JPH0240743B2 - - Google Patents

Info

Publication number
JPH0240743B2
JPH0240743B2 JP61258323A JP25832386A JPH0240743B2 JP H0240743 B2 JPH0240743 B2 JP H0240743B2 JP 61258323 A JP61258323 A JP 61258323A JP 25832386 A JP25832386 A JP 25832386A JP H0240743 B2 JPH0240743 B2 JP H0240743B2
Authority
JP
Japan
Prior art keywords
ceric
solution
ions
anolyte
electrolytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61258323A
Other languages
Japanese (ja)
Other versions
JPS63114988A (en
Inventor
Noboru Sugishima
Noriaki Ikeda
Yasushi Fujii
Shinji Ikuta
Akira Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP61258323A priority Critical patent/JPS63114988A/en
Publication of JPS63114988A publication Critical patent/JPS63114988A/en
Publication of JPH0240743B2 publication Critical patent/JPH0240743B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、有効な酸化剤であるところの、第2
セリウムイオンを含む溶液の製造法に関するもの
である。該溶液は、酸化剤として、芳香族化合物
から対応するキノン類の製造(例えばナフタリン
からの1,4−ナフトキノン製造)、芳香族側鎖
の酸化(例えばトルエンからのベンズアルデヒド
製造)、2級水酸基の酸化、シクロアルカノンの
開環、オキシムのカルボニル化など、有機合成の
分野等で広く用いられる。(例えば、大嶌幸一郎、
有機合成化学協会誌、第40巻、12号、1171頁
(1982))また、最近では半導体部品製造プロセス
のエツチング剤としての用途も知られている。 [従来の技術] 前記第2セリウムイオンを含む溶液の原料とし
てよく用いられる第2セリウム塩としては、硫酸
第2セリウムCe(SO42、硝酸第2セリウムアン
モニウム(NH42[Ce(NO36]、過塩素酸第2セ
リウムH2Ce(ClO46などが知られている。 工業的には、第2セリウム塩を用いて有機化合
物を酸化すると第2セリウムは第1セリウムに還
元されるので、これを回収・酸化し第2セリウム
に戻して再利用する必要があり、このため有機化
合物の酸化反応工程と回収した第1セリウムを電
気化学的に第2セリウムに酸化・再生する工程と
を組み合わせて行なう間接電解法がよく行なわれ
る。 [発明が解決しようとする問題点] しかしながら、前記の第2セリウム塩による間
接電解法では以下に記すようにそれぞれ難点があ
つた。 硫酸第1セリウム溶液の電解酸化によつて得ら
れた硫酸第2セリウム溶液を用いて酸化反応を行
なわせる場合、硫酸第1セリウムの溶解度が比較
的小さいので電解前の硫酸第1セリウム濃度が低
く、その結果、電解後の電解液中の硫酸第2セリ
ウム濃度も低く設定せざるを得ない。従つて、そ
の様な低濃度の硫酸第2セリウム溶液を用いた酸
化反応の反応速度は遅くなり、反応時間が長くな
る。また、セリウム濃度が低いと酸化反応によつ
て生成する第1セリウムイオンを電解酸化して第
2セリウムイオンに再生する場合に、陽極におけ
る過電圧が上昇し、その結果電解電圧の上昇およ
び水の分解による酸素発生電極反応がより活発に
起こり、第2セリウムイオン生成の電流効率の低
下を招く。さらに、低濃度第2セリウムイオン溶
液を用いた反応は、溶液単位体積当りの有効第2
セリウムイオン量が少ないために反応容器や付帯
設備が大きくなるといつた難点をも有し、これら
の欠点が硫酸第2セリウムを用いた酸化反応プロ
セスの工業化を困難なものとしている。 また、硫酸第2セリウムアンモニウムの硝酸溶
液を用いて酸化反応を行なわせる場合、硝酸溶液
に対する溶解度は大きく、第2セリウムイオン濃
度による前記の難点は克服される。しかしなが
ら、セリウム源がアンモニウムと硝酸セリウムの
複塩であり、有機化合物の酸化反応工程と電解に
よる第2セリウムの再生工程を組み合わせるプロ
セスにおいては、電解酸化によつて硝酸イオンや
アンモニウムイオンが複雑に挙動し、工業下には
様々な不都合を与えている。即ち、電解によつて
陰極で硝酸イオンが亜硝酸イオンやアンモニウム
イオンに還元されることにより、、アンモニウム
イオンなどの濃度の増加や硝酸イオンや水素イオ
ンなどの濃度減少が起こり、極端な場合加水分解
が起こつてしまう。こうした複雑な挙動に伴なつ
て、第2セリウム塩溶液の酸化剤としての能力も
変化するため、反応条件等の設定も変動させねば
ならず、実際の運転には定期的な液組成の分析お
よび調整、場合によつては液の入れ替えの必要が
生じてくる。また、第1セリウムイオンの酸化以
外のアンモニウムイオンの関与した陽極反応は目
的とする第2セリウムイオン生成の電流効率の低
下をもたらし、電極の劣化もより複雑に、かつ深
刻に起こる。 また、アンモニウムイオンの混入した硝酸溶液
を使用することにより、装置材料の腐触も大きな
問題となる。更に、硝酸イオンが多量に存在した
条件下では酸化反応の際にニトロ化も同時に進行
することが多く、目的とする酸化反応の選択率低
下をもたらしてしまう。 その他のセリウム源として知られる過塩素酸第
2セリウム塩を用いた場合は高価な上に危険物で
あり、腐食の面からも取り扱い上問題があり工業
化には不適当である。 この様に第2セリウムを含む塩およびその溶液
は有機合成等の分野で特徴のある優れた酸化剤で
あるにもかかわらず従来の方法では上記の様な欠
点を有するがゆえにその工業的規模での実施は非
常に困難なものになつている。 [問題を解決するための手段] 本発明者等は、前記の従来の第2セリウムを含
む塩およびその溶液を用いた酸化反応の欠点は主
としてセリウム塩の低溶解性や配位子の種類、溶
液中の酸の種類とその濃度、および複塩に起因す
ると考え、その様な欠点を有しないセリウム塩溶
液について検討した。その結果、硝酸第1セリウ
ムが純水のみならず硫酸溶液に対しても高い溶解
性を有することを見出し、更にその様な硝酸セリ
ウムを溶解した硫酸溶液の電解酸化によつて得ら
れる第2セリウムイオンを含む溶液が前記欠点を
克服すること、しかも単に硝酸第1セリウムを溶
解した硫酸溶液を電解するだけでは陰極において
硝酸イオンの還元によりアンモニウムイオンが生
成し、かつ陽極において生成した第2セリウムイ
オンが拡散し、陰極で再び第1セリウムイオンに
還元されてしまい、電流効率の低下をもたらすな
どの不都合が生じることがわかり、更に鋭意検討
を加えた結果、本発明を完成したものである。 即ち本発明は、陽極液として硝酸第1セリウム
を溶解した硫酸溶液を、陰極液として電解質液
を、隔膜としてイオン交換膜を用いて電解酸化す
ることを特徴とする第2セリウム溶液の製造法で
ある。 本発明において用いられる陽極液中のセリウム
の濃度としては、電解酸化温度における第1セリ
ウムイオンあるいは第2セリウムイオンまたは両
者共存時の溶解度以下の濃度であればよいが、あ
まり高濃度になると液の粘度が上昇し、電解酸化
およびそれに続く反応等の諸操作に支障をきたす
場合もあり、また電解時の抵抗も大きくなる。更
に、あまり低濃度であると硝酸セリウムの優位
性、すなわち高溶解性が生かされないので、0.1
〜10モル/(より好ましくは0.2〜5モル/)
の範囲内であることが好ましい。 硝酸セリウムを溶解する硫酸溶液としては、純
粋な硫酸溶液でもよいし、その溶液中に他のイオ
ンが共存していてもよい。特に予め硫酸セリウム
を溶解した硫酸液を用いるとより高いセリウム濃
度が得られると同時に溶液中のセリウムに対する
硝酸イオンの比も下げることができ、硝酸イオン
が影響を与える反応等には特に好ましい。 本発明において用いられる陽極液中の硫酸濃度
は電解時のみならず反応時の酸化力にも影響を与
えるが、これが低すぎると電解酸化によつて生成
した第2セリウムイオンが不安定で加水分解を起
こし、高すぎると硝酸第1セリウムの溶解度が低
くなり、また高温において酸自身の分解や材料腐
食が促進される。陽極液中の硫酸濃度は0.2〜5
モル/(より好ましくは0.3〜3モル/)の
範囲内にあることが望ましい。なお、ここでいう
硫酸濃度は酸としての濃度であつて、例えば硫酸
セリウムを溶解した場合には硫酸セリウムからく
る硫酸イオンの濃度は含まない。 本発明において用いられるイオン交換膜として
は通常のカチオンまたはアニオン交換膜またはそ
れらを組み合わせたものでよいが膜の耐久性を考
慮するとフツ素系イオン交換膜であることがより
好ましい。イオン交換膜を隔膜として用いない場
合には、陰極において硝酸イオンの還元が起こつ
てアンモニウムイオンが生成し、第2セリウムの
溶液に混入するばかりか陽極において生成した第
2セリウムイオンが拡散し陰極で再び第1セリウ
ムイオンに還元されてしまい電流効率の低下をも
たらす。 また陰極液としては、前記のイオン交換膜によ
り陽極液から独立しているため電解質液であれば
特に限定されず、例えば硝酸、硫酸等の水溶液を
用いることができ、場合によつては陰極反応を積
極的に利用するため特定の還元反応を行なわせる
両極反応も可能である。 電解において用いられる電極には、陽極として
は二酸化鉛被覆チタン、イリジウム酸化物被覆チ
タン、白金−イリジウム酸化物被覆チタンなどの
酸化物被覆電極や白金メツキチタンおよび鉛、グ
ラフアイト、グラツシイーカーボン等が用いら
れ、陰極としては前記の電極の他にステンレス鋼
(例えばSUS−316L)等の電極が使用される。 電解酸化温度は本発明で用いる硝酸セリウムの
硫酸溶液への溶解度や酸自身の分解、材料の腐食
および電解酸化後の酸化反応の反応温度等を考慮
して決定されるが、本発明においては電解液中の
硝酸第1セリウムの濃度が比較的低温においても
高く設定できるため、従来のセリウム塩を含む酸
溶液の電解酸化、例えば硫酸第1セリウム硫酸水
溶液の電解酸化に比べても比較的低温で良好な電
解特性が得られる。 [実施例] 以下、実施例および比較例により本発明を詳細
に説明するが、本発明は、これらの実施例に限定
されるものではない。 実施例 1 硝酸第1セリウム(Ce(NO33・6H2O)1300
gを1.5モル/硫酸溶液に溶解し、1とした
溶液を陽極液として陽極液タンクに仕込み、1.5
モル/硫酸水溶液を陰極液として陰極液タンク
に仕込み、それぞれの液を図1に示される様なイ
オン交換膜で隔てられた2室型電解セルに循環さ
せながら温度40℃において以下の条件で2時間電
解酸化を行ない、陽極液として第2セリウムの溶
液を得た。 陽極:PtメツキTi電極 陰極:SUS316L 隔膜:フツ素系カチオン交換膜 (デユポン社製、ナフイオン423) 電流密度:15A/dm2 電解酸化終了後陽極液中の第2セリウムイオン
濃度を測定したところ、1.080モルーCe4+/で
あり、この時の電流効率は96.5%であつた。また
電解酸化後の陽極液中にアンモニウムイオンは検
出されなかつた。得られた第2セリウムの溶液は
1ケ月間放置しても安定でセリウム塩の析出など
は見られなかつた。 実施例 2 0.2モル/の硫酸第1セリウムを含む1.5モ
ル/硫酸水溶液に硝酸第1セリウムを溶解し、
1とした溶液を陽極液とした以外は実施例1と
同じ条件で電解酸化を実施し、陽極液として
1.092モル−Ce4+/の第2セリウムイオンを含
む溶液を得た。この時の電流効率は97.6%で電解
酸化後の陽極液中にアンモニウムイオンは検出さ
れなかつた。 実施例 3 電解酸化温度が20℃である以外は実施例1と同
じ条件で電解酸化を実施し、陽極液として、
1.041モル−Ce4+/の第2セリウムイオンを含
む溶液を得た。この時の電流効率は、低い電解酸
化温度にもかかわらず93.0%であつた。電解酸化
後の陽極液中にアンモニウムイオンは検出されな
かつた。 実施例 4 隔膜がアニオン交換膜である以外は実施例1と
同じ条件で電解酸化を実施したところ、陽極液と
して、1.087モル−Ce4+/の第2セリウムイオ
ンを含む溶液を得た。電流効率は97.1%であり、
電解酸化後の陽極液中のアンモニウムイオンは検
出されなかつた。 実施例 5 隔膜がアニオン交換膜である以外は実施例2と
同じ条件で電解酸化を実施したところ陽極液とし
て1.099モル−Ce4+/の第2セリウムイオンを
含む溶液を得た。この時の電流効率は98.2%であ
つた。また電解酸化後の陽極液中にアンモニウム
イオンは検出されなかつた。 実施例 6 2.5モル/の硫酸水溶液に硝酸第1セリウム
500gを加えて1とした溶液を陽極液として用
いた以外は実施例1と同じ条件で電解酸化を実施
したところ、陽極液として1.052モル−Ce4+
の第2セリウムイオンを含む溶液を得た。この時
の電流効率は94.0%であり、電解酸化後の陽液中
にアンモニウムイオンは検出されなかつた。 比較例 1 イオン交換膜を取り除いたセルを用い、1.5モ
ル/硫酸水溶液に硝酸第1セリウム1300gを溶
解し1とした溶液を唯一の電解液とした以外は
実施例1と同じ条件で電解酸化を行なつたとこ
ろ、電解酸化後の電解液中には0.527モル−
Ce4+/の第2セリウムイオンの存在が認めら
れたが、この時の電流効率は47.1%に過ぎなかつ
た。また陽極液中にはアンモニウムイオンが検出
された。 比較例 2 イオン交換膜の代りに素焼きの隔膜板を用いた
以外は実施例1と同じ条件で電解酸化を実施した
ところ、電解電圧は約10%上昇し、電流効率71.8
%で0.804モル−Ce4+/の第2セリウムイオン
を含む陽極液を得た。また電解酸化後の陽極液中
にはアンモニウムイオンが検出され、陰極液中に
は陽極液のリークによるセリウムイオンの存在が
認められた。 比較例 3 1.5モル/硫酸水溶液に約1000gの硫酸第1
セリウム(Ce2(SO43・8H2O)を入れ、撹拌し
ながら1昼夜放置し、溶解を試みたが、ほとんど
溶解せずに残つた。そこで未溶解部分を濾過除去
し、その濾液1を陽極液として実施例1と同じ
条件で電解酸化を行なつたところ、陽極液として
0.23モル−Ce4+/の第2セリウムイオンを含む
硫酸第2セリウムの硫酸水溶液を得た。この時の
電流効率は20.6%に過ぎなかつた。 比較例 4 1675gの硝酸第1セリウムアンモニウム
((NH42Ce(NO35・4H2O)を1.5モル/硫酸
溶液に加えて1とした溶液を陽極液とした以外
は実施例1と同じ条件で電解酸化を行なつたとこ
ろ、0.995モル−Ce4+/の第2セリウムイオン
を含む陽極液を得た。しかしながら電解酸化前と
比べて、陽極液中のアンモニウムイオン濃度は減
少しており、電流効率は実施例1より低く、89%
であつた。 比較例 5 イオン交換膜を取り除いたセルを用い、1.5モ
ル/硫酸溶液に1675gの硝酸第1セリウムアン
モニウムを加えて1とした溶液を電解液とした
以外は実施例1と同じ条件で電解酸化を行なつた
ところ、0.512モル−Ce4+/の第2セリウムイ
オンを含む液が電流効率45.8%で得られた。また
電解酸化前と比べて電解液中のアンモニウムイオ
ン濃度は増加した。 比較例 6 1300gの硝酸第1セリウムを純水に溶解して1
とした溶液を陽極液として用いた以外は実施例
1と同じ条件で電解酸化を行なつたところ、陽極
において第2セリウムイオンの加水分解による淡
黄白色の沈殿が大量に生成し、目的とした電解酸
化は実施できなかつた。 比較例 7 実施例1で得られた1.080モル−Ce4+/の第
2セリウムイオンを含む溶液(A)および1.5モル/
硝酸溶液に硝酸第2セリウムアンモニウムを溶
解して得られた1.080モル−Ce4+/の第2セリ
ウムイオンを含む溶液(B)についてそれぞれ40℃に
おいて材料の浸漬試験を行い、腐蝕の状態を比較
した。浸漬期間は1カ月間で浸漬後の重量変化か
ら浸蝕度を求め、(A)の溶液中での浸蝕度に対する
(B)の溶液中で浸蝕度の比を比浸蝕度として求めた
結果を次に示す。 材 料 比浸蝕度 SUS−316 5 ハステロイB 6 ハステロイC 3 インコロイ825 3 鉛 10以上 比較例 8 陽極液として硝酸第1セリウム1300gを1.5モ
ル/硝酸水溶液に溶解して1とした溶液を用
い、陰極液として1.5モル/硝酸水溶液を用い
た以外は実施例1と同じ条件で電解酸化を行つた
ところ、電解酸化後の電解液(第2セリウムイオ
ンを含む硝酸溶液)中には1.07モル−Ce4+/の
第2セリウムイオンの存在が認められた。電流効
率は95.6%であつた。 得られた第2セリウムイオンを含む硝酸溶液(C)
を用いて、比較例7と同様にして各種材料の浸漬
試験を行い、次の結果を得た。但し、この比侵食
度は実施例1で得られた第2セリウムイオンを含
む硫酸溶液(A)中での侵食度に対する硫酸溶液(C)中
での侵食度の比である。 材 料 比侵食度 SUS−316 5 ハステロイB 5 ハステロイC 3 インコロイ825 3 鉛 10以上 さらに、上記電解酸化によつて得られた第2セ
リウムの硝酸水溶液と実施例1で得られた第2セ
リウムの硫酸水溶液をそれぞれ用いて、以下の条
件でナフタレンの酸化による1,4−ナフトキノ
ンの合成を実施した。結果を次に示す。
[Industrial Application Field] The present invention is directed to a secondary oxidizing agent, which is an effective oxidizing agent.
This invention relates to a method for producing a solution containing cerium ions. The solution is used as an oxidizing agent for the production of corresponding quinones from aromatic compounds (for example, production of 1,4-naphthoquinone from naphthalene), oxidation of aromatic side chains (for example, production of benzaldehyde from toluene), and oxidation of secondary hydroxyl groups. It is widely used in the field of organic synthesis, including oxidation, ring opening of cycloalkanones, and carbonylation of oximes. (For example, Koichiro Oshima,
Journal of the Society of Organic Synthetic Chemistry, Vol. 40, No. 12, p. 1171 (1982)) Recently, it has also been known to be used as an etching agent in the manufacturing process of semiconductor parts. [Prior Art] Ceric salts often used as raw materials for solutions containing ceric ions include ceric sulfate Ce(SO 4 ) 2 , ceric ammonium nitrate (NH 4 ) 2 [Ce( NO 3 ) 6 ], ceric perchlorate H 2 Ce(ClO 4 ) 6 and the like are known. Industrially, when an organic compound is oxidized using a ceric salt, ceric is reduced to ceric, so it is necessary to recover and oxidize it back to ceric and reuse it. Therefore, an indirect electrolysis method is often carried out in which a step of oxidizing an organic compound is combined with a step of electrochemically oxidizing and regenerating recovered cerium to ceric. [Problems to be Solved by the Invention] However, the above-mentioned indirect electrolysis methods using ceric salts have their own drawbacks as described below. When performing an oxidation reaction using a ceric sulfate solution obtained by electrolytic oxidation of a ceric sulfate solution, the solubility of ceric sulfate is relatively low, so the concentration of ceric sulfate before electrolysis is low. As a result, the concentration of ceric sulfate in the electrolytic solution after electrolysis must also be set low. Therefore, the reaction rate of the oxidation reaction using such a low concentration ceric sulfate solution becomes slow and the reaction time becomes long. In addition, if the cerium concentration is low, when the ceric ions produced by the oxidation reaction are electrolytically oxidized and regenerated into ceric ions, the overvoltage at the anode increases, resulting in an increase in the electrolytic voltage and the decomposition of water. The oxygen-generating electrode reaction occurs more actively, leading to a decrease in the current efficiency of ceric ion generation. Furthermore, the reaction using a low concentration ceric ion solution has an effective ceric ion concentration per unit volume of the solution.
Since the amount of cerium ions is small, it also has the disadvantage that the reaction vessel and ancillary equipment become large, and these disadvantages make it difficult to industrialize the oxidation reaction process using ceric sulfate. Further, when the oxidation reaction is carried out using a nitric acid solution of ceric ammonium sulfate, the solubility in the nitric acid solution is high, and the above-mentioned difficulty due to the ceric ion concentration can be overcome. However, the cerium source is a double salt of ammonium and cerium nitrate, and in a process that combines the oxidation reaction process of organic compounds and the regeneration process of ceric by electrolysis, nitrate ions and ammonium ions behave in a complicated manner due to electrolytic oxidation. However, it causes various inconveniences in industry. In other words, nitrate ions are reduced to nitrite and ammonium ions at the cathode by electrolysis, resulting in an increase in the concentration of ammonium ions and a decrease in the concentration of nitrate and hydrogen ions.In extreme cases, hydrolysis occurs. will happen. Along with this complex behavior, the ability of the ceric salt solution as an oxidizing agent changes, so settings such as reaction conditions must also be changed, and actual operation requires periodic analysis of the liquid composition and Adjustments and, in some cases, the need to replace the liquid may become necessary. Furthermore, anode reactions involving ammonium ions other than the oxidation of cerous ions lead to a decrease in the current efficiency for producing the desired ceric ions, and deterioration of the electrode becomes more complicated and serious. Furthermore, the use of a nitric acid solution mixed with ammonium ions also poses a major problem of corrosion of equipment materials. Furthermore, under conditions where a large amount of nitrate ions are present, nitration often proceeds simultaneously during the oxidation reaction, resulting in a decrease in the selectivity of the intended oxidation reaction. When ceric perchlorate salt, which is known as another cerium source, is used, it is expensive and dangerous, and there are problems in handling from the viewpoint of corrosion, making it unsuitable for industrialization. Although salts containing ceric and their solutions are unique and excellent oxidizing agents in fields such as organic synthesis, conventional methods have the above-mentioned drawbacks and cannot be used on an industrial scale. implementation has become extremely difficult. [Means for Solving the Problem] The present inventors believe that the drawbacks of the conventional oxidation reaction using a salt containing ceric salt and its solution are mainly the low solubility of the cerium salt, the type of ligand, We considered that this was due to the type and concentration of acid in the solution, as well as the double salt, and investigated a cerium salt solution that does not have such drawbacks. As a result, it was discovered that ceric nitrate has high solubility not only in pure water but also in sulfuric acid solution, and furthermore, ceric nitrate obtained by electrolytic oxidation of a sulfuric acid solution in which such ceric nitrate was dissolved A solution containing ions overcomes the above-mentioned drawbacks, and moreover, simply electrolyzing a sulfuric acid solution in which cerous nitrate is dissolved produces ammonium ions by reduction of nitrate ions at the cathode, and ceric ions produced at the anode. It was found that the cerium ions diffused and were reduced back to cerous ions at the cathode, resulting in problems such as a decrease in current efficiency, and as a result of further intensive studies, the present invention was completed. That is, the present invention is a method for producing a ceric solution, which is characterized by electrolytically oxidizing a sulfuric acid solution in which cerous nitrate is dissolved as an anolyte, an electrolyte solution as a catholyte, and an ion exchange membrane as a diaphragm. be. The concentration of cerium in the anolyte used in the present invention may be lower than the solubility of ceric ions, ceric ions, or both when they coexist at the electrolytic oxidation temperature. The viscosity increases, which may interfere with various operations such as electrolytic oxidation and subsequent reactions, and the resistance during electrolysis also increases. Furthermore, if the concentration is too low, the superiority of cerium nitrate, that is, its high solubility, will not be utilized, so 0.1
~10 mol/(more preferably 0.2-5 mol/)
It is preferable that it is within the range of . The sulfuric acid solution for dissolving cerium nitrate may be a pure sulfuric acid solution, or other ions may coexist in the solution. In particular, if a sulfuric acid solution in which cerium sulfate is dissolved in advance is used, a higher cerium concentration can be obtained and at the same time the ratio of nitrate ions to cerium in the solution can be lowered, which is particularly preferable for reactions where nitrate ions have an influence. The sulfuric acid concentration in the anolyte used in the present invention affects not only the electrolysis but also the oxidizing power during the reaction, but if it is too low, the ceric ions produced by electrolytic oxidation will be unstable and hydrolyzed. If the temperature is too high, the solubility of cerous nitrate will decrease, and decomposition of the acid itself and material corrosion will be promoted at high temperatures. Sulfuric acid concentration in the anolyte is 0.2-5
It is desirable that the amount is within the range of mol/(more preferably 0.3 to 3 mol/). Note that the sulfuric acid concentration here refers to the concentration as an acid, and does not include the concentration of sulfate ions coming from cerium sulfate when, for example, cerium sulfate is dissolved. The ion exchange membrane used in the present invention may be a conventional cation or anion exchange membrane or a combination thereof, but in view of the durability of the membrane, a fluorine-based ion exchange membrane is more preferable. When an ion exchange membrane is not used as a diaphragm, reduction of nitrate ions occurs at the cathode to generate ammonium ions, which not only get mixed into the ceric solution, but also ceric ions generated at the anode diffuse and form ammonium ions at the cathode. It is reduced to cerous ions again, resulting in a decrease in current efficiency. The catholyte is not particularly limited as long as it is an electrolyte, as it is independent from the anolyte through the ion exchange membrane. For example, an aqueous solution of nitric acid, sulfuric acid, etc. can be used. A bipolar reaction is also possible in which a specific reduction reaction is carried out in order to actively utilize . Electrodes used in electrolysis include oxide-coated electrodes such as lead dioxide-coated titanium, iridium oxide-coated titanium, platinum-iridium oxide-coated titanium, platinum-plated titanium, lead, graphite, glassy carbon, etc. as anodes. In addition to the above-mentioned electrodes, an electrode made of stainless steel (for example, SUS-316L) is used as the cathode. The electrolytic oxidation temperature is determined by taking into consideration the solubility of cerium nitrate in the sulfuric acid solution used in the present invention, the decomposition of the acid itself, the corrosion of the material, and the reaction temperature of the oxidation reaction after electrolytic oxidation. Because the concentration of cerous nitrate in the solution can be set high even at relatively low temperatures, it can be performed at relatively low temperatures compared to conventional electrolytic oxidation of acid solutions containing cerium salts, such as electrolytic oxidation of cerous sulfate aqueous solutions. Good electrolytic properties can be obtained. [Examples] Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 Cerous nitrate (Ce(NO 3 ) 3・6H 2 O) 1300
Dissolve 1.5 mol/g in a sulfuric acid solution and add the solution to 1 as an anolyte to the anolyte tank.
mol/sulfuric acid aqueous solution as a catholyte in a catholyte tank, and each solution was circulated through a two-chamber electrolytic cell separated by an ion exchange membrane as shown in Figure 1 at a temperature of 40℃ under the following conditions. Time electrolytic oxidation was performed to obtain a ceric solution as an anolyte. Anode: Pt plated Ti electrode Cathode: SUS316L Diaphragm: Fluorine-based cation exchange membrane (manufactured by Dupont, Nafion 423) Current density: 15A/dm 2 After electrolytic oxidation, the ceric ion concentration in the anolyte was measured. It was 1.080 mole Ce 4+ /, and the current efficiency at this time was 96.5%. Furthermore, no ammonium ions were detected in the anolyte after electrolytic oxidation. The obtained ceric solution was stable even after being left for one month, and no precipitation of cerium salt was observed. Example 2 Cerous nitrate was dissolved in a 1.5 mol/sulfuric acid aqueous solution containing 0.2 mol/cerous sulfate,
Electrolytic oxidation was carried out under the same conditions as in Example 1, except that the solution No. 1 was used as the anolyte.
A solution containing 1.092 mol-Ce 4+ /ceric ions was obtained. The current efficiency at this time was 97.6%, and no ammonium ions were detected in the anolyte after electrolytic oxidation. Example 3 Electrolytic oxidation was carried out under the same conditions as in Example 1 except that the electrolytic oxidation temperature was 20°C, and as the anolyte,
A solution containing 1.041 mol-Ce 4+ /of ceric ions was obtained. The current efficiency at this time was 93.0% despite the low electrolytic oxidation temperature. No ammonium ions were detected in the anolyte after electrolytic oxidation. Example 4 Electrolytic oxidation was carried out under the same conditions as in Example 1 except that the diaphragm was an anion exchange membrane, and a solution containing ceric ions of 1.087 mol-Ce 4+ / was obtained as the anolyte. The current efficiency is 97.1%,
No ammonium ions were detected in the anolyte after electrolytic oxidation. Example 5 Electrolytic oxidation was carried out under the same conditions as in Example 2 except that the diaphragm was an anion exchange membrane, and a solution containing ceric ions of 1.099 mol-Ce 4+ / was obtained as an anolyte. The current efficiency at this time was 98.2%. Furthermore, no ammonium ions were detected in the anolyte after electrolytic oxidation. Example 6 Cerous nitrate in 2.5 mol/aqueous sulfuric acid solution
When electrolytic oxidation was carried out under the same conditions as in Example 1 except that a solution made by adding 500 g of Ce 4+ /
A solution containing ceric ions was obtained. The current efficiency at this time was 94.0%, and no ammonium ions were detected in the positive solution after electrolytic oxidation. Comparative Example 1 Using a cell with the ion exchange membrane removed, electrolytic oxidation was carried out under the same conditions as in Example 1, except that the only electrolyte was a solution of 1,300 g of ceric nitrate dissolved in a 1.5 mol/aqueous sulfuric acid solution. As a result, 0.527 mol-
Although the presence of ceric ions of Ce 4+ / was observed, the current efficiency at this time was only 47.1%. Ammonium ions were also detected in the anolyte. Comparative Example 2 When electrolytic oxidation was carried out under the same conditions as in Example 1 except that an unglazed diaphragm plate was used instead of the ion exchange membrane, the electrolytic voltage increased by about 10% and the current efficiency was 71.8.
An anolyte containing ceric ions of 0.804 mol-Ce 4+ /% was obtained. In addition, ammonium ions were detected in the anolyte after electrolytic oxidation, and cerium ions were found in the catholyte due to leakage of the anolyte. Comparative Example 3 Approximately 1000 g of sulfuric acid No. 1 in 1.5 mol/sulfuric acid aqueous solution
Cerium (Ce 2 (SO 4 ) 3.8H 2 O) was added and left to stand for a day and night while stirring to try to dissolve it, but it remained almost undissolved. Therefore, the undissolved portion was removed by filtration, and the filtrate 1 was used as an anolyte and electrolytically oxidized under the same conditions as in Example 1.
An aqueous sulfuric acid solution of ceric sulfate containing 0.23 mol-Ce 4+ /ceric ions was obtained. The current efficiency at this time was only 20.6%. Comparative Example 4 Example 1 except that the anolyte was a solution in which 1675 g of ceric ammonium nitrate ((NH 4 ) 2 Ce(NO 3 ) 5 ·4H 2 O) was added to a 1.5 mol/sulfuric acid solution to make 1. When electrolytic oxidation was carried out under the same conditions as above, an anolyte containing ceric ions of 0.995 mol-Ce 4+ / was obtained. However, compared to before electrolytic oxidation, the ammonium ion concentration in the anolyte has decreased, and the current efficiency is lower than in Example 1, 89%.
It was hot. Comparative Example 5 Using a cell with the ion exchange membrane removed, electrolytic oxidation was carried out under the same conditions as in Example 1, except that the electrolyte was a solution made by adding 1,675 g of ceric ammonium nitrate to a 1.5 mol/sulfuric acid solution. As a result, a liquid containing ceric ions of 0.512 mol-Ce 4+ / was obtained with a current efficiency of 45.8%. Moreover, the ammonium ion concentration in the electrolyte solution increased compared to before electrolytic oxidation. Comparative Example 6 1300g of cerous nitrate was dissolved in pure water and 1
When electrolytic oxidation was carried out under the same conditions as in Example 1 except that the above solution was used as the anolyte, a large amount of pale yellowish white precipitate was formed at the anode due to hydrolysis of ceric ions, and the target solution was Electrolytic oxidation could not be carried out. Comparative Example 7 Solution (A) containing ceric ions of 1.080 mol - Ce 4+ / obtained in Example 1 and 1.5 mol /
For each solution (B) containing ceric ions of 1.080 mol-Ce 4+ / obtained by dissolving ceric ammonium nitrate in a nitric acid solution, an immersion test was conducted on the materials at 40°C, and the state of corrosion was compared. did. The immersion period was one month, and the degree of corrosion was determined from the change in weight after immersion, and the degree of corrosion was calculated based on the degree of corrosion in the solution (A).
The results of determining the ratio of the erosion degree as the specific erosion degree in the solution (B) are shown below. Material Specific corrosion degree SUS-316 5 Hastelloy B 6 Hastelloy C 3 Incoloy 825 3 Lead 10 or more Comparative example 8 As the anolyte, a solution of 1,300 g of cerous nitrate dissolved in 1.5 mol/nitric acid aqueous solution to a concentration of 1 was used as the cathode. When electrolytic oxidation was carried out under the same conditions as in Example 1 except that 1.5 mol/nitric acid aqueous solution was used as the solution, 1.07 mol-Ce 4 was present in the electrolytic solution (nitric acid solution containing ceric ions) after electrolytic oxidation. The presence of ceric ions of + / was observed. The current efficiency was 95.6%. Obtained nitric acid solution containing ceric ions (C)
Immersion tests were conducted on various materials in the same manner as in Comparative Example 7, using the following results. However, this specific erosion degree is the ratio of the erosion degree in the sulfuric acid solution (C) to the erosion degree in the sulfuric acid solution (A) containing ceric ions obtained in Example 1. Material Specific corrosion rate SUS-316 5 Hastelloy B 5 Hastelloy C 3 Incoloy 825 3 Lead 10 or more Furthermore, the nitric acid aqueous solution of ceric obtained by the above electrolytic oxidation and the ceric obtained in Example 1 were added. Using each aqueous sulfuric acid solution, 1,4-naphthoquinone was synthesized by oxidizing naphthalene under the following conditions. The results are shown below.

【表】 [発明の効果] 実施例および比較例より明らかな如く、本発明
を実施することにより、酸化剤として有用な第2
セリウム溶液を工業的に使用するのに十分高い第
2セリウムイオン濃度で得ることができるばかり
か、装置材料の腐蝕も比較的抑制され、しかも酸
化反応工程と電解酸化工程を組み合わせたプロセ
スにおいて、セリウムを含む液の複雑な組成の変
化をきたすことなく実施することができ、電解酸
化工程における省エネルギー化も可能である。更
に、本発明において用いられる硝酸第1セリウム
はセリウム塩としては比較的安価であり入手も容
易である利点を有する。
[Table] [Effects of the Invention] As is clear from the Examples and Comparative Examples, by carrying out the present invention, the second compound useful as an oxidizing agent was
Not only can a cerium solution be obtained with a sufficiently high ceric ion concentration for industrial use, but corrosion of equipment materials is also relatively suppressed, and moreover, in a process that combines an oxidation reaction step and an electrolytic oxidation step, cerium The electrolytic oxidation process can be carried out without causing any complicated changes in the composition of the liquid containing the oxidation process, and it is also possible to save energy in the electrolytic oxidation process. Furthermore, the cerous nitrate used in the present invention has the advantage of being relatively inexpensive and easily available as a cerium salt.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は本発明の方法を簡略化して示すもので
ある。
FIG. 1 shows a simplified method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極液として硝酸第1セリウムを溶解した硫
酸溶液を、陰極液として電解質液を、隔膜として
イオン交換膜を用いて第1セリウムイオンを電解
酸化することを特徴とする第2セリウム硫酸溶液
の製造法。
1. Production of a ceric sulfuric acid solution characterized by electrolytically oxidizing ceric ions using a sulfuric acid solution in which ceric nitrate is dissolved as an anolyte, an electrolyte solution as a catholyte, and an ion exchange membrane as a diaphragm. Law.
JP61258323A 1986-10-31 1986-10-31 Production of ceric salt solution Granted JPS63114988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258323A JPS63114988A (en) 1986-10-31 1986-10-31 Production of ceric salt solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258323A JPS63114988A (en) 1986-10-31 1986-10-31 Production of ceric salt solution

Publications (2)

Publication Number Publication Date
JPS63114988A JPS63114988A (en) 1988-05-19
JPH0240743B2 true JPH0240743B2 (en) 1990-09-13

Family

ID=17318649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258323A Granted JPS63114988A (en) 1986-10-31 1986-10-31 Production of ceric salt solution

Country Status (1)

Country Link
JP (1) JPS63114988A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106319553A (en) * 2015-07-02 2017-01-11 中国科学院大连化学物理研究所 Method for obtaining Ce(IV) by conducting photoelectric catalysis oxidation on Ce(III), Ce(IV) and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187886A (en) * 1984-09-13 1986-05-06 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Electrolytic oxidation method and electrolytic unit for performing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187886A (en) * 1984-09-13 1986-05-06 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Electrolytic oxidation method and electrolytic unit for performing the same

Also Published As

Publication number Publication date
JPS63114988A (en) 1988-05-19

Similar Documents

Publication Publication Date Title
US3720591A (en) Preparation of oxalic acid
US4316782A (en) Electrolytic process for the production of ozone
CA1271772A (en) Oxidation of organic compounds using ceric ions in aqueous methanesulfonic acid
CA2130552A1 (en) Electrochemical process for preparing glyoxylic acid
US4235684A (en) Process for producing glyoxalic acid by electrolytic oxidation
JPS59216828A (en) Oxidation of organic compound
US4578161A (en) Process for preparing quaternary ammonium hydroxides by electrolysis
US4312721A (en) Electrolytic oxidation process
US5242552A (en) System for electrolytically generating strong solutions by halogen oxyacids
US4794172A (en) Ceric oxidant
JPH0240743B2 (en)
US5679235A (en) Titanium and cerium containing acidic electrolyte
Watson et al. The role of chromium II and VI in the electrodeposition of chromium nickel alloys from trivalent chromium—amide electrolytes
US4061548A (en) Electrolytic hydroquinone process
US4692227A (en) Oxidation of organic compounds using thallium ions
JPH0240744B2 (en)
US4683038A (en) Process for preparing ceric sulphate
US4533454A (en) Electrolytic cell comprising stainless steel anode, basic aqueous electrolyte and a cathode at which tetrachloro-2-picolinate ions can be selectively reduced in high yield to 3,6-dichloropicolinate ions
JPH01184293A (en) Production of iodine and iodate
US4402805A (en) Electrochemical process to prepare p-hydroxymethylbenzoic acid with a low level of 4-CBA
JPS6353282A (en) Production of ceric nitrate solution
CN116657162B (en) Preparation method of high-purity ammonium persulfate
Goodridge et al. The oxidation of benzene using anodically generated argentic silver ions
JPH04228586A (en) Manufacture of aromatic amine compound
JPH0244903B2 (en)