JPH024104A - Ultrasonic fuel ejection nozzle - Google Patents

Ultrasonic fuel ejection nozzle

Info

Publication number
JPH024104A
JPH024104A JP15595288A JP15595288A JPH024104A JP H024104 A JPH024104 A JP H024104A JP 15595288 A JP15595288 A JP 15595288A JP 15595288 A JP15595288 A JP 15595288A JP H024104 A JPH024104 A JP H024104A
Authority
JP
Japan
Prior art keywords
fuel
vibrator
valve
needle
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15595288A
Other languages
Japanese (ja)
Inventor
Hiromi Nakamura
中村 博美
Kakuro Kokubo
小久保 確郎
Daijiro Hosogai
細貝 大次郎
Yutaka Ogawa
小川 胖
Masuhiro Wada
和田 益宏
Fumio Yokota
横田 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Oval Engineering Co Ltd
Original Assignee
Tonen Corp
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp, Oval Engineering Co Ltd filed Critical Tonen Corp
Priority to JP15595288A priority Critical patent/JPH024104A/en
Priority to US07/367,840 priority patent/US4974780A/en
Priority to CA000603474A priority patent/CA1333866C/en
Priority to DE68924202T priority patent/DE68924202T2/en
Priority to EP89111324A priority patent/EP0347891B1/en
Publication of JPH024104A publication Critical patent/JPH024104A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size and weight of a movable part and hence improve its response characteristics by turning into fine particles the fuel discharged by way of a valve means arranged to discharge the quantity of fuel in proportion to a passage opening time based on ultrasonic vibration in a place where the fuel is atomized. CONSTITUTION:An electromagnetic means 30 is adapted to attract a needle by a gap g by an electromagnetic suction force acting on a yoke 22b against a pushing force of a spring means 24 and hence opens a passage of a valve port between a valve seat and the needle 22. The fuel in proportion to this valve opening time is adapted to flow between a fuel supply port 5, passages 2a, 2b, 2c, 25b, and a nozzle main body 21 and the needle 22 and is discharged from a discharge port 9. By driving a ultrasonic vibration generation element 14 by way of a terminal 12c of a connector 12b installed to the end of a protection cylinder 12a, a vibrator 20 vibrates an edge section 10 based on ultrasonic vibration, using an outer periphery section 27a which is a member to fix a horn 27 to a housing 12 as a vibration node or its equivalent section so that the fuel which flows from the discharge port 9 to the edge section is turned into fine particles and is discharged in a diffused manner.

Description

【発明の詳細な説明】 肢豆立夏 本考案は自動車用エンジン等の内燃機関における燃料噴
射装置、より詳細には、内燃機関において噴射された液
体燃料と超音波により微粒化する機能を具備する超音波
燃料噴射ノズルの構造に関する。
[Detailed Description of the Invention] Ritsuka Shizuzu This invention is a fuel injection device for an internal combustion engine such as an automobile engine, and more specifically, a fuel injection device for an internal combustion engine, which has the function of atomizing liquid fuel injected into an internal combustion engine using ultrasonic waves. Regarding the structure of a sonic fuel injection nozzle.

従」1え暫− 内燃機関の開発は排ガス規制対策と共に燃料経料微粒化
した燃料噴射ノズルも提案されている。
In the development of internal combustion engines, fuel injection nozzles with atomized fuel particles have been proposed as well as exhaust gas control measures.

その例として特開昭62−70656号公報がある。第
2図は、上記特開昭62−70656号公報に開示され
た燃料噴射ノズルの一例を示すもので、基本的には、固
設されたニードル1−と、該ニードル1と協働し、弁機
能をもち、ニードル1内を流通する燃料を遮断および噴
出し、噴出した燃料を超音波により微粒化する振動子7
とから構成される。前記ニードル1は、頂部に1図示し
ない燃料供給手段と接続し燃料の供給を受ける燃料供給
口5を配設した鍔部4と燃料の除塵をするフィルタ6を
嵌挿し内部に燃料の流通路2および該流通路2の先端部
から外部を貫通する旋回孔3を穿設し、先端に弁体11
を一体形成した柱状体である。振動子7はニードル1を
好適には20μm程度の隙をもって緩挿される。上部に
は鍔部7aが配設され、該鍔部7aの上部面に超音波振
動を発生する環状の圧電素子からなる超音波振動発生手
段14がナツトllaにより固設され、下部には中央で
開口する噴出口9と、該噴出口9がら拡大開口する複数
段のエツジ部10および前記弁体11と当接する弁座8
が配設されている。またニードル1の鍔部4にはねじ4
aにおいて、ニードル1とニードル1を緩挿した振動子
7とを内抱するハウジング12が螺合されており、該ハ
ウジング12の噴出口9近傍の肩部12aと振動子7の
鍔部7aの下面との間には、ばね手段13が張設されて
おり、振動子7をニードル1に常時押圧し閉弁している
。振動子7のナツトllaの上面と前記鍔部4下面との
間にニードル1と絶縁材15aで絶縁された環状積層圧
電素子からなる吸引力発生手段15が嵌装されており、
該吸引力発生手段15に電圧パルスを印加することによ
り振動子7は、ばね手段13の押圧力に抗して下方に移
動し開弁する。開弁により流通路2がら旋回孔3を経て
渦巻室17に菩納されている燃料が噴出口9から噴出さ
れエツジ部16で段階状に開口するエツジにより層状に
流出するが、これに超音波振動発生手段14に超音波信
号を印加することによって振動子7が超音波振動し、燃
料を微粒化するものである。以上に述べた従来例は、以
下に述べる問題点をもっている。第1に、吸引力発生手
段15は積層圧電素子を使用しており1通常使用されて
いるコイル等の電磁手段による吸引方法と比較し応答性
が優れていることをあげているが、振動子7の質量と、
ばね手段の弾性力との振動系である以上、応答性を高め
る基本条件は振動子7の質量を小さくすることであるが
、振動子7はニードル1を緩挿する筒状体で、且つエツ
ジ部10を配設している形状の大きい環状であり、応答
性をあげる目的と反する結果を生む。第2に、上述の第
1の問題点と同様に応答性を改善する為にばね手段13
の押圧力を最適な値に調節する必要があるが、従来例に
おいては調節する手段はねじ48部であり、正確な調節
ができない。第3に、吸引力発生手段15による振動子
7の吸引変位は、圧電素子への印加電圧により規定して
いるが、圧電定数は温度依存性があり弁の正確な開口面
積は得られず、従って正しくパルス幅に比例した流量特
性は得られない、という問題点がある。
An example of this is Japanese Patent Laid-Open No. 62-70656. FIG. 2 shows an example of the fuel injection nozzle disclosed in the above-mentioned Japanese Unexamined Patent Publication No. 62-70656, which basically consists of a fixed needle 1-, which cooperates with the needle 1, A vibrator 7 that has a valve function, cuts off and jets out the fuel flowing through the needle 1, and atomizes the spouted fuel using ultrasonic waves.
It consists of The needle 1 has a flange 4 having a fuel supply port 5 connected to a fuel supply means (not shown) and supplied with fuel at the top thereof, and a fuel flow passage 2 inside which is fitted with a filter 6 for removing dust from the fuel. A turning hole 3 is bored through the outside from the tip of the flow path 2, and a valve body 11 is formed at the tip.
It is a columnar body that is integrally formed with. The vibrator 7 is loosely inserted into the needle 1, preferably with a gap of about 20 μm. A flange 7a is disposed on the upper part, and an ultrasonic vibration generating means 14 made of an annular piezoelectric element that generates ultrasonic vibration is fixed on the upper surface of the flange 7a with a nut lla. A spout 9 that opens, a plurality of edge portions 10 that expand and open from the spout 9, and a valve seat 8 that abuts the valve body 11.
is installed. Also, a screw 4 is attached to the flange 4 of the needle 1.
In a, a housing 12 containing the needle 1 and the vibrator 7 into which the needle 1 is loosely inserted is screwed together, and the shoulder 12a of the housing 12 near the spout 9 and the flange 7a of the vibrator 7 are screwed together. A spring means 13 is stretched between the lower surface and the vibrator 7, which constantly presses the vibrator 7 against the needle 1 to close the valve. Between the upper surface of the nut lla of the vibrator 7 and the lower surface of the flange 4, an attractive force generating means 15 consisting of a ring-shaped laminated piezoelectric element insulated with the needle 1 and an insulating material 15a is fitted,
By applying a voltage pulse to the attraction force generating means 15, the vibrator 7 moves downward against the pressing force of the spring means 13 and opens the valve. When the valve is opened, the fuel stored in the swirl chamber 17 from the flow passage 2 passes through the swirl hole 3 and is ejected from the ejection port 9 and flows out in layers through the edge portion 16 that opens stepwise. By applying an ultrasonic signal to the vibration generating means 14, the vibrator 7 is ultrasonically vibrated to atomize the fuel. The conventional example described above has the following problems. First, the attraction force generating means 15 uses a laminated piezoelectric element, which has superior responsiveness compared to normally used attraction methods using electromagnetic means such as coils. 7 mass and
Since it is a vibration system with the elastic force of a spring means, the basic condition for improving responsiveness is to reduce the mass of the vibrator 7. However, the vibrator 7 is a cylindrical body into which the needle 1 is loosely inserted, and The shape in which the portion 10 is disposed is a large annular shape, which produces a result that is contrary to the purpose of improving responsiveness. Secondly, similar to the first problem mentioned above, in order to improve responsiveness, the spring means 13
It is necessary to adjust the pressing force to an optimum value, but in the conventional example, the means for adjusting is the screw 48, and accurate adjustment cannot be performed. Thirdly, the suction displacement of the vibrator 7 by the suction force generating means 15 is regulated by the voltage applied to the piezoelectric element, but the piezoelectric constant is temperature dependent and an accurate opening area of the valve cannot be obtained. Therefore, there is a problem in that a flow rate characteristic that is correctly proportional to the pulse width cannot be obtained.

μ   占  ゛ の 本発明は、上に述べた従来例の問題点を解決するために
なされたもので、第1に可動部を小形軽量にして応答性
を高め、更に第2には、ばね手段を最適なばね力に調節
し易い構造にすることを目的とするものである。即ち、
超音波振動発生素子と、一端を該超音波振動発生素子に
固着し他端を凹部とし、該凹部内周面を霧化部とした振
動子とからなり、該振動子内に前記凹部に開口し、一定
圧力の液体燃料を流通する流通路を穿孔し、該流通路内
に、通常は流通路を閉路し、開路においては開路時間に
応じた量の燃料を排出する弁手段を配設し、排出した燃
料を前記霧化部において超音波振動により微粒化したこ
とを特徴とする。
The present invention has been made in order to solve the problems of the conventional example described above. Firstly, the movable part is made smaller and lighter to improve responsiveness, and secondly, the spring means The purpose of this is to create a structure that allows easy adjustment of the spring force to the optimum spring force. That is,
It consists of an ultrasonic vibration generating element, a vibrator having one end fixed to the ultrasonic vibration generating element, the other end being a recess, and the inner peripheral surface of the recess being an atomizing part, and an opening in the recess is provided in the vibrator. A flow passage through which liquid fuel at a constant pressure flows is perforated, and a valve means is provided in the flow passage for normally closing the flow passage and discharging fuel in an amount corresponding to the opening time when the flow passage is opened. , characterized in that the discharged fuel is atomized by ultrasonic vibration in the atomization section.

実施例 第1図は、本発明の詳細な説明するための構成図で、(
A)図は側断面図、(B)図は(A)図のX−X矢視断
面図をしめす。図において、第2図に示した従来技術と
同一の機能を有する構成要素において1本発明と直接関
係のない部位には同一符号′を付し、その説明は省略す
る。
Embodiment FIG. 1 is a block diagram for explaining the present invention in detail.
Figure A) is a side sectional view, and Figure (B) is a sectional view taken along the line X-X in Figure (A). In the figure, one component having the same function as the prior art shown in FIG. 2 and not directly related to the present invention is designated by the same reference numeral '', and its explanation will be omitted.

第1図において、14は圧電素子からなる円柱状の超音
波振動発振素子で、底面14aで振動子20と固着して
いる。該振動子20は、超音波振動のホーンの一部であ
るホーン部27と、該ホーン部27にねじ26aで螺合
により固着される振動子外筒26内に配設され、端部に
、本実施例の場合には、エツジ部10をもつ後述する弁
手段とからなる柱状体である。ホーン部27は、上面は
円形で超音波振動発振素子14と接合し、半径方向と中
心軸上に、燃料の流通路2bおよび2cが穿設されてお
り、ハウジング12とは外周縁27aでかしめ(図示せ
ず)等で固着される。振動子外筒26は下方内壁部に円
形肩部26bをもつ大口径透孔が穿設され、該大口径透
孔内には円形肩部26bにおいて当接する円環状のスト
ッパ23と、該ストッパ23に凹部中央で噴出口9を開
口して弁座をなし、本実施例の場合には、内周面を多段
エツジのエツジ部10をもつノズル本体21とが当接し
て嵌挿され、振動子外筒26の端部26cにおいてかし
められて固着される。ノズル本体21の軸心にはニード
ル22が緩挿され、ノズル本体21の弁座8と当接する
弁体をなす。該ニドル22は上部に環状凸部22aが設
けられ、該環状凸部22aとストッパ23との間に規定
された値の隙gは、ストッパ23の厚さを選ぶことによ
り正しく規定値に調節される。また、上部には、円筒状
の継鉄22bが一体に固着されており、該継鉄22bの
上面には、ばね手段24が当接している。該ばね手段2
4の他端には、ばね手段24を嵌挿する凹部25cと、
軸上に燃料の流通路25bと、前記振動子外筒2b内面
に螺刻されたねじ26aと螺合するねじを外周に刻み、
ドライバ等で回動するドライバ溝25aとが穿設された
調節手段25が配設され、ニードル22は調節手段25
により一端を固定されたばね手段24のばね力によりノ
ズル本体21の弁座に押圧され閉弁されている。尚、調
節手段25を回動することによりばね手段24の押圧を
調節することができる。
In FIG. 1, 14 is a cylindrical ultrasonic vibration oscillation element made of a piezoelectric element, and is fixed to the vibrator 20 at the bottom surface 14a. The vibrator 20 is disposed within a horn part 27 that is a part of an ultrasonic vibration horn, and a vibrator outer cylinder 26 that is fixed to the horn part 27 by screwing with a screw 26a, and has a horn part 27 at the end thereof. In the case of this embodiment, it is a columnar body comprising an edge portion 10 and a valve means to be described later. The horn part 27 has a circular upper surface and is joined to the ultrasonic vibration oscillation element 14, has fuel flow passages 2b and 2c bored in the radial direction and on the central axis, and is separated from the housing 12 by caulking at the outer peripheral edge 27a. (not shown) or the like. The vibrator outer cylinder 26 has a large-diameter through-hole with a circular shoulder 26b formed in the lower inner wall thereof, and inside the large-diameter through-hole is an annular stopper 23 that abuts at the circular shoulder 26b. The spout 9 is opened at the center of the recess to form a valve seat, and in the case of this embodiment, the nozzle main body 21 having an edge portion 10 with a multi-stage edge is fitted and fitted in contact with the inner peripheral surface, and the vibrator is inserted. The end portion 26c of the outer cylinder 26 is caulked and fixed. A needle 22 is loosely inserted into the axis of the nozzle body 21 and forms a valve body that comes into contact with the valve seat 8 of the nozzle body 21 . The needle 22 is provided with an annular protrusion 22a at the upper part, and the gap g between the annular protrusion 22a and the stopper 23 can be adjusted to a specified value by selecting the thickness of the stopper 23. Ru. Further, a cylindrical yoke 22b is integrally fixed to the upper part, and a spring means 24 is in contact with the upper surface of the yoke 22b. The spring means 2
4 has a recess 25c into which the spring means 24 is inserted;
A fuel flow passage 25b is provided on the shaft, and a screw is cut on the outer periphery to engage with a screw 26a threaded on the inner surface of the vibrator outer cylinder 2b.
Adjustment means 25 is provided with a driver groove 25a that is rotated by a screwdriver or the like, and the needle 22 is connected to the adjustment means 25.
The valve is closed by being pressed against the valve seat of the nozzle body 21 by the spring force of the spring means 24 whose one end is fixed. Incidentally, by rotating the adjusting means 25, the pressing force of the spring means 24 can be adjusted.

弁手段は上に述べたノズル本体21と、ニードル22と
、ストッパ23と、ばね手段24と、調節手段25とか
らなり振動子外筒26内にホーン部27と着脱自在に収
納されている。一方、振動子外筒26の中央近傍に、該
振動子外筒26を微かな隙をもたせて挿通するように電
磁手段3oが配設されている。該電磁手段30は、ニー
ドル22をばね手段24の押圧力に抗して継鉄22bに
作用する電磁吸引力により隙gだけ吸引し、弁座8とニ
ードル22との間に弁口を開路するもので、ボビン31
に捲回されたコイルからなり、ハウジング12内に収納
され、絶縁材33により絶縁されたリード線32からコ
ネクタ34を介して、図示しない駆動手段より印加され
るパルス信号によりパルス幅に比例した時間ニードル2
2が吸引されて開弁され、この量弁時間に比例した燃料
が燃料供給口5、流通路2a、2b、2c、25bおよ
びノズル本体21とニードル22間を流通し噴出口9か
ら噴出される。一端をハウジング12に固設した超音波
振動発生素子14を収納し保護する保護@ 12 aの
端部に設けられたコネクタ12bの端子12cを介して
図示しない超音波電源により超音波振動発生素子14を
駆動することにより振動子20はホーン27のハウジン
グ12への固着部である外周部27aを振動節としてエ
ツジ部1oを振動腹若しくはその近傍とした超音波振動
により噴出口9からエツジ部10を流れる燃料は微粒化
されて拡散噴出される。本実施例では、ニードル22の
霧化部側先端部の形状は円錐状を成しているが、このよ
うな先端部の形状は円錐状に限定されるものではなく1
本発明の目的の範囲内で自由に設計変更し得るものであ
る。更に、本出願人の一人が特開昭60−222552
号公報において開示したように、液体にスワールを与え
て霧化部に導くように先端部近傍に傾斜した溝部を刻設
してもよい。
The valve means is comprised of the above-mentioned nozzle body 21, needle 22, stopper 23, spring means 24, and adjustment means 25, and is housed in the vibrator outer cylinder 26 and detachably from the horn portion 27. On the other hand, an electromagnetic means 3o is arranged near the center of the vibrator outer cylinder 26 so as to be inserted through the vibrator outer cylinder 26 with a slight gap. The electromagnetic means 30 attracts the needle 22 by the gap g by the electromagnetic attraction force acting on the yoke 22b against the pressing force of the spring means 24, and opens the valve opening between the valve seat 8 and the needle 22. It's bobbin 31
A pulse signal is applied from a drive means (not shown) to a lead wire 32, which is housed in a housing 12 and insulated by an insulating material 33, through a connector 34, for a time proportional to the pulse width. needle 2
2 is sucked in and the valve is opened, and this amount of fuel proportional to the valve time flows through the fuel supply port 5, the flow passages 2a, 2b, 2c, 25b, and between the nozzle body 21 and the needle 22, and is ejected from the jet port 9. . The ultrasonic vibration generating element 14, whose one end is fixed to the housing 12, is housed and protected by an ultrasonic power source (not shown) via the terminal 12c of the connector 12b provided at the end of the protection @ 12a. By driving the vibrator 20, the edge portion 10 is moved from the spout 9 by ultrasonic vibration with the outer peripheral portion 27a, which is the portion of the horn 27 fixed to the housing 12, as a vibration node and the edge portion 1o as the vibration antinode or its vicinity. The flowing fuel is atomized and diffused and ejected. In this embodiment, the shape of the tip of the needle 22 on the side of the atomizing section is conical, but the shape of the tip is not limited to the conical shape.
The design can be freely changed within the scope of the purpose of the present invention. Furthermore, one of the applicants has published Japanese Patent Application Laid-Open No. 60-222552.
As disclosed in the above publication, an inclined groove may be carved in the vicinity of the tip so as to swirl the liquid and guide it to the atomizing section.

第3図は、上記特開昭62−222552号公報に開示
されたスワール発生手段の一例を示す図で、図示のよう
に、中空針弁40の小径部に傾斜した溝41を複数個、
例えば直径方向に対向して2本形成することによって燃
料供給通路内にタービュレンスを発生させ、噴射される
燃料にスワールを与えそれにより噴射の片寄りをなくす
ことができる。又、斯る構造によって噴霧のきれ及び微
粒化をも向上せしめることができる。尚、エツジ部1o
のエツジの段数を増して弁座8から下方への長さを選ぶ
ことにより、弁座8部に振動節部をもたせることができ
、この場合は超音波振動を連続して振動子20に印加す
ることが可能となり超音波駆動の負荷も軽減され、効率
のよい運転ができる。尚、弁手段において、ニードル2
2とばね手段24とは、従来技術で述べたと同様に振動
系をなすものであるが、ばね手段24は、振動子外1?
?i 26を回動してホーン部27から弁手段を取外し
I調節手段25をドライバ等で回動して、ばね力を調節
し、調節完了後、該調節手段25を固定し、再びホーン
部27に振動子外筒26を螺合して固着後、ハウジング
12を穿孔した貫通孔(図示せず)からかしめ等により
固着することができる。
FIG. 3 is a diagram showing an example of the swirl generating means disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 62-222552. As shown in the figure, a plurality of inclined grooves 41 are formed in the small diameter portion of the hollow needle valve 40.
For example, by forming two pipes diametrically opposed to each other, it is possible to generate turbulence within the fuel supply passage, give swirl to the injected fuel, and thereby eliminate uneven injection. In addition, such a structure can improve spray clarity and atomization. In addition, edge part 1o
By increasing the number of steps of the edges and selecting the length downward from the valve seat 8, the valve seat 8 can have a vibration node, and in this case, ultrasonic vibration is continuously applied to the vibrator 20. This makes it possible to reduce the load on ultrasonic drive and enable efficient operation. In addition, in the valve means, the needle 2
2 and the spring means 24 constitute a vibration system as described in the prior art, but the spring means 24 is located outside the vibrator 1?
? The valve means is removed from the horn part 27 by rotating the I adjustment means 26, and the spring force is adjusted by rotating the I adjustment means 25 with a screwdriver. After the adjustment is completed, the adjustment means 25 is fixed and the horn part 27 is removed again. After screwing and fixing the vibrator outer cylinder 26 to the housing 12, the housing 12 can be fixed by caulking or the like through a through hole (not shown) formed in the housing 12.

尚、本実施例では、先に本出願人の一人が特開昭61−
259780号公報において開示したような、内面にエ
ツジ部を有する超音波振動霧化部に限定されるものでは
なく、他の形状の霧化部にも適用し得るものである。
In addition, in this example, one of the present applicants previously applied
The present invention is not limited to the ultrasonic vibration atomizer having an edge portion on the inner surface as disclosed in Japanese Patent No. 259780, but can also be applied to atomizers having other shapes.

効   果 上述のように、本発明の超音波燃料噴射ノズルによると
、燃料噴射の要部弁は、振動子の中に収納するように配
設され、これにより弁手段を小形とすることができ、ま
た、可動部としてニードルを使用するようにしたので、
これに伴って更に小形とすることができ、応答性の優れ
た燃料噴射を可能とする6同様の目的で振動系の一要素
であるばね手段のばね力も振動子の着脱自在に螺合され
る振動子外筒を外すことにより調節可能となり、更に超
音波振動する振動子の振動節を弁座部に設定することに
より効率のよい超音波駆動することができ、これにより
燃料を応答性よく且つ効率的に微粒化することを可能と
する超音波燃料噴射ノズルを!I!l’JI工数の少な
く安価に提供することができる。
Effects As described above, according to the ultrasonic fuel injection nozzle of the present invention, the main valve for fuel injection is arranged so as to be housed in the vibrator, and thereby the valve means can be made compact. , Also, since a needle is used as a moving part,
Along with this, it can be made even smaller and enables fuel injection with excellent responsiveness. 6 For the same purpose, the spring force of the spring means, which is an element of the vibration system, is also screwed to the vibrator in a detachable manner. Adjustment is possible by removing the vibrator outer cylinder, and by setting the vibration node of the ultrasonic vibrating vibrator in the valve seat, efficient ultrasonic drive can be achieved. Ultrasonic fuel injection nozzle that enables efficient atomization! I! 1'JI can be provided at low cost with less man-hours.

第1図は、本発明の超音波燃料噴射ノズルの概要をしめ
すもので、(A)は側断面図、(B)は(A)のX−X
矢視断面図、第2図は、従来技術の一例を示す図、第3
図は、ニードル弁の一例を示す図である。
FIG. 1 shows an outline of the ultrasonic fuel injection nozzle of the present invention, in which (A) is a side sectional view, and (B) is a cross-sectional view taken along line X-X in (A).
A sectional view taken in the direction of arrows, FIG. 2 is a diagram showing an example of the prior art, and FIG.
The figure is a diagram showing an example of a needle valve.

14・・超音波振動発生素子、20・・・振動子、21
・・・ノズル本体、22 ・ニードル、23・・ス1−
ツバ24・・ばね手段、25・・・調節手段、3o・・
・電磁手段。
14... Ultrasonic vibration generating element, 20... Vibrator, 21
... Nozzle body, 22 ・Needle, 23 ... S1-
Collar 24... Spring means, 25... Adjustment means, 3o...
- Electromagnetic means.

【図面の簡単な説明】[Brief explanation of the drawing]

第 図 第 図 No. figure No. figure

Claims (1)

【特許請求の範囲】 1、超音波振動発生素子と、一端を該超音波振動発生素
子に固着し他端を凹部とし、該凹部内周面を霧化部とし
た振動子とからなり、該振動子内に前記凹部に開口し、
液体燃料を流通する流通路を穿孔し、該流通路内に、通
常は流通路を閉路し、開路においては開路時間に応じた
量の燃料を排出する弁手段を配設し、排出した燃料を前
記霧化部において超音波振動により微粒化するようにし
たことを特徴とする超音波燃料噴射ノズル。 2、振動子内に配設された弁手段を、凹部中央で開口し
て弁座をなしたノズル本体と、該ノズル本体内に緩挿し
、前記弁座と協働するニードルと、該ニードルの移動量
を規定するストッパと、ニードルを弁座に押圧するばね
手段と、該ばね手段の押圧力を調節する調節手段とし、
ニードルをばね手段に抗して前記規定移動量を吸引する
吸引力発済性を基本として高性能、高効率化に向けて進
められており、例えば、自動車用エンジンにおいては、
空燃比を最適にするため、燃料の気化はキャブレータ方
式から燃料噴射装置に移行する傾向にあり、これに伴っ
て、空気流量の計測の高精度化が進められて電子制御気
化器を構成し、更に点火時期、ノック制御、EGR制御
等を含めてこれらをコンピュータによる集中制御を行な
い、これにより、エンジンにおける各々の動的機能の僅
かな改善を計りつつ、総合的に性能向上を具現している
。 燃料噴射ノズルは、計測された吸入空気量に応じた液体
の燃料を噴射するもので、噴射量は弁開度時間に比例し
ている。即ち、燃料は一定圧力に保たれており、弁開指
令により弁開度を一定としたON−OFF制御され流出
されることによる。 更に、噴射された燃料を効率よく燃焼させるため、噴射
された燃料を微粒化する方法として噴射口又はニードル
の形状を改良して燃料に剪断力を与えることが試みられ
ているが、最近超音波による燃生手段を電磁手段とし振
動子を軸として外周に別体配設したことを特徴とする請
求項第1項記載の超音波燃料噴射ノズル。 3、電磁手段を振動子の外周に配設し、振動子に収納し
た弁手段を着脱自在としばね手段を調節可能としたこと
を特徴とする請求項第1項又は第2項記載の超音波燃料
噴射ノズル。 4、超音波振動する振動子の振動節部を超音波振動発生
素子の固着部及びノズル本体弁座に定めたことを特徴と
する請求項第1項又は第2項又は第3項記載の超音波燃
料噴射ノズル。
[Scope of Claims] 1. A vibrator consisting of an ultrasonic vibration generating element, one end fixed to the ultrasonic vibration generating element, the other end a recess, and the inner peripheral surface of the recess an atomizing part; opening in the recess in the vibrator;
A flow path through which liquid fuel flows is bored, and a valve means is disposed in the flow path, which normally closes the flow path and discharges an amount of fuel according to the opening time when the flow path is opened, and discharges the discharged fuel. An ultrasonic fuel injection nozzle, characterized in that the atomization is atomized by ultrasonic vibration in the atomization section. 2. A nozzle body in which a valve means disposed in a vibrator is opened at the center of a recess to form a valve seat; a needle that is loosely inserted into the nozzle body and cooperates with the valve seat; a stopper that defines the amount of movement; a spring means that presses the needle against the valve seat; and an adjustment means that adjusts the pressing force of the spring means;
Efforts are being made to improve performance and efficiency based on the ability to generate suction force by suctioning the specified amount of movement of the needle against a spring means. For example, in automobile engines,
In order to optimize the air-fuel ratio, there is a trend for fuel vaporization to shift from a carburetor system to a fuel injection system, and along with this, the precision of air flow measurement has been improved, and electronically controlled carburetors have been constructed. Furthermore, ignition timing, knock control, EGR control, etc. are all centrally controlled by a computer, thereby achieving overall performance improvements while making slight improvements to each dynamic function of the engine. . The fuel injection nozzle injects liquid fuel according to the measured intake air amount, and the injection amount is proportional to the valve opening time. That is, the fuel is maintained at a constant pressure, and the fuel is flown out under ON-OFF control with a constant valve opening based on a valve opening command. Furthermore, in order to efficiently burn the injected fuel, attempts have been made to atomize the injected fuel by improving the shape of the injection port or needle to apply shearing force to the fuel. 2. The ultrasonic fuel injection nozzle according to claim 1, wherein the combustion means is an electromagnetic means and is separately arranged on the outer periphery with the vibrator as an axis. 3. The ultrasonic wave according to claim 1 or 2, characterized in that the electromagnetic means is disposed on the outer periphery of the vibrator, the valve means housed in the vibrator is detachable, and the spring means is adjustable. fuel injection nozzle. 4. The ultrasonic device according to claim 1, 2, or 3, characterized in that the vibration nodes of the ultrasonic vibrating element are defined at the fixed portion of the ultrasonic vibration generating element and the valve seat of the nozzle body. Sonic fuel injection nozzle.
JP15595288A 1988-06-22 1988-06-22 Ultrasonic fuel ejection nozzle Pending JPH024104A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15595288A JPH024104A (en) 1988-06-22 1988-06-22 Ultrasonic fuel ejection nozzle
US07/367,840 US4974780A (en) 1988-06-22 1989-06-19 Ultrasonic fuel injection nozzle
CA000603474A CA1333866C (en) 1988-06-22 1989-06-21 Ultrasonic fuel injection nozzle
DE68924202T DE68924202T2 (en) 1988-06-22 1989-06-21 Supersonic fuel injector.
EP89111324A EP0347891B1 (en) 1988-06-22 1989-06-21 An ultrasonic fuel injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15595288A JPH024104A (en) 1988-06-22 1988-06-22 Ultrasonic fuel ejection nozzle

Publications (1)

Publication Number Publication Date
JPH024104A true JPH024104A (en) 1990-01-09

Family

ID=15617119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15595288A Pending JPH024104A (en) 1988-06-22 1988-06-22 Ultrasonic fuel ejection nozzle

Country Status (1)

Country Link
JP (1) JPH024104A (en)

Similar Documents

Publication Publication Date Title
US4974780A (en) Ultrasonic fuel injection nozzle
US3949938A (en) Fuel atomizers
US4067496A (en) Fuel injection system
JPS6212386B2 (en)
JPS58501046A (en) Fuel supply device for internal combustion engine
US4034025A (en) Ultrasonic gas stream liquid entrainment apparatus
US4401089A (en) Ultrasonic transducer
US4000852A (en) Fuel atomizers
JP2008520946A (en) Method and apparatus for generating finely dispersed atomized fuel
US4106459A (en) Ultrasonic wave carburetor
US4344402A (en) Fuel supply system
JPH024104A (en) Ultrasonic fuel ejection nozzle
JPH07269866A (en) Fine particle fuel injection nozzle
JPH09505766A (en) Liquid atomizing valve device including impact member and solenoid
EP0189186B1 (en) Fuel supply apparatus wth fuel atomizer
JPH0772521B2 (en) Piezoelectric fuel injection valve
JPH049109B2 (en)
JPH02259264A (en) Fuel supply device with ultrasonic atomizer for gasoline engine
KR820000430B1 (en) Fuel injection system
JPH0423591B2 (en)
JP3183027B2 (en) Electronically controlled air-assisted injection valve
JPH0423592B2 (en)
JP2603292B2 (en) Fuel injection valve
JPH0329984B2 (en)
JPH0551789B2 (en)