JPH0240742B2 - KODODENSEIHAKUMAKUSEIZOHO - Google Patents

KODODENSEIHAKUMAKUSEIZOHO

Info

Publication number
JPH0240742B2
JPH0240742B2 JP5140386A JP5140386A JPH0240742B2 JP H0240742 B2 JPH0240742 B2 JP H0240742B2 JP 5140386 A JP5140386 A JP 5140386A JP 5140386 A JP5140386 A JP 5140386A JP H0240742 B2 JPH0240742 B2 JP H0240742B2
Authority
JP
Japan
Prior art keywords
compound
film
oxygen
organic
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5140386A
Other languages
Japanese (ja)
Other versions
JPS62211385A (en
Inventor
Harukazu Matsuda
Yoshiaki Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP5140386A priority Critical patent/JPH0240742B2/en
Publication of JPS62211385A publication Critical patent/JPS62211385A/en
Publication of JPH0240742B2 publication Critical patent/JPH0240742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は有機インジウム化合物及び有機スズ化
合物又は有機インジウム化合物を用いる高導電性
薄膜製造法に関するものである。 (従来の技術とその問題点) 高導電性薄膜製造法は、大別すると溶液法と非
溶液法の2種類に分けられる。 非溶液法には、蒸着法あるいはスパツタリング
法等の物理的方法と、所謂CVD法(化学的気相
成長法)が含まれる。かかる非溶液法によると高
導電性(低抵抗)薄膜を製造することが可能であ
るが、いずれの方法においても高真空系あるいは
また精密な雰囲気の制御が要求され、また特殊な
電磁エネルギー変換装置が必要であること等、製
造装置が複雑かつ大型化し装置的に煩瑣で必然的
に製造コストは高くなる。さらに導電性膜の大面
積化あるいは複雑な形状の製膜が困難であつた。 溶液法には、スプレー法、デイツプ法及び塗布
法の化学的方法が含まれる。前記化学的方法中の
スプレー法、及び所謂CVD法では金属成分であ
る膜原料の効率が悪く、製膜条件の制御が困難で
あつた。またデイツプ法及び従来の塗布法では真
空装置等が不要で簡単であるが基板温度を高温に
しても得られる導電性膜の電気的特性(低抵抗、
高導電性)が劣るという問題点があつた。 (問題点を解決するための手段) 本発明者らは上記問題点を解決し容易に高導電
性薄膜を製造し得る方法を開発すべく鋭意研究の
結果、金属−酸素結合を1個以上持つ有機インジ
ウム化合物を主な溶質とするp−キシレン溶液を
基板上に塗布後、加熱焼成することにより本発明
を達成するに至つた。 即ち本発明は 少なくとも1個以上のインジウム−炭素結合を
有しさらに少なくとも1個以上のインジウム−酸
素結合を有する有機インジウム化合物2〜10重量
%、及び少なくとも1個以上のスズ−酸素結合を
有する有機スズ化合物を0〜0.5重量%を含む溶
媒溶液を塗布溶液とし、該塗布溶液を基板上に均
一に塗布し、該基板を加熱乾燥して溶媒を蒸発さ
せ、膜を形成し、次いで該膜を空気雰囲気中、
300〜600℃の温度で加熱焼成して上記有機インジ
ウム化合物を主成分とする有機金属化合物を熱分
解することを特徴とする高導電性薄膜製造法に関
するものである。 以下本発明について構成にもとづき説明する。 本発明において用いられる有機インジウム化合
物は容易に入手可能なトリアルキルインジウムと
相当する含酸素結合とをエーテル中で混合撹拌す
ることにより合成される。 本発明では有機インジウム化合物合成に使用可
能なトリアルキルインジウムは、式R3In(式中の
RはCH3、CH3CH2、CH3CH2CH2
CH3CH2CH2CH2等の飽和直鎖アルキル基、分枝
アルキル基、又はベンジル等のアラルキル基を示
す)で表わされるものである。 一般に炭素数が少ないトリアルキルインジウム
ほど含酸素化合物との反応性が高いため有機イン
ジウム化合物R2InX2を合成するのが容易であり、
また同様に一般に炭素数が少ないトリアルキルイ
ンジウムほどR2InXまたRInX2中の有効In含有率
が高くなるためより効果的であるという性質を有
する。しかしながら、例えばCH3及びCH3CH2
の小さなアルキル誘導体では安定性が低く取り扱
いが困難である。従つてブチル基、即ち炭素数4
のアルキル基が好ましい。上記R3Inの合成は例
えばエフ・プング・ダブリユー・ツイメルマン、
エツチ・プフアイフアー及アイ・プフイフアー
(F.Pung、W.Zimmermann、H.Pfeiffer and I.
Pfeiffer)らによるゼツト・アノーグ・アルゲ
ム・ケム(Z.anorg.allgem.Chem)267、39
(1951)に記載されている方法により行なうこと
ができ、次の一般式 Incl36RMgCl ――――――→ R3In (1) で示される。 本発明では有機インジウム化合物合成に使用可
能な含酸素化合物は、式HX(式中のXはアル
コール類(X=R′O)、フエノール類(X=
R′=O)、カルボン酸類(X=R′COO)、1,
3−ジケトン類等を示す)で表わされるものであ
る。 アルコール類(X=R′O)としてはR′がC1〜C6
アルキル又はアラルキル基を表わすものが使用さ
れ、例えばメタノール、エタノール、イソプロパ
ノール、tert−ブタノール、アリルアルコール、
ヘキシルアルコール等があるが、R′=C1〜C3
度の炭素数を有するアルコール類では合成する
Bu2InXの安定性が低いため好ましくはR′≧C4
炭素数を有するものを用いる。 フエノール類(X=R′O)としてはR′がフエニ
ル基、アルキル置換フエニル基、ナフチル基、及
び芳香族炭化水素基を表わすものを使用する。 カルボン酸類(X=R′COO)としてはR′がC1
〜C7又は〜C12アルキル基(枝分かれ、不飽和基
を含む)あるいはアリール基(芳香族炭化水素
基)を表わすものが使用され、例えば酢酸、プロ
ピオン酸、安息香酸、シユウ酸、酒石酸、アクリ
ル酸等がある。 1,3−ジトケン類(
(Industrial Application Field) The present invention relates to a method for producing a highly conductive thin film using an organic indium compound, an organic tin compound, or an organic indium compound. (Prior art and its problems) Highly conductive thin film manufacturing methods can be roughly divided into two types: solution methods and non-solution methods. Non-solution methods include physical methods such as vapor deposition or sputtering, and so-called CVD (chemical vapor deposition). Although it is possible to produce highly conductive (low resistance) thin films using such non-solution methods, either method requires a high vacuum system or precise atmosphere control, and requires special electromagnetic energy conversion equipment. As a result, the manufacturing equipment becomes complicated and large, and the equipment is cumbersome, which inevitably increases the manufacturing cost. Furthermore, it has been difficult to increase the area of the conductive film or to form a film with a complicated shape. Solution methods include chemical methods such as spray methods, dip methods, and coating methods. Among the chemical methods mentioned above, the spray method and the so-called CVD method have poor efficiency in using the film raw material, which is a metal component, and it has been difficult to control the film forming conditions. In addition, the dip method and conventional coating method do not require vacuum equipment and are simple, but the electrical properties of the conductive film (low resistance,
There was a problem that the high conductivity was poor. (Means for Solving the Problems) The present inventors have conducted intensive research to solve the above problems and to develop a method for easily manufacturing highly conductive thin films, which have one or more metal-oxygen bonds. The present invention was achieved by applying a p-xylene solution containing an organic indium compound as a main solute onto a substrate and then heating and baking the solution. That is, the present invention comprises 2 to 10% by weight of an organic indium compound having at least one indium-carbon bond and further having at least one indium-oxygen bond, and an organic indium compound having at least one tin-oxygen bond. A solvent solution containing 0 to 0.5% by weight of a tin compound is used as a coating solution, the coating solution is uniformly applied onto a substrate, the substrate is heated and dried to evaporate the solvent, and a film is formed. In the air atmosphere,
The present invention relates to a highly conductive thin film production method characterized by thermally decomposing an organometallic compound containing the above-mentioned organic indium compound as a main component by heating and baking at a temperature of 300 to 600°C. The present invention will be explained below based on the configuration. The organic indium compound used in the present invention is synthesized by mixing and stirring easily available trialkylindium and the corresponding oxygen-containing bond in ether. In the present invention, the trialkylindium that can be used in the synthesis of organic indium compounds has the formula R 3 In (R in the formula is CH 3 , CH 3 CH 2 , CH 3 CH 2 CH 2 ,
It is represented by a saturated straight-chain alkyl group such as CH 3 CH 2 CH 2 CH 2 , a branched alkyl group, or an aralkyl group such as benzyl. In general, trialkylindium with fewer carbon atoms has higher reactivity with oxygen-containing compounds, so it is easier to synthesize the organic indium compound R 2 InX 2 .
Similarly, trialkylindium having fewer carbon atoms generally has a property that it is more effective because the effective In content in R 2 InX or RInX 2 becomes higher. However, small alkyl derivatives such as CH 3 and CH 3 CH 2 have low stability and are difficult to handle. Therefore, butyl group, i.e. 4 carbon atoms
The alkyl group is preferred. For example, the synthesis of R 3 In described above can be carried out by F. Pung, D.
F. Pung, W. Zimmermann, H. Pfeiffer and I.
Pfeiffer et al., Z.anorg.allgem.Chem 267 , 39
(1951), and is represented by the following general formula: Incl 3 6RMgCl --------→ R 3 In (1). In the present invention, the oxygen-containing compounds that can be used in the synthesis of organic indium compounds include formula HX (where X is alcohols (X=R'O), phenols (X=
R′=O), carboxylic acids (X=R′COO), 1,
3-diketones, etc.). For alcohols (X=R′O), R′ is C 1 to C 6
Those representing alkyl or aralkyl groups are used, such as methanol, ethanol, isopropanol, tert-butanol, allyl alcohol,
There are hexyl alcohols, etc., but alcohols with a carbon number of about R′ = C 1 to C 3 can be synthesized.
Since the stability of Bu 2 InX is low, it is preferable to use one having a carbon number of R′≧C 4 . As the phenols (X=R'O), those in which R' represents a phenyl group, an alkyl-substituted phenyl group, a naphthyl group, or an aromatic hydrocarbon group are used. For carboxylic acids (X=R′COO), R′ is C 1
Those representing ~ C7 or ~ C12 alkyl groups (including branched and unsaturated groups) or aryl groups (aromatic hydrocarbon groups) are used, such as acetic acid, propionic acid, benzoic acid, oxalic acid, tartaric acid, acrylic acid, etc. There are acids etc. 1,3-ditokenes (

【式】 等)としてはエノラートを形成しやすいカルボニ
ル化合物が使用され、例えばアセチルアセトン、
及びその誘導体がある。 有機インジウム化合物(BuInX又はBuInX2
の合成に関しては、周知反応〔エツチ・シー・ク
ラーク及びエー・エル・ピツカード(H.C.Clark
and A.L.Pickard)らによるジエイ・オルガノメ
ント・ケム(J.Organoment.Chem.)、427
(1967)〕を応用して合成でき、反応式は R3In+HX→R2InX+H (2) R3In+2HX→RInX2+2H (3) で示される。トリブチルインジウムと含酸素化合
物との混合比は1:1又は1:2であり、前者の
場合は(2)式で示す反応によりBu2InXが、後者の
場合は(3)式で示す反応によりBuInX2が得られる。 有機インジウム化合物はRoInX(3-o)におけるn
=1又は2に限定されるものである。n=0、即
ちInX3の場合は有機金属塩(所謂インジウムト
リアルコキシド(In(OR)3)及びインジウムトリ
アシレート(In(O2CR)3)、インジウムトリスア
セチルアセトナート(In(acac)3)等のメタルオ
ーガニツクス)に相当する。有機金属塩(メタル
オーガニツクス)は有機残基を含む金属化合物で
金属−炭素間の直接の結合を有さないが、本発明
に用いる有機インジウム化合物は有機金属化合物
(オーガノメタリツクス)であり金属−炭素結合
を少なくとも1個有する金属化合物である。n=
3、即ちR3Ioの場合はMOCVD(metal organic
chemical vapor deposition)法の範囲に含有さ
れる。 以下有機インジウム化合物の合成をBu2InXを
例に挙げて説明する。 Bu2InXの合成法における操作は全て窒素雰囲
気下で行なわれ、まず蒸留したトリブチルインジ
ウム(Bu3In.bp114℃/3mmHg)0.03モルを100
mlのフラスコ中で50mlの脱水エーテルに溶解し氷
冷する。次いで該溶液に含酸素化合物(例えば、
プロピオン酸)0.03モルを氷冷下、撹拌しながら
滴下する。その際緩やかにブタンを発生する。滴
下終了後さらに1〜2時間撹拌を続け、反応終了
後N2雰囲気下で溶媒を留去する。生成物がオイ
ル状の場合には減圧下で蒸留し、固体生成物の場
合にはエーテルで再結晶して有機インジウム化合
物を得る。このようにして得られた有機インジウ
ム化合物(Bu2InX)の諸特性を第1表に熱分析
結果を第2表および第2A〜2C図に示す。
[Formula], etc.) are carbonyl compounds that tend to form enolates, such as acetylacetone,
and its derivatives. Organic indium compound (BuInX or BuInX 2 )
Regarding the synthesis of
and ALPickard et al., J.Organoment.Chem. 8 , 427
(1967)], and the reaction formula is shown as R 3 In+HX→R 2 InX+H (2) R 3 In+2HX→RInX 2 +2H (3). The mixing ratio of tributylindium and oxygen-containing compound is 1:1 or 1:2; in the former case, Bu 2 InX is produced by the reaction shown in equation (2), and in the latter case, Bu 2 InX is produced by the reaction shown in equation (3). BuInX 2 is obtained. Organic indium compounds are n in R o InX (3-o)
=1 or 2. When n=0, that is, InX 3 , organic metal salts (so-called indium trialkoxide (In(OR) 3 ), indium triacylate (In(O 2 CR) 3 ), indium trisacetylacetonate (In(acac) 3 ) and other metal organics). Organometallic salts (metal organics) are metal compounds containing organic residues and do not have a direct metal-carbon bond, but the organoindium compounds used in the present invention are organometallic compounds. It is a metal compound having at least one metal-carbon bond. n=
3, that is, R 3 I o , MOCVD (metal organic
included in the scope of the chemical vapor deposition method. The synthesis of organic indium compounds will be explained below using Bu 2 InX as an example. All operations in the synthesis method for Bu 2 InX are performed under a nitrogen atmosphere. First, 0.03 mol of distilled tributyl indium (Bu 3 In.bp114℃/3mmHg) is added to 100
Dissolve in 50 ml of dehydrated ether in a 50 ml flask and cool on ice. The solution is then added with an oxygenate (e.g.
0.03 mol of propionic acid) was added dropwise while stirring under ice cooling. At this time, butane is slowly generated. After the dropwise addition is completed, stirring is continued for another 1 to 2 hours, and after the reaction is completed, the solvent is distilled off under N2 atmosphere. When the product is an oil, it is distilled under reduced pressure, and when it is a solid product, it is recrystallized from ether to obtain an organic indium compound. The properties of the organic indium compound (Bu 2 InX) thus obtained are shown in Table 1, and the thermal analysis results are shown in Table 2 and Figures 2A to 2C.

【表】【table】

【表】 BuInX2の合成法はBu3Inに対し2倍モルの含
酸素化合物を用い、Bu2InXの場合と同様の方法
で行うが反応温度はエーテル還流温度付近まで高
くする必要がありエーテルの還流下で実施する。 以下に得られた有機インジウム化合物を主な溶
質とするp−キシレン溶液を基板上に塗布後、加
熱焼成することによる本発明の高導電性薄膜の製
造法について説明する。 塗布溶液の溶媒としては、有機インジウム化合
物及び溶解性の低い有機スズ化合物を完全に溶解
することが可能な炭化水素系、含酸素系(特に、
アルコール及びエーテル)の溶解が有効で、例え
ばベンゼン、トルエン、キシレン等の芳香族炭化
水素、あるいはヘキサノール等の高級アルコール
があり、特に、沸点が高いp−キシレンが好まし
い。使用する溶媒は市販品をそのまま用いること
も可能であるが、かかる場合には溶液が完全に均
一にならないことがあるので、予め脱水乾燥する
ことが望ましい。有機インジウム化合物を塗布溶
液中該有機インジウム化合物が2〜10重量%とな
るようにp−キシレン中に溶解する。有機インジ
ウム化合物が塗布液中2重量%より少ないと膜形
成が優れず、また10重量%より多いと粘度が高く
なり操作が困難となる。これへBu2SnOを塗布液
中0〜0.5重量%となるように添加し、加熱する
ことにより均一な溶液とする。添加量が0.5重量
%より多いときは膜抵抗値が高くなる。均一にな
らない場合には、更に該溶液の還流温度まで加熱
するか、又は少量のヘキシルアルコール等の高級
アルコールを添加して均一な溶液とする。有機ス
ズ化合物はドーパントとして用いられる。かかる
ようにして得た塗布溶液は空気及び湿気に対して
安定であり、そのままの状態で長期間保存でき
る。上記塗布液を基板に塗布する際には基板を浸
漬したり、基板上に滴下し該基板を傾斜あるいは
スピンナーを用いて全体に亘り均一に広げる方法
が用いられる。基板としては一般にソーダガラ
ス、パイレツクス又は石英が用いられる。該基板
を加熱乾燥して溶媒を蒸発させ膜を得る。得られ
た該膜を例えば電気炉中に静置し、空気中300〜
600℃、好ましくは350〜550℃の温度で約30分〜
1時間程度焼成して高導電性薄膜を得る。焼成が
300℃以下になると、有機成分を完全に分解放出
することができないため高導電性が得られず、
600℃以上になると基板材料が溶融したり変形し
たりするため注意が必要となる。焼成後の膜の厚
さは約200〜3500Åが望ましく、200Å以下のとき
は均一な膜が得られず、3500Å以上のときは透明
度が低下して膜に割れや剥離を生ずる。 有機スズ化合物を用いた高導電性膜はITO薄膜
であり、用いない場合には酸化インジウム薄膜が
得られる。 本発明による高導電性薄膜は液晶あるいはエレ
クトロクロミツク表示素子、タツチパネル、その
他透明電極応用品に適用できる。 (実施例) 本発明を次の実施例により説明する。 本発明による高導電性薄膜の諸特性は次の方法
及び機器で測定した。 (1) 可視光透過度 島津製UV−200Sを用い、波長範囲300〜
900nmで反射法により測定 (2) 膜厚 高導電性薄膜を希硝酸がエツチングして段差
を付け、繰り返し反射干渉計を用いて測定 (3) 表面抵抗 4探針法により測定 (実施例) 本発明を次の実施例により説明する。 実施例 1 ジブチルインジウム2−エチルヘキサノアート
(Bu2InO2CCHP(Et)(CH23CH3)及びドーパ
ントとしてのジブチルスズオキシド(Bu2SnO)
を各々5重量%及び0.25重量%含むp−キシレン
溶液をスライドガラス上に均一に塗布し、該ガラ
ス板を100℃で40分間乾燥して透明な膜を得た。
該膜をさらに450℃で1時間加熱することにより、
膜厚1400Å、抵抗率1.9×10-3Ωcmで可視域の透
過率90%以上の高導電性ITO膜を得た。同様な条
件下で焼成温度のみを変化させた場合に得られた
ITO膜の表面抵抗の変化を第1図に示す。また、
同様な焼成条件下、種々の有機インジウム化合物
を用いて製造したITO膜の特性を第3表に示す。
[Table] BuInX 2 is synthesized in the same manner as for Bu 2 InX, using twice the molar amount of oxygen-containing compound as compared to Bu 3 In, but the reaction temperature needs to be raised to around the ether reflux temperature. Carry out under reflux. A method for producing the highly conductive thin film of the present invention will be described below, in which a p-xylene solution containing the obtained organic indium compound as a main solute is applied onto a substrate and then heated and baked. As the solvent for the coating solution, hydrocarbon-based solvents and oxygen-containing solvents (especially,
Examples include aromatic hydrocarbons such as benzene, toluene, and xylene, and higher alcohols such as hexanol, with p-xylene having a high boiling point being particularly preferred. Although it is possible to use a commercially available solvent as it is, in such a case, the solution may not be completely homogeneous, so it is desirable to dehydrate and dry it in advance. The organic indium compound is dissolved in p-xylene so that the coating solution contains 2 to 10% by weight of the organic indium compound. If the organic indium compound is less than 2% by weight in the coating solution, film formation will not be excellent, and if it is more than 10% by weight, the viscosity will become high and operation will be difficult. Bu 2 SnO is added to this in an amount of 0 to 0.5% by weight in the coating solution, and heated to form a uniform solution. When the amount added is more than 0.5% by weight, the membrane resistance value increases. If the solution is not uniform, the solution is further heated to the reflux temperature or a small amount of higher alcohol such as hexyl alcohol is added to make the solution uniform. Organotin compounds are used as dopants. The coating solution thus obtained is stable to air and moisture and can be stored as is for a long period of time. When applying the above-mentioned coating liquid to a substrate, a method is used in which the substrate is immersed or the liquid is dropped onto the substrate and spread uniformly over the entire substrate by tilting the substrate or using a spinner. Soda glass, pyrex or quartz is generally used as the substrate. The substrate is heated and dried to evaporate the solvent and obtain a film. The obtained film is placed in an electric furnace, for example, and heated to 300 -
About 30 minutes at a temperature of 600℃, preferably 350-550℃
A highly conductive thin film is obtained by baking for about 1 hour. Firing is
At temperatures below 300℃, organic components cannot be completely decomposed and released, making it impossible to obtain high conductivity.
If the temperature exceeds 600℃, the substrate material will melt or deform, so care must be taken. The thickness of the film after firing is preferably about 200 to 3,500 Å; if it is less than 200 Å, a uniform film cannot be obtained, and if it is more than 3,500 Å, the transparency will decrease and the film will crack or peel. The highly conductive film using an organotin compound is an ITO thin film, and when not used, an indium oxide thin film is obtained. The highly conductive thin film according to the present invention can be applied to liquid crystal or electrochromic display elements, touch panels, and other transparent electrode applications. (Example) The present invention will be explained by the following example. Various properties of the highly conductive thin film according to the present invention were measured using the following method and equipment. (1) Visible light transmittance Using Shimadzu UV-200S, wavelength range 300~
Measured by reflection method at 900 nm (2) Film thickness A highly conductive thin film is etched with dilute nitric acid to form a step, and measured using a repeated reflection interferometer (3) Surface resistance Measured by 4-probe method (Example) Book The invention will be illustrated by the following examples. Example 1 Dibutylindium 2 - ethylhexanoate ( Bu2InO2CCHP (Et)( CH2 ) 3CH3 ) and dibutyltin oxide ( Bu2SnO ) as a dopant
A p-xylene solution containing 5% by weight and 0.25% by weight, respectively, was uniformly applied onto a slide glass, and the glass plate was dried at 100° C. for 40 minutes to obtain a transparent film.
By further heating the film at 450°C for 1 hour,
A highly conductive ITO film with a thickness of 1400 Å, a resistivity of 1.9×10 -3 Ωcm, and a visible transmittance of over 90% was obtained. obtained when only the firing temperature was changed under similar conditions.
Figure 1 shows the change in surface resistance of the ITO film. Also,
Table 3 shows the properties of ITO films produced using various organic indium compounds under similar firing conditions.

【表】 実施例 2 ジブチルインジウム2−エチルヘキサノアート
(Bu2InO2CCH(Et)(CH23CH3)を5重量%含
みドーパントとしてのジブチルスズオキシド
(Bu2SnO)を含まないp−キシレン溶液を実施
例1と同様な条件、方法で高導電性薄膜を得た。
該膜の特性は膜厚1000Å、抵抗率2×10-2Ωcm、
可視域の透過率90%以上であつた。焼成温度のみ
を変化させた場合に得られた膜の表面抵抗の変化
を第1図に示す。 (効果) 本発明で用いられる有機インジウム化合物は、
合成が容易であり、蒸留あるいは再結晶によつて
高純度化しやすく、空気又は水分に対して安定で
あり塗布溶液の貯臓性がよく、熱分解温度が400
℃以下と低いこと、及び溶液中での熱反応により
Bu2SnOとの間に不均化反応が生起しIn−OrSnな
る連鎖を形成しやすいためドーパントとしてのス
ズ原子の膜面上での分散性が高く、低温焼成にお
いても高導伝性を発現させることが可能であり、
さらに塗布焼成法は大面積のITO膜製造に適して
おり、スクリーン印刷することで微細なパターン
化が可能になるという効果がある。
[Table] Example 2 P containing 5% by weight of dibutylindium 2-ethylhexanoate (Bu 2 InO 2 CCH(Et) (CH 2 ) 3 CH 3 ) and not containing dibutyltin oxide (Bu 2 SnO) as a dopant - A highly conductive thin film was obtained using a xylene solution under the same conditions and method as in Example 1.
The film has a thickness of 1000 Å, a resistivity of 2×10 -2 Ωcm,
The transmittance in the visible range was over 90%. FIG. 1 shows the change in surface resistance of the film obtained when only the firing temperature was changed. (Effect) The organic indium compound used in the present invention is
It is easy to synthesize, can be easily purified by distillation or recrystallization, is stable against air or moisture, has good storage properties for coating solutions, and has a thermal decomposition temperature of 400°C.
Due to its low temperature below ℃ and thermal reaction in solution.
Because a disproportionation reaction occurs with Bu 2 SnO and it is easy to form an In-OrSn chain, the tin atoms as a dopant are highly dispersed on the film surface, and exhibits high conductivity even at low temperature firing. It is possible to
Furthermore, the coating and baking method is suitable for producing large-area ITO films, and screen printing has the effect of making it possible to form fine patterns.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のITO膜のシート抵抗と焼成温
度との関係を示す線図、第2A図は本発明で用い
る有機インジウム化合物Bu2In(acac)の熱重量
分析および示差熱分析曲線図、第2B図は本発明
で用いる有機インジウム化合物Bu2InO2CEtの熱
重量分析および示差熱分析曲線図、第2C図は本
発明で用いる有機インジウム化合物Bu2InOPhの
熱重量分析および示差熱分析曲線図である。
Figure 1 is a diagram showing the relationship between the sheet resistance and firing temperature of the ITO film of the present invention, and Figure 2A is a thermogravimetric analysis and differential thermal analysis curve diagram of the organic indium compound Bu 2 In (acac) used in the present invention. , FIG. 2B is a thermogravimetric analysis and differential thermal analysis curve diagram of the organic indium compound Bu 2 InO 2 CEt used in the present invention, and FIG. 2C is a thermogravimetric analysis and differential thermal analysis curve of the organic indium compound Bu 2 InOPh used in the present invention. It is a curve diagram.

Claims (1)

【特許請求の範囲】 1 少なくとも1個以上のインジウム−炭素結合
を有しさらに少なくとも1個以上のインジウム−
酸素結合を有する有機インジウム化合物2〜10重
量%、及び少なくとも1個以上のスズー酸素結合
を有する有機スズ化合物を0〜0.5重量%含む溶
媒溶液を塗布溶液とし、該塗布溶液を基板上に均
一に塗布し、該基板を加熱乾燥して溶媒を蒸発さ
せ膜を形成し、次いで該膜を空気雰囲気中、300
〜600℃の温度で加熱焼成して上記有機インジウ
ム化合物を主成分とする有機金属化合物を熱分解
することを特徴とする高導電性薄膜製造法。 2 上記有機インジウム化合物は一般式R3Inで
表わされるトリアルキルインジウムと含酸素化合
物から合成される特許請求の範囲第1項記載の製
造法。 3 上記トリアルキルインジウム(R3In)のR
はC1〜C8の直鎖及び分枝アルキル又はアラルキ
ル基である特許請求の範囲第2項記載の製造法。 4 含酸素化合物がアルコール類、フエノール
類、カルボン酸類、1,3−ジケトン類である特
許請求の範囲第2項記載の方法。
[Claims] 1. At least one indium-carbon bond and at least one indium-carbon bond.
A solvent solution containing 2 to 10% by weight of an organic indium compound having an oxygen bond and 0 to 0.5% by weight of an organic tin compound having at least one tin-oxygen bond is used as a coating solution, and the coating solution is uniformly spread over a substrate. The substrate is heated and dried to evaporate the solvent to form a film, and then the film is heated in an air atmosphere for 300 min.
A method for producing a highly conductive thin film, which comprises thermally decomposing the organometallic compound containing the organoindium compound as a main component by heating and baking at a temperature of ~600°C. 2. The production method according to claim 1, wherein the organic indium compound is synthesized from trialkylindium represented by the general formula R 3 In and an oxygen-containing compound. 3 R of the above trialkylindium (R 3 In)
The manufacturing method according to claim 2, wherein is a C1 to C8 straight chain and branched alkyl or aralkyl group. 4. The method according to claim 2, wherein the oxygen-containing compound is an alcohol, a phenol, a carboxylic acid, or a 1,3-diketone.
JP5140386A 1986-03-11 1986-03-11 KODODENSEIHAKUMAKUSEIZOHO Expired - Lifetime JPH0240742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5140386A JPH0240742B2 (en) 1986-03-11 1986-03-11 KODODENSEIHAKUMAKUSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5140386A JPH0240742B2 (en) 1986-03-11 1986-03-11 KODODENSEIHAKUMAKUSEIZOHO

Publications (2)

Publication Number Publication Date
JPS62211385A JPS62211385A (en) 1987-09-17
JPH0240742B2 true JPH0240742B2 (en) 1990-09-13

Family

ID=12885969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5140386A Expired - Lifetime JPH0240742B2 (en) 1986-03-11 1986-03-11 KODODENSEIHAKUMAKUSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0240742B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3409676B1 (en) * 2017-05-29 2020-10-14 Umicore Ag & Co. Kg Preparation of trail kylindium compounds in the presence of carboxylates

Also Published As

Publication number Publication date
JPS62211385A (en) 1987-09-17

Similar Documents

Publication Publication Date Title
US3944684A (en) Process for depositing transparent, electrically conductive tin containing oxide coatings on a substrate
Kurtz et al. Chemical vapor deposition of doped TiO2 thin films
CA1121666A (en) Tin oxide coatings
JPS627123A (en) Low temperature/low pressure chemical evaporation
Belot et al. Volatility by design. synthesis and characterization of polyether adducts of bis (1, 1, 1, 5, 5, 5-hexafluoro-2, 4-pentanedionato) barium and their implementation as metal− organic chemical vapor deposition precursors
Pollard et al. Chemical vapor deposition of tantalum oxide from tetraethoxo (β-diketonato) tantalum (V) complexes
JPH0672905A (en) Diacetylene having liquid crystal phase
KR20010043221A (en) Organometallic compounds for vapor-phase epitaxy of organometal
JP2018090855A (en) Raw material for chemical vapor deposition, production method thereof, and production method of oxide film containing indium formed by using raw material for chemical vapor deposition
US6416814B1 (en) Volatile organometallic complexes of lowered reactivity suitable for use in chemical vapor deposition of metal oxide films
JP7555624B2 (en) Chemical vapor deposition raw material, atomic layer deposition raw material, and method for producing tin-containing thin film
Suh et al. Precursor Oxidation State Control of Film Stoichiometry in the Metal− Organic Chemical Vapor Deposition of Tin Oxide Thin Films
JP5535466B2 (en) Metal oxide coating
KR910000408B1 (en) Method for making transparent conductive film
JPH0240742B2 (en) KODODENSEIHAKUMAKUSEIZOHO
CA1276160C (en) Organotin compounds containing fluorine useful for forming fluorine-doped tin oxide coating
Ni et al. Charge transport and optical properties of MOCVD-derived highly transparent and conductive Mg-and Sn-doped In2O3 thin films
Morstein Volatile zirconium bis (acetylacetonato) bis (alcoholato) complexes containing heterosubstituted alcoholato ligands
US8404877B2 (en) Metal oxide coatings
JP3834339B2 (en) Transparent conductive film and method for producing the same
JPWO2005035823A1 (en) Metal complex having β-diketonato ligand and method for producing metal-containing thin film
Nomura et al. Thermal decomposition of organoindium compounds and preparation of indium-tin-oxide films
US7652157B2 (en) Metal oxide coatings
KR101565613B1 (en) Metal oxide coatings
JP2003267733A (en) Metal oxide precursor solution and method for preparing it and metal oxide thin film and method for forming it

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term