JPH0241288A - Optical recording medium and optical recording method - Google Patents

Optical recording medium and optical recording method

Info

Publication number
JPH0241288A
JPH0241288A JP63192532A JP19253288A JPH0241288A JP H0241288 A JPH0241288 A JP H0241288A JP 63192532 A JP63192532 A JP 63192532A JP 19253288 A JP19253288 A JP 19253288A JP H0241288 A JPH0241288 A JP H0241288A
Authority
JP
Japan
Prior art keywords
recording
layer
wavelength
light
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63192532A
Other languages
Japanese (ja)
Other versions
JPH07114027B2 (en
Inventor
Hideaki Mochizuki
望月 秀晃
Akira Isomi
晃 磯見
Toshiya Takahashi
俊也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63192532A priority Critical patent/JPH07114027B2/en
Publication of JPH0241288A publication Critical patent/JPH0241288A/en
Publication of JPH07114027B2 publication Critical patent/JPH07114027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00455Recording involving reflectivity, absorption or colour changes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B2007/24618Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes two or more dyes in two or more different layers, e.g. one dye absorbing at 405 nm in layer one and a different dye absorbing at 650 nm in layer two

Abstract

PURPOSE:To recording a large capacity of information in high density, and to reproduce it by a single wavelength light source by employing an optical recording medium of multilayer structure which exhibits spectral absorption maximum value in different wavelengths in a recording layer, and detecting variation in the reflectivity of the recording layer by a reproduced light which exhibits intrinsic reflectivity. CONSTITUTION:Three recording layer A, B, C are formed on a base 4, and respectively have maximum absorptions. The layer A is varied only by a light having a wavelength lambda1. Similarly, only the layer B is varied by the light having lambda2, and only the layer C is varied by the light having lambda3. The reflectivities of the reproduced light in an unrecorded state of the layers A, B, C are respectively R1, R2, R3, and when the layer A is varied by recording by DELTAR1, the total reflectivity after recording becomes {(R1+R2+R3)-R1}. Similarly, the layers B, C are varied by DELTAR2, DELTAR3 after recording. The total reflectivity after recording is eight different values according to the recording states of the layers A, B, C, and the recording states of the layers can be detected by type of light.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光記録媒体及び光記録方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to an optical recording medium and an optical recording method.

従来の技術 光記録媒体は大容量でありビット当りのコストが安いと
いう特徴のゆえに、外部記憶媒体として発展が期待され
ている。しかしながら、今日実用化されている光記録媒
体はいずれも二次元記録であるため、記録密度は記録に
用いるレーザーの波長で限界があり、ld当り108ビ
ツトが上限とされている。この記録密度でも文書情報の
ファイリングのような用途には充分な記憶容量が得られ
るが、画像特に動画を記憶する場合には、決して充分な
記録密度とは言えず、このためさらに高密度の記録媒体
がこれらの目的のために必要とされいる。高密度化の一
つの方法は多層化であり、積層膜を用いた多層記録が提
案されている。(特開昭58−209594号公報)ま
た、フォトケミカルホールバーニングも提案されている
2. Description of the Related Art Optical recording media are expected to develop as external storage media because of their large capacity and low cost per bit. However, since all optical recording media put into practical use today are two-dimensional recording, the recording density is limited by the wavelength of the laser used for recording, and the upper limit is 108 bits per ld. Although this recording density provides sufficient storage capacity for applications such as filing document information, it is by no means sufficient for storing images, especially moving images, and for this reason even higher-density recording is required. A medium is required for these purposes. One method for increasing density is multilayering, and multilayer recording using laminated films has been proposed. (Japanese Unexamined Patent Publication No. 58-209594) Photochemical hole burning has also been proposed.

発明が解決しようとする課題 上記した多重記録の方法ではいずれも、再生時にも記録
に用いたと同じ波長の光が必要とされるため、再生の装
置でも複数の光源を用意しなけれはならい、複数の光源
を用いた再生装置は大変複雑な光学系が必要とされるた
め非常に高価な装置になってしまう0本発明は、民生用
に、安価な再生装置で再生できる高密度光ディスクを提
供しようとするものである。
Problems to be Solved by the Invention In all of the above-mentioned multiplex recording methods, light of the same wavelength as that used for recording is required during playback, so the playback device must also prepare multiple light sources. A playback device using such a light source requires a very complicated optical system, resulting in a very expensive device.The present invention provides a high-density optical disc for consumer use that can be played with an inexpensive playback device. That is.

課題を解決するための手段 本発明は、画像の記録のように大容量の情報を高密度記
録出来、しかも単一の波長の光源での再生を可能ならし
めるというものであり、そのために本発明の光記録方式
は、記録層の各層が互いに異なった波長で分光吸収極大
値を示し、各層が吸収極大を示す波長では他の記録層の
吸収率が充分に低い値となる多層構造の光記録媒体を用
いて、吸収極大を示す波長の近傍の特定波長の記録光で
一つの記録層の反射率のみを変化せしめ、前記記録層の
吸収極大を示す波長以外の波長をもち、かつその波長で
は各記録層が互いに異なった開存の反射率を示す光を再
生光として用い、各記録層毎の反射率変化を識別して検
出することを特徴とする。
Means for Solving the Problems The present invention is capable of recording a large amount of information at high density, such as recording an image, and also enables reproduction using a light source of a single wavelength. The optical recording method uses a multilayer structure in which each layer of the recording layer exhibits a maximum spectral absorption value at a different wavelength, and at the wavelength at which each layer exhibits maximum absorption, the absorption rate of other recording layers is sufficiently low. Using a medium, only the reflectance of one recording layer is changed by recording light of a specific wavelength near the wavelength showing the absorption maximum, and the reflectance of the recording layer has a wavelength other than the wavelength showing the absorption maximum, and at that wavelength. The present invention is characterized in that light in which each recording layer exhibits a different open reflectance is used as reproduction light, and changes in reflectance for each recording layer are identified and detected.

作用 このように本発明の光記録媒体を用いた光記録方式にお
いては、単位面積当りの記録密度が従来よりも著しく高
くできるため、大容量が必要とされる長時間の動画でも
比較的小面積に格納できる。
As described above, in the optical recording method using the optical recording medium of the present invention, the recording density per unit area can be significantly higher than conventional methods, so even long videos that require a large capacity can be recorded in a relatively small area. can be stored in

また、記録材料として300nmから900nmの間で
は単一の吸収極大波長を有する有機色素を選択して用い
ることができるため、製造コストの安い湿式塗布法が使
える。加えて、再生用には単一の光源を用いることがで
きるため、再生機の低価格化にも有利である。
Further, since an organic dye having a single absorption maximum wavelength between 300 nm and 900 nm can be selected and used as a recording material, a wet coating method with low manufacturing cost can be used. In addition, since a single light source can be used for reproduction, it is advantageous for reducing the cost of the reproduction machine.

実施例 以下に本発明の一実施例を図面を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第1図には一例として三層系光記録媒体の模式図を示し
た。すなわち、基体上に三層の記録層A、B、Cが形成
されており、各記録層は第2図に示すように各々λ1.
λ2.λ3に吸収極大値を持つ、第2図から明らかなよ
うに記録NAの吸収極大を示す波長λ、においては記録
層B、Cの吸収率は十分に小さな値であり波長λ1の光
では記録層Aのみが変化する。同様に、λ2の光では記
録層Bのみが変化し、λ8の光では記録1cのみが変化
する9次に再生方法について説明する。
FIG. 1 shows a schematic diagram of a three-layer optical recording medium as an example. That is, three recording layers A, B, and C are formed on the substrate, and each recording layer has a wavelength of λ1.
λ2. As is clear from FIG. 2, the absorption coefficients of the recording layers B and C are sufficiently small at the wavelength λ, which has an absorption maximum value at λ3, which indicates the absorption maximum value of the recording NA, and the absorption coefficients of the recording layers B and C are sufficiently small for light of the wavelength λ1. Only A changes. Similarly, a ninth-order reproduction method will be described in which only the recording layer B changes with the light of λ2, and only the recording layer 1c changes with the light of λ8.

第3図に示すように、積層化した状態での各記録層A、
B、Cの、未記録状態での再生光の波長での反射率が各
々R,,R2,R3であり、全反射率が(R1+R2+
R,)であるとする、記録層Aが記録によってΔR8変
化するとすれば記録後の全反射率は((R,+R2+R
,)−R,lとなる。同様に、記録層B、Cは各々記録
後にΔR2゜ΔR8変化するとして、ΔR8≠ΔR2≠
ΔR3とすれば記録後の全反射率は記録層A、 B、 
Cの記録状態によりへ種類の異なった値をとることにな
り、各記録層の記録状態を一種類の光で検出できること
になる。ここで本発明の光記録媒体の各構成要素毎に必
要な性質を述べる。記録層を形成する材料としては光を
吸収して一定量の反射率変化を生じる性質があればよく
、変化の形態としてはヒートモードでもフォントモード
でも構わない。
As shown in FIG. 3, each recording layer A in a laminated state,
The reflectances of B and C at the wavelength of the reproduction light in an unrecorded state are R, , R2, and R3, respectively, and the total reflectance is (R1+R2+
R,), and if the recording layer A changes by ΔR8 due to recording, the total reflectance after recording is ((R, +R2+R
, )-R,l. Similarly, assuming that recording layers B and C change by ΔR2°ΔR8 after recording, ΔR8≠ΔR2≠
If ΔR3 is assumed, the total reflectance after recording is recording layer A, B,
Since C takes different values depending on the recording state of C, the recording state of each recording layer can be detected with one type of light. Here, properties required for each component of the optical recording medium of the present invention will be described. The material forming the recording layer need only have the property of absorbing light and causing a certain amount of change in reflectance, and the form of change may be either heat mode or font mode.

但し、記録による変化で光の透過を妨げる様な材料は適
切でない、すなわち、光を吸収して酸化分解し脱色して
もよいし、光の吸収に伴う発熱により分解し気泡を形成
してもよいし、また熱により発色したり結晶相が変化す
るものでもよく、光異性化してもよい、多くの場合には
記録時に発熱を伴うため、第4図に示したように隣接す
る記録層11と12との間には透明な断熱層13を設け
ることが好ましい、また、記録1i14のうえから直接
、保護層15を形成してもよいし、よく知られているよ
うないわゆるエアーギャップ方式の保護形態としてもよ
い。光記録材料は、300nmから900nmの波長領
域において分光吸収曲線に単一の吸収極大値をもち、か
つその吸収極大波長で一定量の反射率を有するものであ
ればよい。好ましくは、吸収極大波長でのモル吸光係数
が1×104以上の色素が記録感度および反射率特性の
点から望ましい、記録層自体はこの様な色素単体からな
っていてもよいし透明材料との組成物の形態としても良
い、これらの観点から、具体的な色素としては、シアニ
ン色素、スクワリリウム色素。
However, materials that change due to recording and impede the transmission of light are not suitable; in other words, they may absorb light and oxidize and decompose and decolorize, or they may decompose and form bubbles due to the heat generated due to light absorption. It may also be one that develops color or changes its crystalline phase when heated, or may undergo photoisomerization.In many cases, heat is generated during recording, so as shown in FIG. 4, the adjacent recording layer 11 It is preferable to provide a transparent heat insulating layer 13 between the recording layer 1i14 and the recording layer 12. Also, the protective layer 15 may be formed directly on the recording layer 1i14, or a well-known so-called air gap method may be used. It may also be used as a form of protection. The optical recording material may be any material as long as it has a single absorption maximum value in its spectral absorption curve in the wavelength range from 300 nm to 900 nm, and has a certain amount of reflectance at the absorption maximum wavelength. Preferably, a dye having a molar extinction coefficient of 1 x 104 or more at the absorption maximum wavelength is desirable from the viewpoint of recording sensitivity and reflectance characteristics.The recording layer itself may be composed of such a dye alone or may be composed of a transparent material. From these viewpoints, specific dyes that may be used in the form of a composition include cyanine dyes and squalirium dyes.

メチン系色素、ナフトキノン系色素、キノンイミン系色
素、ジフェニルメタン系色素、トリフェニルメタン系色
素、フタロシアニン系色素、ナフタロシアニン系色素、
スピロピラン系化合物、フルギド系化合物、アゾ化合物
、コリン系色素などが使用できる。これらを分散する場
合には、透明材料としては、用いる色素との適合性と溶
解性とによって選択すればよい、また、各記録層間に断
熱層を設ける場合は、既に塗布されている記録層に悪影
響を与えない限り、有機材料であろうと無機系透明材料
であろうと基本的には構わないが、断熱層形成時の記録
材料への影響を考えると、透明な有機高分子材料が好ま
しい。その形成法としては回転塗布、浸漬塗布、ウェッ
ブコーティングなどに加えて、プラズマ重合膜も用いる
ことができる。記録層についても前記の湿式塗布性以外
に蒸着によっても形成できる。
Methine dyes, naphthoquinone dyes, quinoneimine dyes, diphenylmethane dyes, triphenylmethane dyes, phthalocyanine dyes, naphthalocyanine dyes,
Spiropyran compounds, fulgide compounds, azo compounds, choline dyes, etc. can be used. When dispersing these materials, the transparent material may be selected depending on its compatibility with the dye used and its solubility.Also, when providing a heat insulating layer between each recording layer, Basically, it does not matter whether it is an organic material or an inorganic transparent material as long as it does not have any adverse effects, but in consideration of the influence on the recording material when forming the heat insulating layer, a transparent organic polymer material is preferable. In addition to spin coating, dip coating, web coating, etc., a plasma polymerized film can also be used as a forming method. The recording layer can also be formed by vapor deposition in addition to the above-mentioned wet coating method.

以下、具体例によってさらに詳細な説明を行なう。A more detailed explanation will be given below using specific examples.

具体例 第4図に示すように、5C1lX5C11のガラス基板
ll上に化合物(1)のクロロホルム溶液を回転塗布に
より形成し、厚さ60nmの第1の記録層12を形成し
た。この上にポリビニルアルコールの水溶液を同じく回
転塗布して200nm厚の透明層13を形成した。さら
にその上から、ビクトリアブルーのアルコール溶液によ
り50nmの第2の記録層14を形成した。最後にもう
一度ポリビニルアルコールを300nm形成して保護層
15とした。各記録層毎の分光吸収曲線は第5図に示す
様に、一方の記録層の吸収極大波長では他方の吸収が非
常に小さい値を持つ、また、未記録状態での各層毎の分
光反射率は第6図に示すが、記録jW12.14の吸収
が少ない830nmでも充分な反射率を有している。第
4図のように完成した光記録媒体において再生光として
830nmのレーザー光を用いると、未記録状態では全
体の反射率は22%であった。出力30mWで波長78
0nmのレーザーを、ガラス基板11をとうして化合物
(1)からなる第1の記録層12上に直径3μmのスポ
ットに集光したところ反射率は10%となった。すなわ
ち、反射率の変化量は12%であった。つぎに、別の位
置に30mWで波長633nmのHe −N eレーザ
ーを同じようにガラス基板11を通してビクトリアブル
ーからなる第2の記録層14上に直径3μmのスポット
に集光したところ反射率は15%となった。すなわち、
反射率の変化量は7%となった0次に、あらかじめ63
3 nmで記録した同一の位置に780nmの光ぞ照射
したところ反射率は8%まで低下した。一方、予め、7
80nmで記録後に633nmで書き加えたところ反射
率はやはり8%となった0以上に示したように、二層の
記録膜をもつ本具体例に於ては、記録の状態によって反
射率は、三種類の異なった変化量を示すためどの層に記
録されているかを容易に識別して検出することが出来た
Specific Example As shown in FIG. 4, a chloroform solution of compound (1) was formed on a 5C11×5C11 glass substrate 11 by spin coating to form a first recording layer 12 with a thickness of 60 nm. A transparent layer 13 having a thickness of 200 nm was formed by spin coating an aqueous solution of polyvinyl alcohol thereon. Furthermore, a 50 nm second recording layer 14 was formed thereon using a Victoria Blue alcohol solution. Finally, polyvinyl alcohol was formed once again to a thickness of 300 nm to form a protective layer 15. As shown in Figure 5, the spectral absorption curve for each recording layer shows that at the absorption maximum wavelength of one recording layer, the absorption of the other layer is extremely small, and that the spectral reflectance of each layer in the unrecorded state is As shown in FIG. 6, recording jW12.14 has sufficient reflectance even at 830 nm, where absorption is low. When a laser beam of 830 nm was used as the reproduction light in the completed optical recording medium as shown in FIG. 4, the overall reflectance was 22% in the unrecorded state. Wavelength 78 with output 30mW
When a 0 nm laser was focused onto a spot with a diameter of 3 μm on the first recording layer 12 made of compound (1) through the glass substrate 11, the reflectance was 10%. That is, the amount of change in reflectance was 12%. Next, when a He-Ne laser with a wavelength of 633 nm and a power of 30 mW was focused on a spot with a diameter of 3 μm on the second recording layer 14 made of Victoria Blue through the glass substrate 11 at another position, the reflectance was 15. %. That is,
The amount of change in reflectance is 7% at the 0th order, and 63% in advance.
When the same position recorded at 3 nm was irradiated with 780 nm light, the reflectance decreased to 8%. On the other hand, in advance, 7
When additional writing was performed at 633 nm after recording at 80 nm, the reflectance was still 8%. As shown above, in this specific example with a two-layer recording film, the reflectance varies depending on the recording state. Because it showed three different amounts of change, it was possible to easily identify and detect which layer it was recorded in.

発明の効果 以上の実施例で説明したように、本発明の光記録媒体お
よび光記録方法は同一の位置に多重記録することができ
、しかも単一の再生光で検出できると言う優れた特徴を
持っている。
Effects of the Invention As explained in the above embodiments, the optical recording medium and optical recording method of the present invention have the excellent feature that multiple recording can be performed at the same position and detection can be performed with a single reproduction beam. have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光記録媒体の構造を模式的に説明する
断面図、第2図は本発明の光記録方式を説明するための
分光吸光度曲線を示すグラフ、第3図は本発明の光記録
方式を説明する分光反射率曲線を示すグラフ、第4図は
本発明の具体例となる二層多重光記録媒体の断面構造図
、第5図は具体例の分光吸光度曲線を示すグラフ、第6
図は具l・・・・・・記録層A、 2・・・・・・記録層B、 3・・・・・・記録 層C1 4・・・・・・基板。
FIG. 1 is a cross-sectional view schematically explaining the structure of the optical recording medium of the present invention, FIG. 2 is a graph showing a spectral absorbance curve for explaining the optical recording method of the present invention, and FIG. 3 is a graph showing the spectral absorbance curve of the present invention. A graph showing a spectral reflectance curve to explain the optical recording method, FIG. 4 is a cross-sectional structural diagram of a two-layer multilayer optical recording medium that is a specific example of the present invention, and FIG. 5 is a graph showing a spectral absorbance curve of a specific example. 6th
The figure shows the following: 1...Recording layer A, 2...Recording layer B, 3...Recording layer C1 4...Substrate.

Claims (3)

【特許請求の範囲】[Claims] (1)互いに異なった波長に分光吸収極大値をもつ記録
層が積層された多層構造の光記録媒体で、一つの記録層
の吸収極大を示す波長では他の層分光吸度が充分に低く
、かつ各記録層がいずれも充分低い吸収率を示す波長域
に属する特定の波長の光に対して、記録による変化後も
前記の光を透過する性質を保持し、かつ各記録層が記録
の前後で互いに異なった固有の反射率変化量を示すこと
を特徴とする光記録媒体。
(1) An optical recording medium with a multilayer structure in which recording layers having spectral absorption maximum values at different wavelengths are laminated, and at the wavelength where one recording layer shows the absorption maximum value, the spectral absorption of other layers is sufficiently low. In addition, each recording layer maintains the property of transmitting light of a specific wavelength belonging to a wavelength range showing a sufficiently low absorption rate even after changes due to recording, and An optical recording medium characterized in that it exhibits unique amounts of change in reflectance that are different from each other.
(2)各記録層が透明層によって隔離された構造の請求
項(1)記載の光記録媒体。
(2) The optical recording medium according to claim (1), wherein each recording layer is separated by a transparent layer.
(3)記録層の各層が互いに異なった波長に分光吸収極
大値を示し、各層が吸収極大値を示す波長では他の記録
層の吸光度が充分に低い値となる多層構造の光記録媒体
で、吸収極大値を示す波長の近傍の特定波長の記録光で
一つの記録層のみを変化せしめ、前記記録層の吸収極大
を示す波長以外の波長をもち、かつその波長では各記録
層の記録前後での反射率変化が互いに異なった固有の反
射率変化量を示す光を再生光として用い、各記録層毎の
反射率変化を識別して検出することを特徴とする光記録
方法。
(3) An optical recording medium with a multilayer structure in which each layer of the recording layer exhibits a spectral absorption maximum value at a different wavelength, and the absorbance of other recording layers is sufficiently low at the wavelength at which each layer exhibits the absorption maximum value, Only one recording layer is changed by recording light of a specific wavelength near the wavelength showing the maximum absorption value, and the recording layer has a wavelength other than the wavelength showing the maximum absorption value, and at that wavelength, each recording layer is changed before and after recording. 1. An optical recording method characterized in that the reflectance changes of each recording layer are identified and detected by using, as reproduction light, light that exhibits unique reflectance change amounts that are different from each other.
JP63192532A 1988-08-01 1988-08-01 Optical recording medium and optical recording method Expired - Lifetime JPH07114027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63192532A JPH07114027B2 (en) 1988-08-01 1988-08-01 Optical recording medium and optical recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63192532A JPH07114027B2 (en) 1988-08-01 1988-08-01 Optical recording medium and optical recording method

Publications (2)

Publication Number Publication Date
JPH0241288A true JPH0241288A (en) 1990-02-09
JPH07114027B2 JPH07114027B2 (en) 1995-12-06

Family

ID=16292846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63192532A Expired - Lifetime JPH07114027B2 (en) 1988-08-01 1988-08-01 Optical recording medium and optical recording method

Country Status (1)

Country Link
JP (1) JPH07114027B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085515A1 (en) * 2005-02-09 2006-08-17 Kyoto University Reflectance control optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085515A1 (en) * 2005-02-09 2006-08-17 Kyoto University Reflectance control optical device
JPWO2006085515A1 (en) * 2005-02-09 2008-08-07 国立大学法人京都大学 Reflectance control optical element and ultrathin film light absorption enhancing element
JP4565197B2 (en) * 2005-02-09 2010-10-20 国立大学法人京都大学 Reflectance control optical element and ultrathin film light absorption enhancing element

Also Published As

Publication number Publication date
JPH07114027B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
KR100691197B1 (en) Optical recording medium
JPH0613238B2 (en) Optical information recording medium
US8576681B2 (en) Optical information recording medium, optical information recording apparatus and optical information recording method
JPH0241288A (en) Optical recording medium and optical recording method
KR100937269B1 (en) Optical recording medium initialization method
KR20060032992A (en) Multi stack optical data storage medium and use of such medium
JPS58105442A (en) Optical memory medium
JP2796288B2 (en) Recording medium, its optical reproducing method and optical reproducing apparatus
JP2007095211A (en) Optical information recording medium, and optical information recording medium reproducing device
JPH0246442A (en) Organic medium functioning as optical disc
JP2003331465A (en) Worm type recording optical medium and recording and reproducing method for the same
JPH0391128A (en) Optical recording member
KR100943103B1 (en) Optical recording/reproducing method and optical recording medium
WO2002102598A1 (en) Optical recording medium
JP2006302478A (en) Optical disk
JP4223196B2 (en) Optical recording medium, recording / reproducing method thereof, and optical recording apparatus
JPH08203122A (en) Optical recording medium and reproducing method therefor
JPH02206588A (en) Optical recording medium
JPH0218725A (en) Wavelength multiplex optical recording medium
KR20090032170A (en) Recordable information recording medium
JPH0514632B2 (en)
JPH09106034A (en) Optical recording medium, optical record regenerating device and optical record regenerating method
JPH05298744A (en) Optical recording medium and wavelength division multiplexing recording, reproducing and erasing method
JPH0470380A (en) Optical recording medium
JPS62167087A (en) Optical multiple recording method