JPH0241503Y2 - - Google Patents

Info

Publication number
JPH0241503Y2
JPH0241503Y2 JP1985179582U JP17958285U JPH0241503Y2 JP H0241503 Y2 JPH0241503 Y2 JP H0241503Y2 JP 1985179582 U JP1985179582 U JP 1985179582U JP 17958285 U JP17958285 U JP 17958285U JP H0241503 Y2 JPH0241503 Y2 JP H0241503Y2
Authority
JP
Japan
Prior art keywords
exhaust gas
tube
chamber
tube sheet
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985179582U
Other languages
Japanese (ja)
Other versions
JPS6288175U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985179582U priority Critical patent/JPH0241503Y2/ja
Publication of JPS6288175U publication Critical patent/JPS6288175U/ja
Application granted granted Critical
Publication of JPH0241503Y2 publication Critical patent/JPH0241503Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は熱交換器に関し、特に排ガスで燃焼用
空気等を予熱するために設置される垂直形の熱交
換器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat exchanger, and particularly to a vertical heat exchanger installed to preheat combustion air, etc. with exhaust gas.

〔従来の技術〕[Conventional technology]

例えば、第3図及び第4図に示すように、焼鈍
炉31の輻射管32の排ガスを利用して燃焼用空
気を予熱するようにした燃焼用空気予熱設備にお
いては、個別熱交換器33、部分集合熱交換器3
4、及び図示しない集合熱交換器に排ガスを通す
ことによつて熱回収をなし得るように構成されて
いる。即ち、空気供給管36からこれら熱交換器
33,34を通つて予熱された燃焼用空気は、バ
ーナ35に供給され、燃料を燃焼させて輻射管3
2内に高温排ガスを送出し、この輻射管32を高
温にしてその輻射熱で焼鈍炉31内を加熱し、輻
射管32を出た排ガスは前記個別熱交換器33、
部分集合熱交換器34を通り、排ガス出口本管3
7を通つて集合熱交換器に供給されるようになさ
れている。
For example, as shown in FIGS. 3 and 4, in a combustion air preheating facility that uses exhaust gas from a radiant tube 32 of an annealing furnace 31 to preheat combustion air, individual heat exchangers 33, Partial heat exchanger 3
4 and a collective heat exchanger (not shown) to allow heat recovery. That is, the combustion air that has been preheated from the air supply pipe 36 through the heat exchangers 33 and 34 is supplied to the burner 35, where it burns fuel and flows through the radiation pipe 3.
2, the radiant tube 32 is heated to a high temperature, and the radiant heat heats the inside of the annealing furnace 31, and the exhaust gas exiting the radiant tube 32 is passed through the individual heat exchanger 33,
Passing through the partial heat exchanger 34, the exhaust gas outlet main 3
7 to the collective heat exchanger.

上記のような部分集合熱交換器34を構成し得
る熱交換器として、例えば実開昭54−60351号公
報記載のものを挙げることができる。その熱交換
器は、垂直な筒状体の両端面側をそれぞれ上部端
板と下部端板とで覆つて両端板間を熱交換室とし
て形成すると共に、両端板間に上方から下方へと
排ガスを上記熱交換室内を通して流すための複数
の中空状伝熱チユーブを縦設する一方、上記熱交
換室内を上方から下方へと被加熱空気を流すため
に、この熱交換室の上部側に空気流入管を、また
下部側に空気流出管をそれぞれ接続している。ま
た、この熱交換室内を高温ガスが流れる際の筒状
体の熱伸縮を吸収するために、下部端板は、ベロ
ーズ等の伸縮管を介して筒状体の下部側に接続さ
れると共に、筒状体と伝熱チユーブとの熱伸縮量
の差を吸収するために、各伝熱チユーブの下端側
はそれぞれ伸縮管部を介装して下部端板に取付け
られている。
An example of a heat exchanger that can constitute the partial heat exchanger 34 as described above is the one described in Japanese Utility Model Application Publication No. 54-60351. The heat exchanger covers both end surfaces of a vertical cylindrical body with an upper end plate and a lower end plate, respectively, and forms a heat exchange chamber between the both end plates. A plurality of hollow heat transfer tubes are installed vertically to flow the heated air through the heat exchange chamber, while air flows into the upper side of the heat exchange chamber in order to flow the heated air from the top to the bottom in the heat exchange chamber. The tube is connected to the bottom side, and the air outflow tube is connected to the bottom side. In addition, in order to absorb thermal expansion and contraction of the cylindrical body when high-temperature gas flows in this heat exchange chamber, the lower end plate is connected to the lower side of the cylindrical body via an expansion tube such as a bellows, and In order to absorb the difference in the amount of thermal expansion and contraction between the cylindrical body and the heat transfer tube, the lower end side of each heat transfer tube is attached to the lower end plate with an expandable tube section interposed therebetween.

しかしながら、上記のように各伝熱チユーブ毎
に伸縮管部を介装する構成においては、製作コス
トが極めて高くなり、また、製作期間が長くかか
ること、さらにメインテナンス性が悪く、補修が
困難であるという問題を生じる。
However, in the configuration in which each heat transfer tube is provided with an expandable tube section as described above, the manufacturing cost is extremely high, the manufacturing period is long, and maintenance is poor and repair is difficult. The problem arises.

そこで、各伝熱チユーブ毎に伸縮管部を設ける
構造に替えて、筒状体に伸縮管部を介装し、これ
にて筒状体と伝熱チユーブとの熱伸縮量の差を吸
収する構造も採用されており、その一例につい
て、第5図を参照して説明する。
Therefore, instead of having a structure in which a telescoping tube section is provided for each heat transfer tube, a telescoping tube section is inserted in the cylindrical body, thereby absorbing the difference in the amount of thermal expansion and contraction between the cylindrical body and the heat transfer tube. A structure is also adopted, and an example thereof will be explained with reference to FIG.

第5図において、垂直な筒状体41の下部は下
部管板42で区画されて排ガス流入室43が形成
され、伸縮管部44を備えた排ガス入口管45が
接続されている。前記下部管板42とその上方に
配設された上部管板46との間には、排ガスが通
過する複数の伝熱チユーブ47が配設されかつ空
気入口管48と空気出口管49が上下端部に接続
された熱交換室50が形成され、上部管板46上
には排ガス流出室51が形成されている。この熱
交換器40は、前記筒状体41の上端に設けられ
たフランジ52にて支持されている。そして、熱
交換室50の中間部と排ガス流入室43の上部と
に伸縮管部53,54が設けられ、高温の排ガス
が流通する際に生じる筒状体41の熱伸縮を排ガ
ス流入室43の上部の伸縮管部54にて吸収する
と共に、筒状体41と伝熱チユーブ47との熱伸
縮量の差を熱交換室50の中間部の伸縮管部53
にて吸収するようになつている。
In FIG. 5, the lower part of the vertical cylindrical body 41 is partitioned by a lower tube plate 42 to form an exhaust gas inlet chamber 43, to which an exhaust gas inlet pipe 45 having a telescopic tube section 44 is connected. A plurality of heat transfer tubes 47 through which exhaust gas passes are disposed between the lower tube plate 42 and an upper tube plate 46 disposed above the lower tube plate 42, and an air inlet tube 48 and an air outlet tube 49 are arranged at the upper and lower ends. A heat exchange chamber 50 is formed connected to the upper tube plate 46, and an exhaust gas outflow chamber 51 is formed on the upper tube plate 46. This heat exchanger 40 is supported by a flange 52 provided at the upper end of the cylindrical body 41. Expandable pipe parts 53 and 54 are provided in the middle part of the heat exchange chamber 50 and the upper part of the exhaust gas inflow chamber 43, and the thermal expansion and contraction of the cylindrical body 41 that occurs when high temperature exhaust gas flows is transferred to the exhaust gas inflow chamber 43. The upper expandable tube section 54 absorbs the difference in thermal expansion and contraction between the cylindrical body 41 and the heat transfer tube 47.
It is designed to be absorbed by

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

しかしながら、上記第5図に示した構造の熱交
換器40においては、排ガス流入室43側に設け
られている伸縮管部44,54に損傷を生じ易い
という問題を生じている。つまり、この排ガス流
入室43周辺位置では、被加熱空気との熱交換前
の高温温度状態の排ガスが直接的に接するため
に、これらの伸縮管部44,54も高温の温度状
態となる。このような熱的負荷の大きい状態、す
なわち、強度の低下した状態での伸縮動作が繰返
されるために、亀裂等の損傷が生じ易いものとな
つているのである。
However, the heat exchanger 40 having the structure shown in FIG. 5 has a problem in that the expandable tube sections 44 and 54 provided on the exhaust gas inlet chamber 43 side are easily damaged. That is, in the vicinity of the exhaust gas inflow chamber 43, the exhaust gas, which is in a high temperature state before heat exchange with the heated air, comes into direct contact with the exhaust gas, so that these telescopic tube portions 44, 54 are also in a high temperature state. Because the expansion and contraction operations are repeated under such a state of large thermal load, that is, with reduced strength, damage such as cracks is likely to occur.

特に、上記従来構成においては、伸縮管部4
4,54のうち、排ガス入口管45に介装されて
いる伸縮管部45に、より顕著に損傷が生じ易
い。それは、筒状体41が上部で支持し固定され
ているため、下方へと伸びる熱膨張が全体に生
じ、この伸び変形を吸収すべく伸縮管部54が設
けられている訳であるが、この伸縮管部54の下
側の排ガス流入室43は固定されていないため
に、上記伸縮管部54には熱膨張の吸収動作を殆
ど生じないためである。この結果、排ガス流入室
43が下方へと変位し、これにより、排ガス入口
管45の伸縮管部44に曲げ応力が作用する。こ
うして、曲げの合成された応力が作用するため
に、この伸縮管部44に特に損傷を生じ易いもの
となつている。
In particular, in the above conventional configuration, the telescopic tube portion 4
Among the parts 4 and 54, the telescopic pipe part 45 interposed in the exhaust gas inlet pipe 45 is more likely to be damaged. This is because the cylindrical body 41 is supported and fixed at the upper part, so thermal expansion that extends downward occurs throughout the body, and the expandable tube section 54 is provided to absorb this expansion deformation. This is because the exhaust gas inflow chamber 43 on the lower side of the expandable tube section 54 is not fixed, so that the expandable tube section 54 hardly absorbs thermal expansion. As a result, the exhaust gas inlet chamber 43 is displaced downward, thereby applying bending stress to the expandable tube portion 44 of the exhaust gas inlet pipe 45. In this way, the combined bending stress acts on the telescopic tube section 44, making it particularly susceptible to damage.

本考案は、上記に鑑みなされたものであつて、
その目的は、熱伸縮を吸収すべく介装される伸縮
管部の破損を抑制し、これにより、長寿命化を図
り得る熱交換器を提供することにある。
This invention was made in view of the above, and
The purpose is to provide a heat exchanger that can suppress damage to the expandable tube section inserted to absorb thermal expansion and contraction, and thereby extend its life.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本考案の熱交換器は、略垂直な筒状体
の内部が下部管板と上部管板とで区画されて下部
管板の下側に排ガス流入室、下部管板と上部管板
との間に熱交換室、上部管板の上側に排ガス流出
室がそれぞれ形成され、また、上記排ガス流入室
から排ガス流出室へと熱交換室を通して排ガスを
流すための複数の中空状伝熱チユーブが両管板間
に縦設されると共に、筒状体における熱交換室を
囲繞する部位の上部側に空気入口管が、下部側に
空気出口管がそれぞれ接続され、さらに、上記筒
状体における排ガス流入室を囲繞する部位に固定
部が設けられると共に、この筒状体には、上部管
板と下部管板との間、及び上部管板よりも上方に
それぞれ伸縮管部が介装されていることを特徴と
している。
Therefore, in the heat exchanger of the present invention, the inside of the substantially vertical cylindrical body is divided into a lower tube sheet and an upper tube sheet, an exhaust gas inflow chamber is formed under the lower tube sheet, and a lower tube sheet and an upper tube sheet are formed. A heat exchange chamber is formed in between, and an exhaust gas outflow chamber is formed above the upper tube plate, and a plurality of hollow heat transfer tubes are provided for flowing the exhaust gas from the exhaust gas inflow chamber to the exhaust gas outflow chamber through the heat exchange chamber. An air inlet pipe is connected vertically between the two tube plates, and an air inlet pipe is connected to the upper side of the cylindrical body surrounding the heat exchange chamber, and an air outlet pipe is connected to the lower side of the part surrounding the heat exchange chamber. A fixing portion is provided at a portion surrounding the inflow chamber, and a telescopic tube portion is interposed in the cylindrical body between the upper tube sheet and the lower tube sheet and above the upper tube sheet. It is characterized by

〔作用〕[Effect]

上記の構成によれば、熱交換器全体の熱伸縮は
上部管板より上方位置の伸縮管部(以下、第1伸
縮管部という)によつて吸収され、また、筒状体
と伝熱チユーブとの熱伸縮の差は、下部管板と上
部管部の間の伸縮管部(以下、第2伸縮管部とい
う)にて吸収されるが、これら第1・第2伸縮管
部は熱負荷の小さい領域に配置されている。つま
り、熱交換室内の温度分布は、水平方向の断面内
では、排ガスが流れる伝熱チユーブ近辺の内方側
が高く、熱交換室を囲繞する筒状体側が低い温度
勾配を生じ、また、縦方向には、排ガスの流れる
方向に沿つて排ガス流入室側が高く、排ガス流出
室側が低い。さらに、上記では、被加熱空気は排
ガス流出側から熱交換室内へと流入されるので、
排ガス流出側はより低温の温度状態となる。そし
て、上記の第1・第2伸縮管部は、それぞれ水平
断面方向において最も低温温度状態となる筒状体
に沿つて設けられると共に、さらに縦方向におい
ても、温度の高い排ガス流入室側の位置ではな
く、特に第1伸縮管部は最も温度の低い排ガス流
出室側に設けられている。このように、各伸縮管
部は、より温度の低い領域にそれぞれ設けられ、
温度上昇に伴う強度の低下が抑制された状態での
熱伸縮の吸収動作を生じるようになつているの
で、亀裂等の破損を生じにくく、これにより、長
寿命化を図ることができる。
According to the above configuration, the thermal expansion and contraction of the entire heat exchanger is absorbed by the expansion tube section (hereinafter referred to as the first expansion tube section) located above the upper tube sheet, and the cylindrical body and the heat transfer tube The difference in thermal expansion and contraction between the lower tube sheet and the upper tube section is absorbed by the expansion tube section (hereinafter referred to as the second expansion tube section), but these first and second expansion tube sections absorb the thermal load. located in a small area. In other words, in the horizontal cross-section, the temperature distribution inside the heat exchange chamber is high on the inner side near the heat transfer tube through which the exhaust gas flows, and low on the cylindrical body side surrounding the heat exchange chamber; In this case, the exhaust gas inlet chamber side is higher and the exhaust gas outlet chamber side is lower along the exhaust gas flow direction. Furthermore, in the above, since the heated air flows into the heat exchange chamber from the exhaust gas outflow side,
The temperature on the exhaust gas outflow side is lower. The above-mentioned first and second expandable pipe parts are provided along the cylindrical body which is in the lowest temperature state in the horizontal cross-sectional direction, and also in the vertical direction at a position on the exhaust gas inflow chamber side where the temperature is high. Rather, in particular, the first telescopic pipe section is provided on the side of the exhaust gas outflow chamber where the temperature is the lowest. In this way, each expandable tube section is provided in a region with a lower temperature,
Since thermal expansion and contraction is absorbed while suppressing a decrease in strength due to temperature rise, damage such as cracks is less likely to occur, thereby extending the service life.

また、上記では、熱交換器の全体は排ガス流入
室外面の固定部で支持し固定されるので、熱伸縮
時にこの領域の変位は殆ど生じず、そのため、例
えば、この排ガス流入室に、前記従来例のよう
に、伸縮管部が介装されている排ガス入口管が側
方から接続される場合においても、上記排ガス入
口管の伸縮管部には曲げ応力は作用せず、この排
ガス入口管の熱膨張による軸方向の単純な引張圧
縮が作用するだけとなる。このように、上記排ガ
ス流入室に接続される排ガス入口管に対しても、
より損傷の生じにくい接続構造とすることができ
る。
In addition, in the above, since the entire heat exchanger is supported and fixed by the fixed part on the outer surface of the exhaust gas inflow chamber, almost no displacement occurs in this area during thermal expansion and contraction. As in the example above, even when an exhaust gas inlet pipe with a telescoping pipe section is connected from the side, no bending stress acts on the telescoping pipe section of the exhaust gas inlet pipe. Only simple tensile compression in the axial direction due to thermal expansion acts. In this way, also for the exhaust gas inlet pipe connected to the exhaust gas inlet chamber,
A connection structure that is less likely to cause damage can be achieved.

〔実施例〕〔Example〕

以下、本考案の一実施例を第1図及び第2図に
基づいて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図において、垂直な筒状体1の下部が下部
管板2で区画されて排ガス流入室3が形成され、
伸縮管部4を備えた排ガス入口管5が接続されて
いる。下部管板2とその上方に配設された上部管
板6との間には熱交換室10が形成され、排ガス
が通過する複数本の伝熱チユーブ7(図では1本
のみ表示)が配設されるとともに、その両端部が
下部管板2と上部管板6を貫通して溶接し固定さ
れている。また、この熱交換室10の上下端部に
空気入口管8と空気出口管9が接続され、かつこ
れらの間に蛇行状の空気通路を形成するために邪
摩板11が配設されている。前記上部管板6上に
は排ガス流出室13が形成され、その上端外周に
フランジ12が設けられている。前記排ガス流入
室3外面には固定部16が設けられ、この固定部
16と前記フランジ12にてこの熱交換器20の
全体を支持するように構成されている。一方、前
記熱交換室10の中間部と上部管板6より上の排
ガス流出室13外面に伸縮管部14,15が設け
られている。
In FIG. 1, the lower part of a vertical cylindrical body 1 is partitioned by a lower tube plate 2 to form an exhaust gas inflow chamber 3,
An exhaust gas inlet pipe 5 with a telescopic pipe section 4 is connected. A heat exchange chamber 10 is formed between the lower tube sheet 2 and the upper tube sheet 6 disposed above it, and a plurality of heat transfer tubes 7 (only one is shown in the figure) through which exhaust gas passes are arranged. At the same time, both ends thereof penetrate the lower tube sheet 2 and the upper tube sheet 6 and are welded and fixed. Further, an air inlet pipe 8 and an air outlet pipe 9 are connected to the upper and lower ends of the heat exchange chamber 10, and a jamb plate 11 is disposed between these to form a meandering air passage. . An exhaust gas outflow chamber 13 is formed on the upper tube plate 6, and a flange 12 is provided on the outer periphery of the upper end thereof. A fixing part 16 is provided on the outer surface of the exhaust gas inflow chamber 3, and the fixing part 16 and the flange 12 are configured to support the entire heat exchanger 20. On the other hand, telescopic tube sections 14 and 15 are provided in the intermediate portion of the heat exchange chamber 10 and on the outer surface of the exhaust gas outflow chamber 13 above the upper tube plate 6.

なお、前記伝熱チユーブ7の下端部と下部管板
2の溶接取付部においては、第2図に示すよう
に、伝熱チユーブ7の下部管板2からの突出量を
hとし、伝熱チユーブ7の中心間距離(配置ピツ
チ)をpとし、伝熱チユーブ7の外径をdとし
て、伝熱チユーブ7の突き出し角度θを、 tanθ=h/(p−d)で定義して、このtanθが
0.291〜0.971の範囲となるように設定されてい
る。
In addition, at the welded attachment part between the lower end of the heat transfer tube 7 and the lower tube plate 2, the amount of protrusion of the heat transfer tube 7 from the lower tube plate 2 is h, as shown in FIG. The distance between the centers of the heat transfer tubes 7 (arrangement pitch) is p, the outer diameter of the heat transfer tubes 7 is d, the protrusion angle θ of the heat transfer tubes 7 is defined as tanθ=h/(p-d), and this tanθ but
It is set to be in the range of 0.291 to 0.971.

以上の構成によると、熱交換器20の全体が排
ガス流入室3の外面の固定部16で支持し固定さ
れているので、熱伸縮時に下方に膨張せず、その
ため最も高温で熱負荷の大きい排ガス入口管5の
伸縮管部4には単純な引張圧縮が作用するだけ
で、曲げと引張圧縮の合成外力が作用することは
なく、破損しにくくなる。なお、熱交換器20の
全体の熱伸縮は排ガス流出室13に設けられた伸
縮管部15の単純引張圧縮変形によつて応力吸収
され、また熱交換室10における筒状体1と伝熱
チユーブ7との熱伸縮の差は、伸縮管部14にて
吸収される。またこれら伸縮管部14,15は熱
負荷の小さい空気入口管8の近傍に配置されてい
るので、その寿命が著しく延長される。
According to the above configuration, the entire heat exchanger 20 is supported and fixed by the fixing part 16 on the outer surface of the exhaust gas inflow chamber 3, so that it does not expand downward during thermal expansion and contraction, and therefore the exhaust gas, which has the highest temperature and large thermal load, A simple tensile compression acts on the expandable tube portion 4 of the inlet pipe 5, and no combined external force of bending and tensile compression acts on it, making it less likely to be damaged. Note that stress is absorbed by the thermal expansion and contraction of the entire heat exchanger 20 by simple tension-compression deformation of the expansion tube section 15 provided in the exhaust gas outflow chamber 13, and the stress is absorbed by the thermal expansion and contraction of the entire heat exchanger 20. The difference in thermal expansion/contraction with 7 is absorbed by the expansion/contraction tube section 14. Furthermore, since these expandable tube sections 14 and 15 are arranged near the air inlet tube 8, which has a small thermal load, their lifespan is significantly extended.

一方、前記第5図に基いて説明した従来の熱交
換器40においては、排ガス流入室43でアフタ
ーバーニングによる溶損事故が発生するという問
題も生じていた。これは、下部管板42と伝熱チ
ユーブ47の取付部における伝熱チユーブ47の
突出量hが20mm程度ありかつ伝熱チユーブ47の
配列が密になつているため溶接時の作業性が悪
く、両者の溶接が溶込不良等の欠陥によつて不完
全となる。そのため熱負荷を受けると破損し易
く、破損すると熱交換室50の燃焼用空気が排ガ
ス流入室43に流入するためにバーナ35への空
気の供給量が少なくなり、これにより不完全燃焼
を起こし、未燃焼ガスが排ガス流入室43に入
り、そこで漏れ出した空気で燃焼するために生ず
るものであると考察された。
On the other hand, in the conventional heat exchanger 40 described based on FIG. 5, there has been a problem in that the exhaust gas inlet chamber 43 suffers from melting due to afterburning. This is because the protrusion amount h of the heat transfer tubes 47 at the attachment point between the lower tube plate 42 and the heat transfer tubes 47 is approximately 20 mm, and the heat transfer tubes 47 are arranged closely, resulting in poor workability during welding. Welding between the two becomes incomplete due to defects such as poor penetration. Therefore, it is easily damaged when subjected to heat load, and when it is damaged, the combustion air in the heat exchange chamber 50 flows into the exhaust gas inflow chamber 43, reducing the amount of air supplied to the burner 35, which causes incomplete combustion. It was considered that this was caused by unburned gas entering the exhaust gas inlet chamber 43 and being combusted by the air leaking there.

そこで、上記実施例における熱交換器20にお
いては、下部管板2と伝熱チユーブ7の取付溶接
部において、伝熱チユーブ7の突出量hを前記の
ように設定し、これによつて、その溶接の作業性
等が改善され、このため、隅肉部の溶込み、両脚
長の均一性、溶接内部品質が良好となつて溶接が
完全なものとなり、熱負荷を受けても破損の虞れ
が無く、この結果、前記のようなアフターバーニ
ングを生じることがないことからも、熱交換器全
体の寿命が向上するものとなつている。
Therefore, in the heat exchanger 20 in the above embodiment, the protrusion amount h of the heat transfer tube 7 is set as described above at the attachment welding part between the lower tube plate 2 and the heat transfer tube 7, and thereby, the The workability of welding has been improved, and as a result, the penetration of the fillet, the uniformity of both leg lengths, and the internal quality of the weld are good, resulting in a perfect weld, and there is no risk of breakage even under heat load. As a result, the above-mentioned afterburning does not occur, so the life of the entire heat exchanger is improved.

具体例を示すと、伝熱チユーブ7は、外径が
21.7mm、材質がSUS−304、チユーブ本数が45本、
伝熱面積が2.2m2であり、下部管板2は、板厚が
6mm、材質がSUS−309であり、チユーブ突出量
hは5mm(tanθ=0.485)であり、筒状体1は、
外径が250mm、スケジユール5で、その材質は上
部がSUS−304、下部がSUS−309であり、上部
の伸縮管部15は、材質がSUS−304、板厚0.6
mm、2山溶接タイプ、中間部の伸縮管部14は、
材質がSUS−316、板厚0.6mm、2山溶接タイプと
した熱交換器20を構成し、これを従来より溶損事
故を生じがちであつた部分集合熱交換器34に適
用したところ、溶損事故は皆無となつた。
To give a specific example, the heat transfer tube 7 has an outer diameter of
21.7mm, material is SUS-304, number of tubes is 45,
The heat transfer area is 2.2 m 2 , the lower tube plate 2 has a plate thickness of 6 mm, the material is SUS-309, the tube protrusion h is 5 mm (tan θ = 0.485), and the cylindrical body 1 is as follows:
The outer diameter is 250 mm, and the scheduler is 5. The upper part is made of SUS-304 and the lower part is SUS-309. The upper telescopic tube part 15 is made of SUS-304 and has a plate thickness of 0.6.
mm, double welded type, middle expandable tube part 14,
The heat exchanger 20 was made of SUS-316, plate thickness 0.6 mm, and double welded. When this was applied to the partial heat exchanger 34, which has been prone to melting accidents than before, it was found that melting occurred. There were no accidents.

尚、本考案の熱交換器は、上記個別熱交換器3
3と部分集合熱交換器34と集合熱交換器の3段
階で熱回収する熱回収設備の部分集合熱交換器3
4に適用したものに限らず、1段階で熱回収する
熱交換器等、各種の熱交換器にも適用が可能であ
る。
Incidentally, the heat exchanger of the present invention has the above-mentioned individual heat exchanger 3.
Partial heat exchanger 3 of heat recovery equipment that recovers heat in three stages: 3, partial heat exchanger 34, and collective heat exchanger
The present invention is not limited to the one applied to 4, but can also be applied to various heat exchangers such as a heat exchanger that recovers heat in one stage.

〔考案の効果〕[Effect of idea]

本考案の熱交換器は、以上のように、略垂直な
筒状体の内部が下部管板と上部管板とで区画され
て下部管板の下側に排ガス流入室、下部管板と上
部管板との間に熱交換室、上部管板の上側に排ガ
ス流出室がそれぞれ形成され、また、上記排ガス
流入室から排ガス流出室へと熱交換室を通して排
ガスを流すための複数の中空状伝熱チユーブが両
管板間に縦設されると共に、筒状体における熱交
換室を囲繞する部位の上部側に空気入口管が、下
部側に空気出口管がそれぞれ接続され、さらに、
上記筒状体における排ガス流入室を囲繞する部位
に固定部が設けられると共に、この筒状体には、
上部管板と下部管板との間、及び上部管板よりも
上方にそれぞれ伸縮管部が介装されている構成で
ある。
As described above, in the heat exchanger of the present invention, the inside of the substantially vertical cylindrical body is divided into a lower tube sheet and an upper tube sheet, an exhaust gas inflow chamber is formed under the lower tube sheet, and an exhaust gas inflow chamber is formed under the lower tube sheet. A heat exchange chamber is formed between the tube sheet and an exhaust gas outflow chamber is formed above the upper tube sheet, and a plurality of hollow conductors are formed for flowing exhaust gas from the exhaust gas inflow chamber to the exhaust gas outflow chamber through the heat exchange chamber. A thermal tube is installed vertically between both tube sheets, and an air inlet pipe is connected to the upper side of a portion of the cylindrical body surrounding the heat exchange chamber, and an air outlet pipe is connected to the lower side of the portion surrounding the heat exchange chamber, and further,
A fixing portion is provided at a portion of the cylindrical body that surrounds the exhaust gas inflow chamber, and the cylindrical body includes:
It has a configuration in which telescopic tube sections are interposed between the upper tube sheet and the lower tube sheet and above the upper tube sheet.

これにより、筒状体全体の熱伸縮、及び筒状体
と伝熱チユーブとの熱伸縮をそれぞれ吸収する伸
縮管部は、熱負荷の小さい領域に配置されている
ので、温度上昇に伴う強度の低下が抑制された状
態での熱伸縮の吸収動作を生じ、この結果、亀裂
等の破損を生じにくい。また、熱交換器の全体が
排ガス流入室の外面の固定部で支持し固定されて
いるので、熱伸縮時にこの領域の変位は殆ど生じ
ず、そのため、例えば、この排ガス流入室に、前
記従来例のように、伸縮管部が介装されている排
ガス入口管が側方から接続される場合において
も、この排ガス入口管の伸縮管部には曲げ応力は
作用せず、軸方向の単純な引張圧縮が作用するだ
けとなるので、この部位における伸縮管部の損傷
も抑制される。このように、各伸縮管部の損傷が
抑制される結果、長寿命化を図ることができると
いう効果を奏する。
As a result, the expansion tube section, which absorbs the thermal expansion and contraction of the entire cylindrical body and the thermal expansion and contraction of the cylindrical body and the heat transfer tube, is placed in an area with a small thermal load, so the strength decreases as the temperature rises. Thermal expansion and contraction is absorbed in a state where deterioration is suppressed, and as a result, damage such as cracks is less likely to occur. In addition, since the entire heat exchanger is supported and fixed by the fixed part on the outer surface of the exhaust gas inflow chamber, almost no displacement occurs in this area during thermal expansion and contraction. Even when an exhaust gas inlet pipe with a telescoping pipe section is connected from the side, no bending stress acts on the telescoping pipe section of the exhaust gas inlet pipe, and simple tension in the axial direction Since only compression is applied, damage to the expandable tube section at this location is also suppressed. In this way, damage to each expandable tube section is suppressed, resulting in an effect that the service life can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の縦断正面図、第2
図は要部の拡大断面図、第3図と第4図は焼鈍炉
における熱交換器の配置を示す正面図と部分断面
側面図、第5図は従来例の縦断正面図である。 1は筒状体、2は下部管板、3は排ガス流入
室、4,14,15は伸縮管部、5は排ガス入口
管、6は上部管板、7は伝熱チユーブ、8は空気
入口管、9は空気出口管、10は熱交換室、13
は排ガス流出室、20は熱交換器である。
Fig. 1 is a longitudinal sectional front view of one embodiment of the present invention;
The figure is an enlarged sectional view of the main part, FIGS. 3 and 4 are a front view and a partially sectional side view showing the arrangement of a heat exchanger in an annealing furnace, and FIG. 5 is a longitudinal sectional front view of a conventional example. 1 is a cylindrical body, 2 is a lower tube plate, 3 is an exhaust gas inlet chamber, 4, 14, 15 are telescopic tube sections, 5 is an exhaust gas inlet pipe, 6 is an upper tube plate, 7 is a heat transfer tube, 8 is an air inlet pipe, 9 is an air outlet pipe, 10 is a heat exchange chamber, 13
2 is an exhaust gas outflow chamber, and 20 is a heat exchanger.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 略垂直な筒状体の内部が下部管板と上部管板と
で区画されて下部管板の下側に排ガス流入室、下
部管板と上部管板との間に熱交換室、上部管板の
上側に排ガス流出室がそれぞれ形成され、また、
上記排ガス流入室から排ガス流出室へと熱交換室
を通して排ガスを流すための複数の中空状伝熱チ
ユーブが両管板間に縦設されると共に、筒状体に
おける熱交換室を囲繞する部位の上部側に空気入
口管が、下部側に空気出口管がそれぞれ接続さ
れ、さらに、上記筒状体における排ガス流入室を
囲繞する部位に固定部が設けられると共に、この
筒状体には、上部管板と下部管板との間、及び上
部管板よりも上方にそれぞれ伸縮管部が介装され
ていることを特徴とする熱交換器。
The inside of the almost vertical cylindrical body is divided into a lower tube sheet and an upper tube sheet, with an exhaust gas inflow chamber below the lower tube sheet, a heat exchange chamber between the lower tube sheet and the upper tube sheet, and an upper tube sheet. An exhaust gas outflow chamber is formed on the upper side of each, and
A plurality of hollow heat transfer tubes for flowing exhaust gas from the exhaust gas inflow chamber to the exhaust gas outflow chamber through the heat exchange chamber are installed vertically between both tube plates, and a portion of the cylindrical body surrounding the heat exchange chamber is An air inlet pipe is connected to the upper side and an air outlet pipe is connected to the lower side.Furthermore, a fixing part is provided at a portion of the cylindrical body surrounding the exhaust gas inflow chamber, and the cylindrical body is connected to the upper pipe. A heat exchanger characterized in that telescopic tube sections are interposed between the plate and the lower tube sheet and above the upper tube sheet.
JP1985179582U 1985-11-20 1985-11-20 Expired JPH0241503Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985179582U JPH0241503Y2 (en) 1985-11-20 1985-11-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985179582U JPH0241503Y2 (en) 1985-11-20 1985-11-20

Publications (2)

Publication Number Publication Date
JPS6288175U JPS6288175U (en) 1987-06-05
JPH0241503Y2 true JPH0241503Y2 (en) 1990-11-05

Family

ID=31122768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985179582U Expired JPH0241503Y2 (en) 1985-11-20 1985-11-20

Country Status (1)

Country Link
JP (1) JPH0241503Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE534011C2 (en) * 2008-09-22 2011-03-29 K A Ekstroem & Son Ab Heat exchanger and carbon black production plant adapted for carbon black production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460351U (en) * 1977-10-05 1979-04-26
JPS6034937Y2 (en) * 1980-11-17 1985-10-17 株式会社クボタ Heat exchanger

Also Published As

Publication number Publication date
JPS6288175U (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US20100112502A1 (en) Recuperator burner having flattened heat exchanger pipes
JP2006317036A (en) Heat exchanger and water heating device comprising the same
JPH0241503Y2 (en)
KR101025615B1 (en) Radiant tube
JP3549981B2 (en) Furnace support structure of radiant tube with alternating heat storage
US11320173B2 (en) Smoke tube boiler
JPH01318891A (en) Heat exchanger
US20090025659A1 (en) Boiler
JP3180377U (en) Heat exchanger
CN115126956A (en) Non-metal expansion joint and production method thereof
JP3999966B2 (en) Shell and tube heat exchanger
CN104654588B (en) The stainless heat exchanger of gas water heater or wall-hung boiler
JP3106283B2 (en) Furnace support structure for radiant tube
JP4234879B2 (en) Radiant tube heating device
CN215446529U (en) Cold air inlet structure for high-temperature air preheater
CN216049382U (en) Compensator protection architecture and pre-heater
JPS61253319A (en) Structure for attaching radiant tube
CN215893372U (en) Heat insulation structure of radiant tube heat exchanger
KR101611364B1 (en) Channel type recuperator
CN220119414U (en) Plate-type air preheater structure
KR20160111287A (en) Recuperator
JP2680514B2 (en) High temperature windbox for boiler
JP2002317905A (en) In-furnace support structure of regenerative alternating combustion type radiant tube
JPH0224062Y2 (en)
JP3221855B2 (en) High temperature fluid piping