4.0.
The watch case was plated while stirring the plating bath under the following conditions: room temperature, cathode current density Dk7A/ dm2 , and pulse conditions of ON time 0.19 seconds and OFF time 0.39 seconds. Plating was performed for a total of 10 minutes during ON time and OFF time to obtain a 2.0 μm plating film. Approximately 15 vol% of SiC was composited into this coating, and the wear resistance of this coating was more than 10 times that of the conventional Au-Ni alloy plated coating (22K2.0μm). The watch case was previously coated with a 2 μm thick nickel plating film as a base.
このようにして、得られためつき被膜は、SiC
を複合しないAu−Ni系合金めつきに比べ金属光
沢の劣化が認められた。 In this way, the resulting thin film is made of SiC
Deterioration of metallic luster was observed compared to Au-Ni alloy plating without composite.
なお、比較のために、陰極電流密度3.0A/d
m2、パルスなしで同じように10分間めつきを行つ
た。 For comparison, the cathode current density was 3.0A/d.
m 2 , plating was carried out in the same manner for 10 minutes without pulse.
得られためつき被膜をX線マイクロアナライザ
ー及び走査型電子顕微鏡で検査したところ、めつ
き被膜中にはSiCの複合は認められなかつた。 When the resulting plating film was examined using an X-ray microanalyzer and a scanning electron microscope, no SiC complex was observed in the plating film.
実施例
第3図に示すようなめつき系を用い、陰極電流
密度を段階的に下げて、第2図に示すようなパル
ス波形を有するパルス電流を用いる以外は、参考
例と全く同じ方法でウオツチケースにめつきを施
した。パルス電流におけるONタイムとOFFタイ
ムは参考例と同様である。Example A watch case was prepared in exactly the same manner as in the reference example, except that the plating system as shown in Fig. 3 was used, the cathode current density was lowered stepwise, and a pulse current having a pulse waveform as shown in Fig. 2 was used. A glare was applied. The ON time and OFF time in the pulse current are the same as in the reference example.
このめつき方法によると、陰極電流密度が
7A/dm2のとき被膜中にもつともSiCが多く、
6.3A/dm2、4.9A/dm2と該電流密度を下げて
いくに伴い、SiCの複合量も減少し、3.5A/dm2
ではSiCの複合はなく、Au−Ni合金被膜のみと
なつた。したがつて、被膜中の全SiC複合量は
10vol%となつて、電流密度を一定としものより
も少なくなるが、被膜表面は平滑で外観的には従
来のAu−Ni合金めつき被膜の状態に近くなつ
た。また、このめつき被膜の耐摩耗性は、陰極電
流密度が一定のものより若干劣るが、従来のAu
−Ni合金めつき被膜に比べて3〜5倍高かつた。 According to this plating method, the cathode current density is
At 7A/ dm2 , there is a lot of SiC in the film,
As the current density is lowered from 6.3A/dm 2 to 4.9A/dm 2 , the amount of SiC composite also decreases to 3.5A/dm 2 .
In this case, there was no SiC composite, only an Au-Ni alloy coating. Therefore, the total amount of SiC composite in the film is
Although the current density was 10 vol%, which was lower than that of a constant current density, the coating surface was smooth and the appearance was close to that of a conventional Au-Ni alloy plated coating. In addition, the wear resistance of this plating film is slightly inferior to that of a constant cathode current density, but the wear resistance of the conventional Au
-It was 3 to 5 times higher than the Ni alloy plating film.
第1図は通常のパルス電流の電流密度が一定の
場合の該電流における波形モデル1例を、第2図
は本発明におけるパルス電流の電流密度を段階的
に低下させた場合の該電流における波形モデルの
1例を示す。第3図は本発明の複合めつき方法を
実施するためのめつき系の1例を示すブロツク図
であつて、図中符号1は整流器、2は電流計、3
はパルス発生装置、4はDk制御装置及び5は電
解層である。
Fig. 1 shows an example of a waveform model of a normal pulse current when the current density is constant, and Fig. 2 shows a waveform model of the current when the current density of the pulse current according to the present invention is gradually decreased. An example of a model is shown. FIG. 3 is a block diagram showing an example of a plating system for carrying out the composite plating method of the present invention, in which reference numeral 1 is a rectifier, 2 is an ammeter, and 3 is a plating system.
4 is a pulse generator, 4 is a Dk controller, and 5 is an electrolytic layer.
Claims (1)
貴金属系めつき浴に平均粒径1μm以下の耐摩耗性
微粒子を分散させ、パルス電流を用い、かつその
電流密度を段階的に低下させながら電気めつきを
行い、該微粒子を複合しためつき被膜を形成させ
ることを特徴とする複合めつき方法。 2 耐摩耗性微粒子がケイ素、チタン、ジルコニ
ウム、アルミニウムの窒化物、酸化物、ホウ化物
及び炭化物の微粒子の中から選ばれた少なくとも
1種である特許請求の範囲第1項記載の方法。[Scope of Claims] 1. When electroplating a desired surface, wear-resistant fine particles with an average particle diameter of 1 μm or less are dispersed in an acidic noble metal plating bath, and a pulsed current is used to reduce the current density. 1. A composite plating method, which comprises performing electroplating while decreasing the amount in stages to form a glazed film made of the fine particles. 2. The method according to claim 1, wherein the wear-resistant fine particles are at least one selected from fine particles of silicon, titanium, zirconium, and aluminum nitrides, oxides, borides, and carbides.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23279983A JPS60128289A (en) | 1983-12-12 | 1983-12-12 | Composite plating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23279983A JPS60128289A (en) | 1983-12-12 | 1983-12-12 | Composite plating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60128289A JPS60128289A (en) | 1985-07-09 |
JPH0241597B2 true JPH0241597B2 (en) | 1990-09-18 |
Family
ID=16944935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23279983A Granted JPS60128289A (en) | 1983-12-12 | 1983-12-12 | Composite plating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60128289A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4014573C1 (en) | 1990-05-07 | 1991-10-10 | Forschungszentrum Juelich Gmbh, 5170 Juelich, De |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5045735A (en) * | 1973-08-28 | 1975-04-24 | ||
JPS5183839A (en) * | 1974-12-11 | 1976-07-22 | Fuijika Ritsushu Tehinitsushes | Kinzokuhyomenno denchakushorihoho |
-
1983
- 1983-12-12 JP JP23279983A patent/JPS60128289A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5045735A (en) * | 1973-08-28 | 1975-04-24 | ||
JPS5183839A (en) * | 1974-12-11 | 1976-07-22 | Fuijika Ritsushu Tehinitsushes | Kinzokuhyomenno denchakushorihoho |
Also Published As
Publication number | Publication date |
---|---|
JPS60128289A (en) | 1985-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Donten et al. | Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths | |
JP4684298B2 (en) | Method of manufacturing high temperature resistant coating containing γ-Ni + γ'-Ni3Al alloy composition modified with platinum metal and reactive element | |
Graves et al. | The electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part I. The deposition and properties of metal coatings | |
JPS63190158A (en) | Method for forming aluminite coating | |
CN109763125A (en) | A kind of high entropy alloy coating and its preparation process, application of high temperature wear resistant | |
CN1122300C (en) | Lead member for electronic part, and process of producing the same | |
CN107313088B (en) | A method of based on the nanocrystalline functional coating of anodic oxidation porous metals primary surface electro-deposition | |
JPH0819557B2 (en) | Method for forming protective coating and substrate having the protective coating | |
US20110280732A1 (en) | Diffused Refractory Metal Alloy Coated Products | |
JPH0570718B2 (en) | ||
JPH0257690A (en) | Aluminum plated substrate for anodic oxidation | |
US5064510A (en) | Method for producing a galvanically deposited protection layer against hot gas corrosion | |
CN113502518B (en) | Wear-resistant aluminum alloy composite material | |
JP3423702B2 (en) | Metal plating method | |
JPH0241597B2 (en) | ||
JPS58130299A (en) | Production of zn-ni alloy electroplated steel plate having high corrosion resistance in worked part | |
JPS5929119B2 (en) | Multilayer composite plating layer | |
Viswanathan et al. | Pulse plating of nickel-gold alloys | |
JPS5931894A (en) | Composite plating method | |
Choi et al. | Microstructural observation and wear properties of thin chrome layers prepared by pulse plating | |
KR20210023564A (en) | Plating Solution Composition having Ruthenium and Method of plating using the same | |
JP2001271132A (en) | High strength alloy, and metal coated with the high strength alloy | |
JP2611649B2 (en) | Heat-resistant hard nickel-tungsten alloy plating film and method of forming the same | |
JPS63290297A (en) | Wear resistant composite plated film | |
JP2618647B2 (en) | Cobalt-tungsten carbide alloy plating method |