JPH0241313B2 - - Google Patents
Info
- Publication number
- JPH0241313B2 JPH0241313B2 JP57201079A JP20107982A JPH0241313B2 JP H0241313 B2 JPH0241313 B2 JP H0241313B2 JP 57201079 A JP57201079 A JP 57201079A JP 20107982 A JP20107982 A JP 20107982A JP H0241313 B2 JPH0241313 B2 JP H0241313B2
- Authority
- JP
- Japan
- Prior art keywords
- protease
- milk
- curd
- adsorbent
- rennin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004365 Protease Substances 0.000 claims description 52
- 108091005804 Peptidases Proteins 0.000 claims description 51
- 235000019419 proteases Nutrition 0.000 claims description 43
- 239000003463 adsorbent Substances 0.000 claims description 31
- 108090000746 Chymosin Proteins 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 14
- 235000020244 animal milk Nutrition 0.000 claims description 13
- 108090000021 oryzin Proteins 0.000 claims description 11
- 235000020183 skimmed milk Nutrition 0.000 claims description 10
- 235000013322 soy milk Nutrition 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 9
- 108090000284 Pepsin A Proteins 0.000 claims description 8
- 102000057297 Pepsin A Human genes 0.000 claims description 8
- 229940111202 pepsin Drugs 0.000 claims description 8
- 108090000631 Trypsin Proteins 0.000 claims description 7
- 102000004142 Trypsin Human genes 0.000 claims description 7
- 239000012588 trypsin Substances 0.000 claims description 7
- 230000004931 aggregating effect Effects 0.000 claims description 5
- 230000002209 hydrophobic effect Effects 0.000 claims description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- 108090000526 Papain Proteins 0.000 claims description 3
- 235000020247 cow milk Nutrition 0.000 claims description 3
- 229940055729 papain Drugs 0.000 claims description 3
- 235000019834 papain Nutrition 0.000 claims description 3
- 229960001322 trypsin Drugs 0.000 claims description 3
- 239000012736 aqueous medium Substances 0.000 claims description 2
- 239000011324 bead Substances 0.000 claims description 2
- 230000015271 coagulation Effects 0.000 claims description 2
- 238000005345 coagulation Methods 0.000 claims description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 claims description 2
- 239000005373 porous glass Substances 0.000 claims description 2
- 241001446247 uncultured actinomycete Species 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 5
- 238000002360 preparation method Methods 0.000 claims 3
- 102000035195 Peptidases Human genes 0.000 description 46
- 235000018102 proteins Nutrition 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 27
- 108090000623 proteins and genes Proteins 0.000 description 27
- 102000004190 Enzymes Human genes 0.000 description 25
- 108090000790 Enzymes Proteins 0.000 description 25
- 229940088598 enzyme Drugs 0.000 description 25
- 235000013336 milk Nutrition 0.000 description 16
- 239000008267 milk Substances 0.000 description 16
- 210000004080 milk Anatomy 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 244000309466 calf Species 0.000 description 13
- 102000011632 Caseins Human genes 0.000 description 12
- 108010076119 Caseins Proteins 0.000 description 12
- 238000001962 electrophoresis Methods 0.000 description 11
- 238000011084 recovery Methods 0.000 description 11
- 108010093096 Immobilized Enzymes Proteins 0.000 description 8
- 108010058314 rennet Proteins 0.000 description 8
- 229940108461 rennet Drugs 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 235000021247 β-casein Nutrition 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000005018 casein Substances 0.000 description 4
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 4
- 235000021240 caseins Nutrition 0.000 description 4
- 235000013351 cheese Nutrition 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010059712 Pronase Proteins 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 235000013527 bean curd Nutrition 0.000 description 3
- 229940021722 caseins Drugs 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 108010005090 rennin-like enzyme (Aspergillus ochraceus) Proteins 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 241000235395 Mucor Species 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- 235000019658 bitter taste Nutrition 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000020251 goat milk Nutrition 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000013555 soy sauce Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 2
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 241001131796 Botaurus stellaris Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 210000003165 abomasum Anatomy 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 239000000182 glucono-delta-lactone Substances 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000020254 sheep milk Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 235000008983 soft cheese Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000011079 streamline operation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Dairy Products (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Description
本発明は、特殊な結合手段を用いることなく、
直接吸着剤に吸着させた固定化プロテアーゼを用
いてきわめて容易にカードを調製する方法に関す
るものである。
一般に、チーズの製造にあたり、牛乳やヤギ乳
等の獣乳中のタンパク質を凝固(すなわち、凝
乳)させて、凝固タンパク質(カード)を得るこ
とは重要な工程のひとつであり、その凝乳には、
本来レンニン(生後1〜4週間の仔牛の第4胃よ
り分必される凝乳酵素)を必要としている。とこ
ろが、近年、チーズの生産量が大幅に増大する一
方で、肉牛の世界的な不足から、肉用牛の需要が
増大して、レンニン採取用の仔牛が著しく減少し
て、深刻なレンニン不足になつてきている。
そこで、仔牛レンニンに代り得る凝乳酵素(レ
ンネツト)が広く探索されてムコール・レンネツ
トなどの微生物の生産した、いわゆる微生物レン
ネツトが登場し、現在では、この微生物レンネツ
トあるいは、微生物レンネツトとペプシンなどの
プロテアーゼ混合物が、実用されている凝乳酵素
の大半を占めるようになつている。
しかし、仔牛レンニンは凝乳の鍵となるカツパ
ーカゼイン(k−カゼイン)に対して極めて基質
特異性の高いプロテアーゼであり、他のカゼイン
成分(αs−,β−カゼイン)に対してはほとん
ど分解力を持たない特徴を有している。
これに対し、微生物レンネツトや他の代用酵素
では、k−カゼイン以外のカゼインについても、
多少の分解力を持つため、これらの代用酵素を使
用した場合には、カードの回収率が低く、でき上
がつたチーズの風味が劣る(β−カゼインの分解
によつて、苦味が発生したり、テクスチヤーが変
化する)などの点で、仔牛レンニンよりも劣ると
いう欠点がある。この点が、他の多くのプロテア
ーゼが凝乳活性は持つものの同時に持つ強い加水
分解活性のために凝乳酵素となり得ない理由であ
り、そのため、現在、遺伝子工業的技術を駆使し
て仔牛レンニンのクローン化などの試みが盛んに
成されているのである。
換言するならば、レンニン以外の多くのプロテ
アーゼ類も、凝乳の引き金になるk−カゼインの
分解を比較的速かに行い、ミルクを凝乳させるこ
とはできる。しかし、他の多くのプロテアーゼは
仔牛レンニンに比較して、広い基質特異性を持つ
ものがほとんどであるから、カードの主成分であ
る他のカゼイン(αs−,β−カゼイン)をも加
水分解してしまい、カードの回収率を低下させ、
でき上がつたチーズを劣化させてしまう。即ち、
β−カゼイン量がカードの固さを支配しており、
β−カゼインが分解されると柔弱なチーズとな
り、β−カゼインの分解産物である一部のペプタ
イドに苦味を呈し、カードの品質を劣化させてし
まうのである。
また別の方向として、仔牛レンニンをくり返し
て、あるいは連続して使用して、コストの低減化
や作業の合理化をしようとする試みも為されてい
る。それは、仔牛レンニンを適当な担体に固定化
する固定化レンニンの試みである。この場合、多
くの固定化法のうち、共有結合法やイオン吸着法
と架橋法との併用法が用いられているが、固定化
の際に操作が繁雑であつたり、食品への応用とし
て不適当な試薬を使用したり酵素の失活を招き易
いものであり、加えて、使用中での失活などいく
つかの欠点があり、未だ実用的な段階には至つて
いない状態である。
また、他の凝集性タンパク質の代表的な例とし
て豆乳がある。豆乳を凝固させれば、豆腐が得ら
れるわけだが、これも、固定化プロテアーゼによ
つて製造できる。
従来豆腐は熱い豆乳に凝固剤であるニガリ(カ
ルシウム塩など)を加えたり、一度冷却後の豆乳
にグルコノデルタラクトンを加えて加熱したりし
て凝固させている。
これに対して固定化プロテアーゼを使用するな
らば、先の様な凝固剤の入らない豆腐ができる。
本発明者らは、すぐれた固定化プロテアーゼを
作成することができるなら、レンニンをくり返し
て使用できるばかりでなく、仔牛レンニンの代用
として、ムコールレンネツトばかりでなく、多く
の加水分解力の強いプロテアーゼでも凝乳酵素と
して使用できるのではないかとの想定のもとに鋭
意研究した結果、プロテアーゼを水性溶媒中で多
孔性の吸着剤に直接接触させ、吸着させることに
よつてすぐれた固定化プロテアーゼを得ることに
成功したのである。
本発明は、この知見をもとに完成されたもの
で、疎水性の結合力を有する多孔性の吸着剤に水
性溶媒中でプロテアーゼを接触させ、吸着させて
なる固定化プロテアーゼの獣乳、脱脂獣乳、もし
くは凝集性蛋白性物質を接触させることにより、
凝固させてカードを得ることを特徴とするカード
の調製法である。
本発明で用いる固定化プロテアーゼのための吸
着剤は、疎水性の結合力を有する多孔性の吸着剤
であるが、その例としてスチレン系合成吸着剤で
あるHP−10、20、21、30、40、50(三菱化成工
業(株)製)やメタクリル酸エステル系合成吸着剤
HP−2MG(三菱化成工業(株)製)もしくは多孔性
ガラスビーズ(コーニング、グラス、ワーカー
社、フジ、デヴイソン、ケミカルズ社)などがあ
げられる。
吸着させるプロテアーゼは、所謂プロテアーゼ
系酵素であればいずれでもよいが、例えば、レン
ニン、ペプシン、トリプシン、パパイン、麹菌ア
ルカリプロテアーゼ、放線菌プロテアーゼ等があ
げられる。
吸着に際しては、各酵素を水性溶媒中で、吸着
剤に吸着させる。一般的には、レンニン、ペプシ
ン、トリプシン、パパイン、麹菌アルカリプロテ
アーゼ、放線菌プロテアーゼなどを水に溶解し、
吸着剤に接触させる。また、これら酵素は優先的
に吸着剤に吸着させる傾向があるので、各酵素含
有液であれば、そのまま吸着処理することができ
る。例えば、生醤油は麹菌アルカリプロテアーゼ
を多量に含んでいるので、この生醤油をそのまま
吸着剤と接触させて、麹菌アルカリプロテアーゼ
を吸着した吸着剤すなわち固定化酵素を得ること
ができる。レンニンの場合は、仔牛から得た粗レ
ンニン含有液を吸着剤と接触させれば、固定化レ
ンニンが得られる。
これら酵素は単一でもよいが、複合させても吸
着させることができる。例えば、凝乳酵素群とし
て、レンニンとムコールレンネツトを適宜混合し
て水溶液とし、これに吸着剤を接触させ、同時に
レンネツトとムコールレンネツトを吸着した吸着
剤すなわち複合固定化酵素を得ることができる。
更に、より速く凝乳させる場合は、これらに酸性
プロテアーゼを加え、三つの酵素を同時に吸着さ
せることも可能である。
プロテアーゼを吸着させるには、プロテアーゼ
含有水性溶媒と吸着剤を接触させるだけでよい。
この吸着の方式は主に物理的な吸着力に基くもの
と考えられ、固定化法としては最も温和な条件で
あり、かつ、まつたく簡単な操作、すなわち、単
に酵素溶液と合成吸着剤とを接触させてやりさえ
すればよいものである。具体的には、吸着剤をつ
めたカラムにプロテアーゼ溶液を通液させたり、
プロテアーゼ溶液を入れた容器に吸着剤を投入
し、ゆつくり攪拌したりして、固定化プロテアー
ゼを得ることができる。
吸着剤へのプロテアーゼの吸着は、各酵素の失
活が起らない温度、例えば45℃以下で行なわれ、
かつ広いPHの範囲、例えばPH4〜10で行なわれ、
しかもイオン強度に関係なく行なうことができ
る。そして得られた固定化プロテアーゼは使用し
ても容易に脱離することのない、きわめて安定な
ものである。
本発明においては、ここに得られる固定化プロ
テアーゼと獣乳、脱脂獣乳、もしくは凝集性蛋白
性物質とを接触させることにより凝集カードがき
わめて容易に、しかもきわめて高品質で得られる
ものである。カードの回収率は、たとえばレンニ
ンを用いる従来法によるのと同等もしくはそれ以
上のものとすることができ、またカードの蛋白質
の状態もレンニンを使用したものとほぼ同等の品
質のものとすることができる。
凝集させるものは、獣乳例えば牛乳、ヤギ乳、
ヒツジ乳やこれらから脱脂した各脱脂乳、更にこ
れらから分離された各種カゼイン、これらから再
生された再生乳、再生脱脂乳、更には豆乳などの
植物性蛋白質含有乳状物等など凝集する蛋白性物
であればいずれでも使用することができる。
凝集処理に際しては、これら獣乳等をそのま
ま、もしくは希釈して、固定化プロテアーゼと接
触させられる。接触は、獣乳等を入れた容器に、
固定化プロテアーゼを入れた金網カゴなどを短時
間浸漬したり、固定化プロテアーゼを入れた容器
に短時間獣乳等を注入し、取り出すバツチ式によ
るのもよく、また、固定化プロテアーゼをつめた
カラムに連続的に獣乳等を通液させる連続式によ
るものでもよい。
接触条件は、常温、加温、冷却のいずれでもよ
く、また接触時間は酵素量によつて異なつてくる
ので、あらかじめ求めるカードの質によつて酵素
量を決めておいて、それに応じて接触時間を決め
るのが好ましい。
接触が終了した獣乳等は、放置もしくは加温し
たりすることによつて凝集を起し、バツチ式もし
くは連続的にカードを得ることができる。
このように、本発明法は、固定化したプロテア
ーゼを用いるもので、単に乳の流量を変える等の
ことで、凝乳反応を適宜コントロールできるの
で、目的に応じた好ましいカードを調製すること
ができ、また、高品質で高価なレンニンを長期に
わたり使用することができ、しかも均質なカード
を製造できるものである。
次に、本発明の実験例及び実施例を示すが、こ
こに用いる測定法等は次の通りである。
凝乳活性の測定法
0.012%のCaCl2を含むスキムミルク10%
(0.05M酢酸緩衝液でPH5.8に調整)溶液を基質と
して用い、35℃に保温した基質10mlに酵素液10ml
を添加し、カードのフラグメントが生じる時間
(秒)を測定した。(凝集活性は酵素200mg、凝乳
時間40分(2400秒)を基準単位としている)この
時間をtとすると、凝乳活性は次式で表わされ
る。
凝乳活性=2400/t×(200mg/添加酵素(mg)
)
固定化酵素の活性は吸着剤に添加した酵素の活
性量から吸着せずに流出した酵素の活性量を差し
引いたもので表した。
カードタンパク質の回収率:
凝乳によつて生じたカードをろ紙過して、充
分水洗した後キエルダール法でT−Nを求め、ま
た基質スキムミルク溶液10mlに、TCA混液
(0.11Mトリクロル酢酸、0.22M酢酸ナトリウム、
0.33M酢酸を含む溶液)を10ml加え生じたカード
のT−N(全窒素)を100%としてカードタンパク
質の回収率を求めた。
カードのSDS−電気泳動:
凝乳によつて生じたカードをろ紙過し、充分
水洗した後、少量を試験管にとり、これにSDS−
B−緩衝液(2%、SDS、50%グリセロール、
0.02Mリン酸ナトリウム緩衝液(PH7.2)、3%2
−メルカプトエタノールを含む溶液)0.5mlを加
えて、100℃、5分間でSDS化した。サンプル量
は泳動カラム一本当り、約100μgのタンパク質
量になるように加え、常法通り泳動させた。
豆乳の凝集活性の測定
常法により、調製した豆乳を遠心分離して、オ
カラ残渣を除く、これを基質(T−N、0.56%)
として、固定化プロテアーゼに作用させ、凝乳活
性の場合と同様に、凝集までの時間を測定した。
実験例 1
プロテアーゼ6種類(麹菌アルカリプロテア
ーゼ、仔牛レンニン、ペプシン、トリプシ
ンプロナーゼ(科研化学(株)製、商品名)プロ
トリクイフアーゼ(上田化学(株)製、商品名))の
凝乳性について検討した。
凝乳時間が約5分になるように濃度を調整した
酵素溶液を基質スキムミルクに加えて20時間放置
後得られたカードタンパク質の回収率を表−1に
示す。さらに、得られたカードのSDS電気泳動パ
ターンを第1図に示す。第1図では麹菌アルカ
リプロテアーゼは仔牛レンニンはペプシン、
はトリプシンはプロトリクイフアーゼに由来
するカードのSDS電気泳動パターンである。
The present invention does not require any special coupling means.
The present invention relates to a method for very easily preparing a card using immobilized protease directly adsorbed onto an adsorbent. Generally, in the production of cheese, one of the important steps is to coagulate the proteins in animal milk such as cow's milk or goat's milk (i.e., curds) to obtain coagulated proteins (curds). teeth,
It originally requires rennin (a milk-clotting enzyme secreted from the abomasum of calves 1 to 4 weeks old). However, in recent years, while cheese production has increased significantly, demand for beef cattle has increased due to a global shortage of beef cattle, and the number of calves used to collect rennin has decreased significantly, leading to a serious rennin shortage. I'm getting used to it. Therefore, a milk-clotting enzyme (rennet) that could replace calf rennin was widely searched for, and so-called microbial rennet produced by microorganisms such as Mucor rennet appeared.At present, microbial rennet, or microbial rennet and proteases such as pepsin, are now available. Mixtures now account for the majority of milk-clotting enzymes in practical use. However, calf rennin is a protease with extremely high substrate specificity for katsupercasein (k-casein), which is the key to curdling milk, and hardly degrades other casein components (αs-, β-casein). It has the characteristic of having no power. On the other hand, microbial rennet and other substitute enzymes can be used for caseins other than k-casein.
Because they have some decomposition power, when these substitute enzymes are used, the recovery rate of curd is low and the flavor of the finished cheese is inferior (bitterness may occur due to the decomposition of β-casein). It has the disadvantage that it is inferior to calf rennin in terms of its texture (changes in texture). This is the reason why many other proteases, although having milk curdling activity, cannot act as milk curdling enzymes due to their strong hydrolytic activity. There are many attempts at cloning. In other words, many proteases other than rennin can relatively quickly degrade k-casein, which triggers curdling, and curd milk. However, most other proteases have broader substrate specificity than calf rennin, so they also hydrolyze other caseins (αs-, β-casein), which are the main components of curd. This will reduce the card collection rate,
This will cause the finished cheese to deteriorate. That is,
The amount of β-casein controls the hardness of the curd.
When β-casein is decomposed, it becomes a soft cheese, and some peptides, which are the decomposition products of β-casein, have a bitter taste and deteriorate the quality of the curd. In another direction, attempts have been made to reduce costs and streamline operations by using calf rennin repeatedly or continuously. It is an attempt to immobilize calf rennin on a suitable carrier. In this case, among the many immobilization methods, covalent bonding methods, ion adsorption methods, and crosslinking methods are used, but these methods require complicated operations during immobilization and are not suitable for food applications. It requires the use of appropriate reagents and tends to cause deactivation of the enzyme, and in addition, it has several drawbacks such as deactivation during use, and has not yet reached a practical stage. In addition, soy milk is a typical example of other aggregating proteins. Coagulating soy milk yields tofu, which can also be produced using immobilized protease. Conventionally, tofu is coagulated by adding a coagulating agent such as bittern (calcium salt, etc.) to hot soymilk, or by adding glucono delta-lactone to soymilk once cooled and heating it. On the other hand, if an immobilized protease is used, tofu can be produced without the use of a coagulant. If we can create an excellent immobilized protease, we will not only be able to use rennin repeatedly, but also use not only mucor rennet but also many proteases with strong hydrolyzing power as a substitute for calf rennin. However, as a result of intensive research based on the assumption that it could be used as a milk-clotting enzyme, we found that an excellent immobilized protease could be produced by directly contacting the protease with a porous adsorbent in an aqueous solvent and adsorbing it. He succeeded in obtaining it. The present invention was completed based on this knowledge, and includes immobilized protease produced by contacting and adsorbing protease with a porous adsorbent having hydrophobic binding strength in an aqueous medium. By contacting animal milk or aggregating proteinaceous substances,
This is a method for preparing curd, which is characterized by obtaining curd by coagulation. The adsorbent for immobilized protease used in the present invention is a porous adsorbent with hydrophobic binding strength, examples of which are styrene synthetic adsorbents HP-10, 20, 21, 30, 40, 50 (manufactured by Mitsubishi Chemical Industries, Ltd.) and methacrylic acid ester synthetic adsorbents
Examples include HP-2MG (manufactured by Mitsubishi Chemical Industries, Ltd.) or porous glass beads (Corning, Glass, Worker, Fuji, Davison, Chemicals). The protease to be adsorbed may be any so-called protease enzyme, and examples thereof include rennin, pepsin, trypsin, papain, Aspergillus alkaline protease, and actinomycete protease. During adsorption, each enzyme is adsorbed onto an adsorbent in an aqueous solvent. Generally, rennin, pepsin, trypsin, papain, Aspergillus alkaline protease, Streptomyces protease, etc. are dissolved in water.
Contact with adsorbent. Furthermore, since these enzymes tend to be preferentially adsorbed to adsorbents, any liquid containing each enzyme can be adsorbed as is. For example, since raw soy sauce contains a large amount of Aspergillus alkaline protease, by directly contacting this raw soy sauce with an adsorbent, an adsorbent adsorbing Aspergillus alkaline protease, that is, an immobilized enzyme can be obtained. In the case of rennin, immobilized rennin can be obtained by contacting a crude rennin-containing liquid obtained from calves with an adsorbent. These enzymes may be used alone, but they can also be adsorbed in combination. For example, as a group of milk-clotting enzymes, rennin and mucorrennet can be appropriately mixed to form an aqueous solution, and an adsorbent can be brought into contact with this to obtain an adsorbent adsorbing rennet and mucorrennet, that is, a composite immobilized enzyme. .
Furthermore, if you want to curdle milk more quickly, it is also possible to add acidic protease to these and adsorb the three enzymes at the same time. To adsorb the protease, simply contact the adsorbent with the protease-containing aqueous solvent.
This method of adsorption is thought to be mainly based on physical adsorption power, and is the mildest immobilization method, and requires an extremely simple operation, i.e., simply combining an enzyme solution and a synthetic adsorbent. All you have to do is make contact with it. Specifically, the protease solution is passed through a column packed with adsorbent,
Immobilized protease can be obtained by adding an adsorbent to a container containing a protease solution and stirring gently. Adsorption of protease onto the adsorbent is carried out at a temperature that does not cause deactivation of each enzyme, for example, 45°C or lower,
And it is carried out in a wide PH range, for example PH4-10,
Moreover, it can be carried out regardless of ionic strength. The immobilized protease obtained is extremely stable and does not easily detach even after use. In the present invention, an agglutinated curd can be obtained very easily and in extremely high quality by contacting the immobilized protease obtained here with animal milk, skim animal milk, or an aggregating proteinaceous substance. The recovery rate of the curd can be equal to or higher than that of the conventional method using rennin, and the quality of the protein in the curd can be almost the same as that using rennin. can. The material to be flocculated is animal milk such as cow's milk, goat's milk,
Proteinaceous substances that aggregate, such as sheep milk, various skim milks skimmed from these, various caseins separated from these, regenerated milk regenerated from these, regenerated skim milk, and emulsions containing vegetable proteins such as soy milk. Any of them can be used. During the aggregation treatment, these animal milks, etc., are brought into contact with the immobilized protease either as they are or after being diluted. Contact with a container containing animal milk, etc.
It is also possible to use a batch method in which a wire mesh basket containing immobilized protease is immersed for a short period of time, or animal milk, etc. is injected into a container containing immobilized protease for a short period of time and then taken out. A continuous system may be used in which animal milk or the like is continuously passed through the tank. The contact conditions may be room temperature, heating, or cooling, and the contact time will vary depending on the amount of enzyme, so determine the amount of enzyme in advance depending on the quality of the curd you are looking for, and adjust the contact time accordingly. It is preferable to decide. After the contact, the animal milk or the like is allowed to stand or is heated to cause aggregation, and curds can be obtained in batches or continuously. As described above, the method of the present invention uses immobilized protease, and the milk curd reaction can be appropriately controlled by simply changing the flow rate of milk, so it is possible to prepare a desirable curd according to the purpose. Furthermore, high-quality and expensive rennin can be used for a long period of time, and homogeneous cards can be manufactured. Next, experimental examples and examples of the present invention will be shown, and the measurement methods used here are as follows. Method for measuring milk curd activity Skim milk 10% with 0.012% CaCl2
(Adjusted to PH5.8 with 0.05M acetate buffer) solution as a substrate, 10ml of enzyme solution was added to 10ml of substrate kept at 35℃.
was added, and the time (seconds) during which curd fragmentation occurred was measured. (The standard unit for flocculation activity is 200 mg of enzyme and 40 minutes (2400 seconds) of milk curdling time.) If this time is t, the milk curdling activity is expressed by the following formula. Milk curd activity = 2400/t x (200mg/added enzyme (mg)
) The activity of the immobilized enzyme was expressed as the amount of enzyme activity added to the adsorbent minus the amount of enzyme activity that flowed out without being adsorbed. Recovery rate of curd protein: The curd produced by the curd was filtered through a filter paper, thoroughly washed with water, and the T-N was determined by the Kjeldahl method.Additionally, 10 ml of the substrate skim milk solution was added with a TCA mixture (0.11M trichloroacetic acid, 0.22M sodium acetate,
The recovery rate of curd protein was determined by adding 10 ml of a solution containing 0.33M acetic acid and setting the TN (total nitrogen) of the resulting curd as 100%. SDS-electrophoresis of curd: After passing the curd produced by the curds through a filter paper and washing thoroughly with water, a small amount is placed in a test tube and subjected to SDS-electrophoresis.
B-Buffer (2%, SDS, 50% glycerol,
0.02M sodium phosphate buffer (PH7.2), 3%2
- 0.5 ml of mercaptoethanol-containing solution) was added and converted to SDS at 100°C for 5 minutes. The amount of sample was added so that the amount of protein was approximately 100 μg per electrophoresis column, and electrophoresis was carried out in a conventional manner. Measurement of aggregation activity of soymilk The prepared soymilk was centrifuged using a conventional method to remove Okara residue, and this was used as a substrate (T-N, 0.56%).
As in the case of milk curdling activity, the time until aggregation was measured by acting on immobilized protease. Experimental Example 1 Regarding the milk curdling properties of six types of proteases (Aspergillus alkaline protease, calf rennin, pepsin, trypsin pronase (manufactured by Kaken Chemical Co., Ltd., trade name), and protrichuase (manufactured by Ueda Chemical Co., Ltd., trade name)) investigated. Table 1 shows the recovery rate of curd protein obtained after adding an enzyme solution whose concentration was adjusted so that the curdling time was about 5 minutes to the substrate skim milk and leaving it for 20 hours. Furthermore, the SDS electrophoresis pattern of the obtained card is shown in FIG. In Figure 1, Aspergillus alkaline protease is calf rennin, pepsin is
is an SDS electrophoresis pattern of cards derived from trypsin protriciphasase.
【表】【table】
【表】
表−1から、ここで検討した6種の酵素には活
性に大小はあるもののいづれも凝乳活性が認めら
れた。また、カードタンパク質の回収率も酵素に
よつて異るが、いづれも30%以上の回収率が得ら
れることが判つた。
第1図において、図の右方が高分子タンパク
質、左方が低分子タンパク質であるからレンニン
から得られたタンパク質に比べ、溶液状態での
各プロテアーゼから得られたタンパク質は、より
低分子化されて(パターンが左寄り)おり、過分
解されていることが判る。
実験例 2
実験例1で用いた6種の酵素を各種の吸着剤に
吸着させ、固定化酵素を調整した。すなわち、多
孔性の吸着剤HP−20、30及び2MG(いずれも三
菱化成工業(株)製、商品名)を各々15mlづつカラム
(φ:10×200mm)に充填し、水に溶解した酵素約
200mgを室温で通過させ吸着剤に吸着させ、固定
化酵素カラムを得た。ここで得た固定化酵素に水
を通したところ、流出液は凝集活性を示さず、固
定化プロテアーゼが調製されたことが判つた。こ
の時、固定化された酵素活性は表−2に示した。[Table] From Table 1, the six enzymes examined here were all found to have milk curdling activity, although their activities varied in magnitude. Furthermore, although the recovery rate of curd protein differs depending on the enzyme, it was found that a recovery rate of 30% or more could be obtained in all cases. In Figure 1, the right side of the figure is a high-molecular protein and the left side is a low-molecular protein, so compared to the protein obtained from rennin, the protein obtained from each protease in a solution state has a lower molecular weight. (the pattern is shifted to the left), indicating that it is overresolved. Experimental Example 2 The six types of enzymes used in Experimental Example 1 were adsorbed onto various adsorbents to prepare immobilized enzymes. That is, a column (φ: 10 x 200 mm) was filled with 15 ml each of porous adsorbents HP-20, 30, and 2MG (all manufactured by Mitsubishi Chemical Industries, Ltd., trade names), and approximately 100 ml of the enzyme dissolved in water was packed.
200 mg was passed through at room temperature and adsorbed on an adsorbent to obtain an immobilized enzyme column. When water was passed through the immobilized enzyme obtained here, the effluent showed no flocculating activity, indicating that immobilized protease had been prepared. At this time, the immobilized enzyme activity is shown in Table 2.
【表】
ここに得られた固定化プロテアーゼに、基質ス
キムミルク溶液を室温で約10ml/分の速さで通過
させ、流出液を試験管に取り、直ちに35℃の恒温
槽に入れ凝乳時間を測定した。
また、凝乳後20時間放置し、カードタンパク質
の回収率をみた。これらの結果は次表−3に示さ
れる。[Table] Pass the substrate skim milk solution through the immobilized protease obtained here at a rate of about 10 ml/min at room temperature, take the effluent into a test tube, and immediately place it in a thermostat at 35°C to increase the curdling time. It was measured. In addition, the recovery rate of curd protein was checked after leaving the milk for 20 hours after curdling. These results are shown in Table 3 below.
【表】
さらに、カードの過分解の有無を確認するた
め、更に20時間放置しその時得られたカードのタ
ンパク質のSDS−電気泳動パターンを第2図及び
第3図に示した。
第2図で、はTCAカードタンパク質(トリ
クロル酢酸による沈殿カードタンパク質:対照)
′はHP−20吸着麹菌アルカリプロテアーゼ、
′はHP−20吸着レンニン、′はHP−20吸着
ペプシン、′はHP−20吸着トリプシン、′は
HP−20吸着プロナーゼ、′はHP−20吸着プロ
トリクイフアーゼによるカードタンパク質の
S′DS′電気泳動パターンを示す。また、第3図に
おいて″はHP−2MG吸着麹菌アルカリプロテ
アーゼ、″はHP−2MG吸着レンニン、″は
HP−2MG吸着ペプシン、″はHP−2MG吸着
トリプシン、″はHP−2MG吸着プロナーゼ、
″はHP−2MG吸着プロトリクイフアーゼによ
るカードタンパク質のパターンを示す。
実験例1、2から判るように本発明によつてプ
ロテアーゼを固定化することにより、カードタン
パク質の回収率を上げることができ、また、第2
図及び第3図から(HP−30に固定化した場合も
同様な結果で図は省略した)わかるように、固定
化することにより各プロテアーゼによつて凝乳さ
れたカードタンパク質がTCAカードタンパク質
あるいは固定化レンニンのものとほとんど変
わらず、カードタンパク質の過分解が防止される
という効果を奏することがわかる。
本発明に係る固定化プロテアーゼがカードの製
造に有効であるその理論的根拠の詳細は、今後の
研究にまたねばならないが一応のところ、疎水性
の結合力を有する多孔性の固定化担体にプロテア
ーゼを固定化することにより、α、β−カゼイン
の分解性に変化が生じた可能性が考えられるもの
の、推定の域を出ない。
実施例 1
合成吸着剤HP−2MG約5mlをカラム(φ10×
60mm)に充填しこれに黄麹菌フスマ麹から硫安分
画、セフアデツクスG−25、バイオ−ゲルP−
150のゲル過させて得たアルカリプロテアーゼ
画分(未精製)約0.25gの水溶液を室温で通過さ
せ、充分水洗して固定化プロテアーゼとしカラム
温度を30℃に保つた。
これに10%スキムミルク溶液を室温で10ml/分
の流速で通過させ、流出液を20mlづつ集めた。
これらの分画した流出液は直ちに35℃の恒温槽
に移し、凝乳時間及びその時得られたカードタン
パク質の回収率を表−4に示した。[Table] Furthermore, in order to confirm the presence or absence of excessive decomposition of the curd, the SDS-electrophoresis pattern of the protein of the curd obtained by allowing it to stand for an additional 20 hours is shown in FIGS. 2 and 3. In Figure 2, TCA curd protein (curd protein precipitated by trichloroacetic acid: control)
′ is HP-20 adsorbed Aspergillus alkaline protease,
′ is HP-20 adsorbed rennin, ′ is HP-20 adsorbed pepsin, ′ is HP-20 adsorbed trypsin, ′ is
HP-20 adsorbed pronase, ′ is the production of curd protein by HP-20 adsorbed protrichuase
The S′DS′ electrophoresis pattern is shown. In Figure 3, "" is HP-2MG adsorbed Aspergillus alkaline protease, "" is HP-2MG adsorbed rennin, and "" is HP-2MG adsorbed Aspergillus alkaline protease.
HP-2MG adsorbed pepsin, ``HP-2MG adsorbed trypsin,'' HP-2MG adsorbed pronase,
'' indicates the pattern of curd protein produced by HP-2MG adsorbed protriciphaase. As can be seen from Experimental Examples 1 and 2, the recovery rate of curd protein can be increased by immobilizing protease according to the present invention. , also the second
As can be seen from the figure and Figure 3 (the same result was obtained when immobilized on HP-30, and the figure is omitted), by immobilization, the curd protein curdled by each protease becomes TCA curd protein or It can be seen that the effect is almost the same as that of immobilized rennin and that over-decomposition of curd protein is prevented. The details of the rationale behind the effectiveness of the immobilized protease according to the present invention in the production of cards will have to be studied in the future, but for the time being, the protease can be immobilized on a porous immobilization carrier with hydrophobic binding strength. Although it is conceivable that the degradability of α,β-casein may have changed due to the immobilization of α, β-casein, this is still a speculation. Example 1 Approximately 5 ml of synthetic adsorbent HP-2MG was added to a column (φ10×
60 mm) and fill it with ammonium sulfate fraction from Aspergillus oryzae bran, Cephadex G-25, and Bio-Gel P-.
Approximately 0.25 g of an aqueous solution of the alkaline protease fraction (unpurified) obtained by gel filtration of No. 150 was passed through the column at room temperature, and thoroughly washed with water to form immobilized protease, and the column temperature was maintained at 30°C. A 10% skim milk solution was passed through this at a flow rate of 10 ml/min at room temperature, and the effluent was collected in 20 ml portions. These fractionated effluents were immediately transferred to a constant temperature bath at 35°C, and the curd time and recovery rate of the curd protein obtained at that time are shown in Table 4.
【表】
実施例 2
合成吸着剤HP−20約5mlをカラム(φ10×60
mm)に充填し、これに仔牛レンニン(デイフコ・
ラボラトリー社製、米国)約1.25gの水溶液を室
温で通過させ固定化レンニンとし、カラム温度を
30℃に保ち、10%スキムミルク溶液を10ml/分の
流速で通過させ流出液を20mlづつ集めた。
これらの分画した流出液を直ちに35℃の恒温槽
に移し、凝乳時間及びその時得られたカードタン
パク質の回収を表−5に示した。[Table] Example 2 Approximately 5 ml of synthetic adsorbent HP-20 was added to a column (φ10×60
mm) and add it to the calf rennin (Difco・mm).
About 1.25 g of aqueous solution (manufactured by Laboratories, USA) was passed through at room temperature to form immobilized rennin, and the column temperature was
The temperature was maintained at 30°C, and a 10% skim milk solution was passed through the tube at a flow rate of 10 ml/min, and the effluent was collected in 20 ml portions. These fractionated effluents were immediately transferred to a constant temperature bath at 35°C, and the curd time and recovery of the curd protein obtained at that time are shown in Table 5.
【表】
実施例 3
多孔性合成吸着剤HP−40約10mlをカラム
(φ10×120mm)に充填し、これに麹菌アルカリプ
ロテアーゼであるアマノ−P(天野製薬(株)社商品
名)約0.1グラムの水溶液を通過させ、固定化プ
ロテアーゼを得る。
次いで、常温で、豆乳を20ml/minの両速でカ
ラムを通過させ処理液を20mlづつ集め、ただちに
これを35℃恒温槽に移し、凝集までの時間を測定
した。結果は表−6に表した。[Table] Example 3 About 10 ml of porous synthetic adsorbent HP-40 was packed into a column (φ10 x 120 mm), and about 0.1 g of Amano-P (trade name of Amano Pharmaceutical Co., Ltd.), which is Aspergillus alkaline protease, was packed into a column (φ10 x 120 mm). to obtain the immobilized protease. Next, at room temperature, soymilk was passed through the column at both speeds of 20 ml/min to collect 20 ml of the treated solution, which was immediately transferred to a 35° C. constant temperature bath, and the time until aggregation was measured. The results are shown in Table-6.
【表】
また、その後同様に豆乳を通過させ処理液100
mlを得、これを50mlづつに分けて未加熱及び80℃
30分加熱したもののカードタンパク質量を求め、
酵素を固定化していないHP−40を通過させた
後、TCAで沈殿させたカードタンパク質を100%
として表−7に示した。[Table] After that, pass through the soy milk and add 100% of the treated solution.
ml, divide this into 50 ml portions and store unheated and at 80℃.
Calculate the amount of curd protein after heating for 30 minutes.
After passing through HP-40 without immobilized enzyme, 100% of the curd protein was precipitated with TCA.
It is shown in Table 7.
第1図は実験例1において、溶液プロテアーゼ
によつて得られた各カードのSDS−電気泳動パタ
ーンを示す図である。第2図は実験例2におい
て、HP−20吸着プロテアーゼによつて得られた
各カードのSDS−電気泳動パターンを示す図であ
る。第3図は実験例2において、HP−2MG吸着
プロテアーゼによつて得られた各カードのSDS−
電気泳動パターンを示す図である。
FIG. 1 is a diagram showing the SDS-electrophoresis pattern of each card obtained using solution protease in Experimental Example 1. FIG. 2 is a diagram showing the SDS-electrophoresis pattern of each card obtained by using HP-20 adsorbed protease in Experimental Example 2. Figure 3 shows the SDS of each card obtained by HP-2MG adsorbed protease in Experimental Example 2.
It is a figure showing an electrophoresis pattern.
Claims (1)
性溶媒中でプロテアーゼを接触させ、吸着させて
なる固定化プロテアーゼに獣乳、脱脂獣乳、もし
くは凝集性蛋白性物質を接触させることにより、
凝固させてカードを得ることを特徴とするカード
の調製法。 2 プロテアーゼが、レンニン、ペプシン、トリ
プシン、パパイン、麹菌アルカリプロテアーゼ、
放線菌プロテアーゼなどのプロテアーゼ系酵素か
らなる群から選択されてなる特許請求の範囲第1
項記載のカードの調製法。 3 疎水性の結合力を有する多孔性の吸着剤がス
チレン系合成吸着剤又はメタクリル酸エステル系
合成吸着剤又は多孔性ガラスビーズである特許請
求の範囲第1項記載のカードの調製法。 4 獣乳、脱脂獣乳が牛乳、脱脂牛乳である特許
請求の範囲第1項記載のカード調製法。 5 凝集性蛋白性物質が豆乳である特許請求の範
囲第1項記載のカード調製法。[Scope of Claims] 1 Immobilized protease obtained by contacting and adsorbing protease with a porous adsorbent having hydrophobic binding strength in an aqueous medium, and animal milk, skim animal milk, or an aggregating proteinaceous substance. By contacting
A method for preparing curd, characterized by obtaining curd by coagulation. 2 The protease is rennin, pepsin, trypsin, papain, Aspergillus alkaline protease,
Claim 1 selected from the group consisting of protease enzymes such as actinomycete protease.
Preparation of curd as described in section. 3. The method for preparing a card according to claim 1, wherein the porous adsorbent having hydrophobic bonding strength is a styrene-based synthetic adsorbent, a methacrylic acid ester-based synthetic adsorbent, or porous glass beads. 4. The curd preparation method according to claim 1, wherein the animal milk or skim milk is cow's milk or skim milk. 5. The curd preparation method according to claim 1, wherein the aggregating proteinaceous substance is soy milk.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20107982A JPS5991841A (en) | 1982-11-18 | 1982-11-18 | Preparation of curd by immobilized protease |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20107982A JPS5991841A (en) | 1982-11-18 | 1982-11-18 | Preparation of curd by immobilized protease |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5991841A JPS5991841A (en) | 1984-05-26 |
JPH0241313B2 true JPH0241313B2 (en) | 1990-09-17 |
Family
ID=16435039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20107982A Granted JPS5991841A (en) | 1982-11-18 | 1982-11-18 | Preparation of curd by immobilized protease |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5991841A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE76561T1 (en) * | 1985-01-09 | 1992-06-15 | Genencor Inc | TRANSFER OF EXOGENOUS SUBSTANCES IN CHEESE CURLS. |
WO2002074098A1 (en) * | 2001-03-21 | 2002-09-26 | Dsm Ip Assets B.V. | Cheese-making process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5046889A (en) * | 1972-11-15 | 1975-04-25 | ||
JPS56115727A (en) * | 1980-02-19 | 1981-09-11 | Kuraray Co Ltd | Carrier for immobilizing physiologically active substance |
-
1982
- 1982-11-18 JP JP20107982A patent/JPS5991841A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5046889A (en) * | 1972-11-15 | 1975-04-25 | ||
JPS56115727A (en) * | 1980-02-19 | 1981-09-11 | Kuraray Co Ltd | Carrier for immobilizing physiologically active substance |
Also Published As
Publication number | Publication date |
---|---|
JPS5991841A (en) | 1984-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3387267B2 (en) | Method for producing cheese using transglutaminase | |
Fox et al. | Casein | |
JP3230680B2 (en) | Milk-like product manufacturing method, milk-like product and use of milk-like product | |
JPH0613560B2 (en) | Method for producing high-purity beef lactoferrin | |
Corredig et al. | Enzymatic coagulation of milk | |
Andrén | Rennets and coagulants | |
JP2002199842A5 (en) | ||
EP0758380B1 (en) | A process for separating milk clotting enzymes | |
Broome et al. | Milk coagulants | |
ES2220347T3 (en) | PROCEDURE FOR INCORPORATION OF SERUM PROTEINS IN CHEESE USING TRANSGLUTAMINASE. | |
JPH0131865B2 (en) | ||
EP1442663B1 (en) | Process for producing cheese curd | |
EP0288554B1 (en) | Method for separating rennet components | |
JPH0241313B2 (en) | ||
Alirezaei et al. | Actinidin: a promising milk coagulating enzyme | |
JP4096284B2 (en) | How to improve cheese yield | |
EP1048219B1 (en) | Cheese containing whey protein digestion products | |
Moschopoulou et al. | Purification and characterization of chymosin and pepsin from kid | |
ZORRILLA et al. | Kinetics of casein degradation during ripening of Fynbo cheese salted with NaCl/KCl brine | |
WO2002074097A1 (en) | Cheese making process | |
Mistry | Chymosin in cheese making | |
Cheeseman | Rennet and cheesemaking | |
Lelièvre | Whey proteins in cheese—an overview | |
Ma et al. | Carboxyl-modified porcine pepsin: properties and reactions on milk and caseins | |
Visser | Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development in Gouda cheese |