JPH0240737B2 - TETSUKIZAIJOHENOKINZOKUKOOTEINGUHOHO - Google Patents

TETSUKIZAIJOHENOKINZOKUKOOTEINGUHOHO

Info

Publication number
JPH0240737B2
JPH0240737B2 JP21165388A JP21165388A JPH0240737B2 JP H0240737 B2 JPH0240737 B2 JP H0240737B2 JP 21165388 A JP21165388 A JP 21165388A JP 21165388 A JP21165388 A JP 21165388A JP H0240737 B2 JPH0240737 B2 JP H0240737B2
Authority
JP
Japan
Prior art keywords
coating
metal
base material
iron base
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21165388A
Other languages
Japanese (ja)
Other versions
JPH0261055A (en
Inventor
Hirofumi Shimura
Suketsugu Enomoto
Nobuaki Ootomo
Hajime Tariki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Suzuki Motor Corp
Original Assignee
Agency of Industrial Science and Technology
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Suzuki Motor Corp filed Critical Agency of Industrial Science and Technology
Priority to JP21165388A priority Critical patent/JPH0240737B2/en
Publication of JPH0261055A publication Critical patent/JPH0261055A/en
Publication of JPH0240737B2 publication Critical patent/JPH0240737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、軟鋼などの鉄基材上へ、銅その他の
一般的にコーテイングが困難な金属をコーテイン
グする方法に関するものであり、さらに詳しく
は、車両のエンジンやミツシヨン、軸受部等で面
圧が高く耐摩耗性を必要とする部品、タービンブ
レードのように高耐酸化性が要求される部品、ま
たは高導電性金属のコーテイングにより電気関連
分野の部品に適用するのに好適な鉄基材上への金
属コーテイング方法に関するものである。 [従来の技術] 鉄基材上への金属コーテイング方法としては、
電気メツキ法、真空蒸着法、溶射、CVDまたは
PVD、あるいはスパツタリングなどがある。 しかしながら、例えば、銅のような金属は、鉄
基材の上に直接コーテイングすることが困難であ
り、たとえ電気メツキ等によつて被着できるとし
ても、両者の密着強度が非常に弱く、また厚いコ
ーテイング層を得ることはできない。さらに、高
真空状態でコーテイングする蒸着、スパツタリン
グ、CVD、あるいはPVDでは、皮膜そのものの
性能は優れているが、大型部品へのコーテイング
や、大量生産ができないという問題がある。ま
た、局部的に微小領域へ金属をコーテイングしよ
うとする場合、マスキングが必要となり、無駄な
労力を必要とする。 このような問題は、金や銀等のコーテイングを
行う場合も同様である。これは、コーテイングに
際して両者の金属間に拡散層が形成されないこと
に起因する。 [発明が解決しようとする問題点] 本発明者は、このような鉄に対する密着強度が
劣る金属を、高真空状態での処理を必要とするこ
となく、拡散層を介して高い密着強度でコーテイ
ングすべく、鋭意研究を重ねた結果、助剤として
レーザー吸収性においてすぐれたBNを用い、そ
の存在下において高出力レーザーの照射によるコ
ーテイングを行うと、特殊な拡散層の形成により
極めてすぐれた密着強度のコーテイング膜が得ら
れることを確かめ、本発明をなすに至つたもので
ある。 従つて、本発明の目的は、本来鉄基材の表面に
コーテイングし難い金属を、簡単な手段ですぐれ
た密着強度をもたせてコーテイング可能にするこ
とにある。 [問題点を解決するための手段] 上記目的を達成するための本発明の方法は、鉄
基材上に、助剤としてのBNと、コーテイングす
べき金属の粉末とを塗着し、その表面に高出力レ
ーザーを照射することにより、鉄基材表面に
Fe2Bを主体とするコーテイング金属の拡散層を
形成させて上記金属のコーテイングを行うことを
特徴とするものである。 本発明の金属コーテイング方法をさらに具体的
に説明すると、本発明の方法は、特に鉄基材に対
してコーテイングが困難な金属を対象とし、その
コーテイングに際しては、助剤としてレーザー吸
収剤であるBNを用い、それに上記金属粉末を混
合し、エチルアルコール等の揮発性液体と共に混
練して泥状にしたものを鉄基材上に塗着する。 金属粉末に対するBNの混合比は、25〜50vol
%が望ましく、特に、30vol%程度が最も望まし
い。この混合比率が少なくても、また逆に多くて
も被膜生成は阻害される。また、BNの粒度は、
光エネルギ吸収性がよい3〜10μのものが被膜の
生成を助長する。 上記鉄基材上への金属粉末及び助剤の塗着は、
上述した泥状のものを適宜手段で塗布することに
より行うことができ、例えば鉄基材をそのまま泥
状液の中に浸漬してもよい。また、最初に鉄基材
表面に助剤であるBNをスプレーし、その上に金
属粉末を重ね、さらにその上にBNをスプレーそ
の他の方法で被着するなどの方法によることもで
きる。 このようにして金属粉末及び助剤を塗着した鉄
基材は、電気炉等において乾燥させるが、前述し
た脱脂・洗浄が不十分であれば、ここで塗布膜の
剥離が生起する。この乾燥後に、鉄基材の塗布膜
上に高出力レーザーを照射すると、瞬時に上記金
属のコーテイング膜が形成される。その際、接合
界面に数μmのFe2Bを主体とするCu拡散層が形
成され、それによつて密着強度の高いコーテイン
グ膜が形成される。 上記接合界面の拡散層を形成するFe2Bは、そ
れ自体、比較的脆い材料であるが、拡散層が非常
に薄いものであるため、表面的に脆さが生じるよ
うなことはなく、むしろすぐれた破断強度を示す
ため、コーテイング膜の密着強度が非常に高くな
つて、10Kg/mm2またはそれ以上にも達し、簡単に
剥離することがないばかりでなく、その膜の被着
面に機械加工を施すこともできる。 照射する高出力レーザーとしては、高出力エネ
ルギが広領域で取り出せる炭酸ガスレーザーが適
し、それを広領域に照射するには、多数の分割さ
れたミラーによつて所要の位置に集光するインテ
グレーシヨンミラーや、ポリゴンミラーを使用
し、鉄基材に適当な送りを与えるとか、あるい
は、レーザーによつて鉄基材の表面をスキヤニン
グするなどの手段により、鉄基材における所要の
表面に照射する。また。局部的な微小領域に被膜
を生成させる場合には、集光レンズを用いて集光
することができ、適当なスポツト光を用いて加工
テーブルをNC化することにより、直線状、曲線
状、あるいはそれらを複合化した各種図形、模様
状に金属をコーテイングすることもできる。 高出力レーザーのパワーは、該条件に対応して
適切に設定される。
[Industrial Application Field] The present invention relates to a method of coating copper and other metals that are generally difficult to coat onto iron base materials such as mild steel. Applicable to parts that require high surface pressure and wear resistance such as bearings, parts that require high oxidation resistance such as turbine blades, or parts in electrical fields that are coated with highly conductive metal. The present invention relates to a method of metal coating on a suitable ferrous substrate. [Prior art] As a metal coating method on a steel base material,
Electroplating method, vacuum evaporation method, thermal spraying, CVD or
Examples include PVD and sputtering. However, for example, it is difficult to directly coat a metal such as copper on an iron base material, and even if it can be coated by electroplating, the adhesion strength between the two is very weak, and if the metal is thick It is not possible to obtain a coating layer. Furthermore, in vapor deposition, sputtering, CVD, or PVD, which apply coatings under high vacuum conditions, the performance of the film itself is excellent, but there is a problem that it cannot be coated on large parts or mass-produced. Furthermore, when attempting to locally coat a minute area with metal, masking is required, which requires wasted effort. Such problems also occur when coating with gold, silver, or the like. This is due to the fact that no diffusion layer is formed between the two metals during coating. [Problems to be Solved by the Invention] The present inventor has devised a method to coat a metal with poor adhesion strength to iron with high adhesion strength through a diffusion layer without requiring treatment in a high vacuum state. As a result of extensive research, we have found that by using BN, which has excellent laser absorption properties as an auxiliary agent, and coating with high-power laser irradiation in the presence of BN, extremely excellent adhesion strength is achieved due to the formation of a special diffusion layer. It was confirmed that a coating film of this type could be obtained, and the present invention was completed. Therefore, an object of the present invention is to make it possible to coat the surface of an iron base material with a metal that is originally difficult to coat, with a simple method and with excellent adhesion strength. [Means for Solving the Problems] The method of the present invention for achieving the above object is to apply BN as an auxiliary agent and metal powder to be coated onto an iron base material, and coat the surface of the iron base material. By irradiating high-power laser to the iron base material surface,
This method is characterized in that a diffusion layer of a coating metal mainly composed of Fe 2 B is formed to coat the metal. To explain the metal coating method of the present invention more specifically, the method of the present invention targets metals that are difficult to coat, especially on iron base materials, and when coating the metal, a laser absorbent such as BN is used as an auxiliary agent. The metal powder is mixed therewith and kneaded with a volatile liquid such as ethyl alcohol to form a slurry, which is applied onto an iron base material. The mixing ratio of BN to metal powder is 25 to 50 vol.
%, particularly about 30 vol% is most desirable. Even if this mixing ratio is low, or conversely high, film formation is inhibited. In addition, the particle size of BN is
A material with a diameter of 3 to 10 microns, which has good light energy absorption properties, promotes the formation of a film. The application of the metal powder and auxiliary agent onto the above iron base material is as follows:
This can be done by applying the above-mentioned slurry by an appropriate means; for example, the iron base material may be immersed as it is in the slurry. Alternatively, it is also possible to first spray BN as an auxiliary agent onto the surface of the iron base material, layer the metal powder on top of that, and then apply BN on top of that by spraying or other methods. The iron base material coated with the metal powder and auxiliary agent in this manner is dried in an electric furnace or the like, but if the aforementioned degreasing and cleaning are insufficient, the coating film will peel off. After this drying, when a high-power laser is irradiated onto the coated film of the iron base material, the metal coating film is instantly formed. At this time, a Cu diffusion layer mainly composed of Fe 2 B of several micrometers is formed at the bonding interface, thereby forming a coating film with high adhesion strength. Fe 2 B, which forms the diffusion layer at the bonding interface mentioned above, is itself a relatively brittle material, but since the diffusion layer is very thin, there is no appearance of brittleness on the surface; Due to its excellent breaking strength, the adhesion strength of the coating film is extremely high, reaching 10Kg/ mm2 or more, and not only does it not peel off easily, but also mechanically adheres to the surface it adheres to. It can also be processed. As a high-power laser for irradiation, a carbon dioxide gas laser is suitable because it can extract high-output energy over a wide area.In order to irradiate a wide area, an integration method that uses many divided mirrors to focus the light on the desired position is recommended. Irradiation is applied to the desired surface of the iron base material by using a mirror or a polygon mirror to give the iron base material an appropriate feed, or by scanning the surface of the iron base material with a laser. Also. When forming a film on a localized micro area, it is possible to focus the light using a condensing lens, and by using an appropriate spot light and converting the processing table to NC, it can be formed into a straight, curved, or It is also possible to coat metal in various shapes and patterns that combine them. The power of the high-output laser is appropriately set according to the conditions.

【表】 第1表に各金属のコーテイングに用いるレーザ
ー出力及び鉄基材の送り速度の一例を示す。 レーザー照射の後、鉄基材上に残留する未溶着
粉末は、必要に応じて、有機溶剤による洗浄、あ
るいは鉄基材に振動を与えることにより除去す
る。 上述したところにより得られるコーテイング膜
は、コーテイング条件の適切な設定により比較的
厚くすることも容易であり、また鉄基材の表面に
塗着する際にBNの量を多くすると、コーテイン
グ膜の内部にBNが残留して複合被膜を形成し、
そのBNが潤滑性を有していて、固体潤滑材とし
て作用するので、潤滑性複合被膜を形成すること
ができる。この複合被膜を潤滑材料として使用す
るには、複合被膜中にBNが少なくとも20Vol%
あることが望ましい。 このような潤滑性被膜を形成する場合におい
て、BNはそのままでは熱を加えても分解しない
が、溶融金属に触れると分解する特性を有し、そ
のため比較的大量に添加しないと内部に残留しな
い。また、BNはCu等に比して比重が小さく、金
属が溶融したときにその表面に浮上するため、
BNをコーテイング膜の内部に残留させる場合に
は、この点も考慮して大量に添加する必要があ
る。 [実施例] 高出力レーザーを利用し密着性のよいコーテイ
ング膜を作るのが極めて困難といわれている鉄基
材上への銅のコーテイングについて実験を行つ
た。 実験方法には、69×17×14mmのSS41材の試験
片を用い、この試験片上にエチルアルコールに分
散した粒径約30μmの銅粉末を塗着した試料、及
び上記銅粉末と30vol%のBNの混合粉末をそれ
ぞれ塗着した試料を作成し、インテグレーシヨン
ミラーを使用してレーザーを照射した。照射面積
は12.5×12.55mm、レーザー出力は3〜5kW、試
料の送り速度は0.5〜1.5m/minとした。 実験の結果、Cu粉末のみでのコーテイングは、
この実験条件の範囲で実現できなかつた。 一方、Cu−BN混合粉末の場合については、
4kWのパワーで、試験片送り速度0.5m/minの
条件で行つたとき、最良のコーテイングが得られ
た。形成されたCu層の厚さは約180μmである。
また、EPMA(electron probe micro analyzer)
分析の結果、Cu層表面にBN濃度が高く、深さ方
向に濃度は減少し、10μm以上深いとBNは殆ど
検出されなかつた。第1図に、接合界面を
EPMA線分析した結果を示しているが、約3μm
のFe2Bを主体とするCu拡散層が形成されている
ことがわかつた。 [発明の効果] 以上に詳述したように、本発明の金属コーテイ
ング方法によれば、今まで難しいと考えられてい
た鉄基材上へのCu等のコーテイングを容易に行
うことができ、しかも比較的簡単な手段で短時間
にすぐれた密着強度をもつコーテイング層を得る
ことができる。
[Table] Table 1 shows an example of the laser power used for coating each metal and the feed rate of the iron base material. After laser irradiation, the unwelded powder remaining on the iron base material is removed by cleaning with an organic solvent or by applying vibration to the iron base material, if necessary. The coating film obtained as described above can be made relatively thick by appropriately setting the coating conditions, and if the amount of BN is increased when applying it to the surface of the iron base material, the inside of the coating film will be thickened. BN remains and forms a composite film,
Since the BN has lubricating properties and acts as a solid lubricant, a lubricious composite film can be formed. In order to use this composite coating as a lubricating material, at least 20Vol% BN must be present in the composite coating.
It is desirable that there be. When forming such a lubricating film, BN does not decompose as it is even when heated, but it has the property of decomposing when it comes into contact with molten metal, so it will not remain inside unless it is added in a relatively large amount. In addition, BN has a lower specific gravity than Cu, etc., and floats to the surface when the metal is melted.
If BN is to remain inside the coating film, it is necessary to take this point into consideration and add it in large quantities. [Example] An experiment was conducted on coating copper on an iron base material, which is said to be extremely difficult to create a coating film with good adhesion using a high-power laser. In the experimental method, a 69 x 17 x 14 mm SS41 material test piece was used, and a sample on which copper powder with a particle size of approximately 30 μm dispersed in ethyl alcohol was applied, and the above copper powder and 30 vol% BN were used. A sample was prepared by coating each of the mixed powders, and a laser was irradiated using an integration mirror. The irradiation area was 12.5 x 12.55 mm, the laser output was 3 to 5 kW, and the sample feeding speed was 0.5 to 1.5 m/min. As a result of the experiment, coating with Cu powder only
This could not be achieved within the range of these experimental conditions. On the other hand, in the case of Cu-BN mixed powder,
The best coating was obtained when the test was performed with a power of 4 kW and a specimen feed rate of 0.5 m/min. The thickness of the formed Cu layer is approximately 180 μm.
Also, EPMA (electron probe micro analyzer)
As a result of the analysis, the BN concentration was high on the surface of the Cu layer, and the concentration decreased in the depth direction, with almost no BN being detected at depths of 10 μm or more. Figure 1 shows the bonding interface.
The results of EPMA line analysis are shown, and the diameter is approximately 3 μm.
It was found that a Cu diffusion layer consisting mainly of Fe 2 B was formed. [Effects of the Invention] As detailed above, according to the metal coating method of the present invention, it is possible to easily coat an iron base material with Cu, etc., which was thought to be difficult until now. A coating layer with excellent adhesion strength can be obtained in a short time by relatively simple means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法によるコーテイング膜の
接合界面をEPMA線分析した結果を示す線図で
ある。
FIG. 1 is a diagram showing the results of EPMA line analysis of the bonding interface of the coating film according to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄基材上にBNとコーテイングすべき金属の
粉末を塗着し、その表面に高出力レーザーを照射
することにより、鉄基材表面にFe2Bを主体とす
るコーテイング金属の拡散層を形成させて、上記
金属のコーテイングを行うことを特徴とする鉄基
材上への金属コーテイング方法。
1. By applying BN and powder of the metal to be coated onto the iron base material and irradiating the surface with a high-power laser, a diffusion layer of the coating metal mainly composed of Fe 2 B is formed on the iron base material surface. A method for coating a metal on an iron base material, the method comprising: coating the metal as described above.
JP21165388A 1988-08-26 1988-08-26 TETSUKIZAIJOHENOKINZOKUKOOTEINGUHOHO Expired - Lifetime JPH0240737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21165388A JPH0240737B2 (en) 1988-08-26 1988-08-26 TETSUKIZAIJOHENOKINZOKUKOOTEINGUHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21165388A JPH0240737B2 (en) 1988-08-26 1988-08-26 TETSUKIZAIJOHENOKINZOKUKOOTEINGUHOHO

Publications (2)

Publication Number Publication Date
JPH0261055A JPH0261055A (en) 1990-03-01
JPH0240737B2 true JPH0240737B2 (en) 1990-09-13

Family

ID=16609359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21165388A Expired - Lifetime JPH0240737B2 (en) 1988-08-26 1988-08-26 TETSUKIZAIJOHENOKINZOKUKOOTEINGUHOHO

Country Status (1)

Country Link
JP (1) JPH0240737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016362U (en) * 1995-03-30 1995-10-03 船井電機株式会社 Paper jam clearing mechanism in printer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258611B2 (en) * 2009-02-10 2013-08-07 三菱電機株式会社 Iron-based material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016362U (en) * 1995-03-30 1995-10-03 船井電機株式会社 Paper jam clearing mechanism in printer

Also Published As

Publication number Publication date
JPH0261055A (en) 1990-03-01

Similar Documents

Publication Publication Date Title
US4434189A (en) Method and apparatus for coating substrates using a laser
US4495255A (en) Laser surface alloying
JPS5948873B2 (en) Method for manufacturing electrode substrate or electrode provided with corrosion-resistant coating
KR960030457A (en) METHOD FOR MANUFACTURING POROUS MATERIAL, METHOD FOR MANUFACTURING ELECTRODE SUBSTRATE FOR BATTERY,
US4810525A (en) Laser method of coating metal with a noble metal
US4612208A (en) Coupling aid for laser fusion of metal powders
Lawrence et al. Carbon steel wettability characteristics enhancement for improved enamelling using a 1.2 kW high power diode laser
Hirose et al. Surface alloying of copper with chromium by CO2 laser
JPH0240737B2 (en) TETSUKIZAIJOHENOKINZOKUKOOTEINGUHOHO
KR20030035859A (en) Silver containing copper alloys for journal bearings
JP3354377B2 (en) Fabrication method of high corrosion resistance modified layer by laser spraying method
Srivatsa et al. JET VAPOR DEPOSITION™: AN ALTERNATIVE TO ELECTRODEPOSITION
Yue et al. High pwder Nd-YAG laser welding of SiC particle reinforced aluminium alloy 2124
JPS6179783A (en) Formation of graphitized layer onto member surface
JPH0372393B2 (en)
JP4336239B2 (en) Zinc-based plated steel material for laser welding, method for producing the same, and laser welding method
RU2215821C2 (en) Metal coating formation method
JP3343676B2 (en) Composite coating of plating and fluororesin and method of forming
JP3295357B2 (en) Method of forming magnetic layer on aluminum material and method of manufacturing aluminum material having magnetic layer
Frear et al. Fluxless soldering for microelectronic applications
JPH0480986B2 (en)
JPS62207883A (en) Laser treatment of surface layer of cermet
Pujar et al. Microstructural and aqueous corrosion aspects of laser-surface-melted type 304 SS plasma-coated mild steel
JPH051364A (en) Method for diffusing and densifying thermally sprayed film
JPS62182265A (en) Method for sealing pore in thermally sprayed coating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20070913

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 18

Free format text: PAYMENT UNTIL: 20080913

EXPY Cancellation because of completion of term