JPH0240670B2 - - Google Patents

Info

Publication number
JPH0240670B2
JPH0240670B2 JP57056015A JP5601582A JPH0240670B2 JP H0240670 B2 JPH0240670 B2 JP H0240670B2 JP 57056015 A JP57056015 A JP 57056015A JP 5601582 A JP5601582 A JP 5601582A JP H0240670 B2 JPH0240670 B2 JP H0240670B2
Authority
JP
Japan
Prior art keywords
formula
group
reaction
compound
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57056015A
Other languages
Japanese (ja)
Other versions
JPS58174382A (en
Inventor
Kenichi Yamamoto
Yasuyuki Kato
Masazumi Nishino
Takeo Yoshioka
Yasutaka Shimauchi
Tomoyuki Ishikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANRAKU CO Ltd
Original Assignee
SANRAKU CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANRAKU CO Ltd filed Critical SANRAKU CO Ltd
Priority to JP57056015A priority Critical patent/JPS58174382A/en
Publication of JPS58174382A publication Critical patent/JPS58174382A/en
Publication of JPH0240670B2 publication Critical patent/JPH0240670B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

【発明の詳細な説明】 本発明は新規な2―オキソ―カルバペナム誘導
体に関し、さらに詳しくは、式 式中、R1及びR2はそれぞれ独立にアシル基を
表わすか若しくは一緒になつてイミド形成残基を
表わし、R3は置換又は未置換のベンジル基を表
わす、 で示される新規な2―オキソ―カルバペナム誘導
体に関する。 下記式 で示される7―オキソ―1―アザビシクロ〔3・
2・0〕ヘプト―2―エン―2―カルボン酸骨核
を有する抗生物質(以下カルバペネム系抗生物質
という)は、一般に高い抗菌力とβ―ラクタマー
ゼ阻害活性を有しており、従来から発酵法、半合
成法、全合成法により各種の誘導体が製造されて
いる〔例えば、チエナマイシン(ジヤーナル・オ
ブ・アンチビオテイクス,32巻(1979年),1〜
12頁,PS―5(同,32巻(1979年),262〜286
頁),3位及び4位に広範な置換基を有する誘導
体(例えば、特開昭56―5478号公報など)〕。ま
た、これらの抗生物質を製造するための重要中間
体としては、下記式 式中、Rは水素原子又はメチル基を表わす、 で示される2―オキソ―アゼチジン誘導体〔テト
ラヘドロン・レターズNo.40(1979),3867〜3870頁
又は、特開昭56―131565号公報参照〕が知られて
いるが、これらはいずれもカルバペネム骨核の6
位に置換基をもたないか又は炭素―炭素結合を有
するカルバペネム系抗生物質を製造する目的で提
供されている。 一方、米国特許第4218459号公報では、該6位
にアシル基により保護されたアミノ基を有するカ
ルバペネム系抗生物質及びそれらの製造法が開示
されている。しかし、該製造法は、生起する立体
異性体の混合物から、目的とする抗菌活性物質の
単離を必須とし、さらに高収率で目的物を製造す
る方法が望まれていた。 本発明者らは、該6位にアミノ基を有するカル
バペネム系抗生物質の所期の立体構造を有する選
択的な合成を開発すべく研究した結果、前記2―
オキソ―アゼチジン誘導体の3位のアミノ基をイ
ミド型に保持したまま、それ自体公知のオゾン分
解に付することにより、4位置換のクロチル基の
二重結合を酸化開裂してアルデヒドに導けるこ
と、さらに、該アルデヒド体はそれ自体公知の環
化反応を行うことにより、式()で示される2
―オキソ―カルバペナム誘導体が得られることを
見い出し、本発明を完成した。なお、上記オゾン
分解について付言すれば、生物活性型〔本発明に
用いた2―オキソ―アゼチジンの場合は、3
(S),4(R)〕は、2―オキソ―アゼチジン環の
3位と4位の置換基の立体配置がシスであり、3
位置換基がアミド基の場合は、オゾン分解によつ
て生成されるのは、目的とするアルデヒド体では
なく、アミド基の水素原子とアルデヒドが閉環し
た 式 式中、R1は前記の意味を表わし、Rはエステ
ル残基を表わす、 で示される化合物が主に生成するため本発明の目
的を達成することができない。 本発明によれば、式()の化合物のR1及び
R2のアシル基としては、例えば、それぞれ独立
にアセチル,プロピオニル,ブチロイル,ベンゾ
イル,フエニルアセチル,トリクロロアセチル,
モノクロロアセチル若しくはジクロロアセチル基
又は同時に表わす場合にはフタリル基を挙げるこ
とができるが、6位がアシル基で保護されたアミ
ノ基を有するカルバペネム系抗生物質を得るため
には、R1及びR2のアシル基として、それぞれ電
気陰性度の異なる基で、例えば、R1がフエニル
アセチル基の場合、R2はトリクロロアセチル基,
モノクロロアセチル基,又はジクロロアセチル基
を選ぶのがよい。 また、R3の置換又は未置換のベンジル基とし
ては、例えば、ベンジル,p―ニトロベンジル,
p―メトキシベンジル,p―ブロムベンジル,ベ
ンズヒドリル,トリチル,フエナシル,又はフタ
リジル基などを挙げることができるが、必要によ
り容易に脱離できるp―ニトロベンジル基又はベ
ンズヒドリル基を好適なものとして挙げることが
できる。 これらの化合物は、例えば、テトラヘドロン・
レターズ,21巻(1980),4221―4224頁記載の方
法に準じて、次に掲げる反応スキーム (ただし、式中、R1,R2及びR3は前記の意味を
有し、R4は各種の有機基を表わす。) で示される如く、6位がアシル基で保護されたア
ミノ基を有し、3位にs―置換基を有するそれ自
体公知のカルバペネム系抗生物質に導き得る合成
中間体として有用である。 本発明によれば、式()の化合物は例えば、
前記テトラヘドロン・レターズ,No.40(1979),
3867―3870頁に記載の方法に準じて、ペニシリン
Gより下記の反応スキーム (式中、Pcはペニシリンを表わし、Trはトリチ
ル基を表わす。) の各工程を経て得られた式(a)で示される天然型、
2―オキソ―アゼチジン(3(S),4(R))誘導
体を出発原料として、例えば、下記反応式に示す
合成経路により合成することができる。 (ただし、反応式中、R1,R2及びR3は前記の意
味を有する。) 上記反応式に示す各段の単位反応はそれ自体既
知のものであり、既知の方法で実施することがで
きるが、各段の反応について簡単に説明すれば次
のとおりである。 (a)→(1) 本段階の反応でR1又はR2がそれぞれ独立の基
を表わす場合は、例えば、式(a)の2―オキソ―ア
ゼチジン誘導体をR1又はR2で示されるカルボン
酸の反応性誘導体(例えば、該カルボン酸のクロ
ルブロム等のハロゲニド,イソプロペニル基の活
性エステル又は酸無水物)と反応させることによ
りアミド化合物を得た後、さらに目的に応じて選
択される前記の反応性誘導体と、必要に応じて塩
基性、酸性あるいは塩類触媒などの反応促進剤の
存在下に反応せしめて行うことができる(例え
ば、特公昭51―33919号公報参照)。 また、R1又はR2が一緒になつてイミド残基を
表わす場合は、例えば、式(a)の化合物をN―アル
キロキシカルボニルイミド化合物と反応させるこ
とにより、式(1)の3位のアミノ基がイミド残基に
より保護された2―オキソ―アゼチジン(以下ア
ゼチジノンともいう)誘導体に変えることができ
る。本反応はそれ自体公知のアミノ基のイミド化
反応を利用して行うことができる。 (1)→(2) 本段階では、式(1)の化合物をオゾン分解するこ
とによりアゼチジノンの4位のクロチル基をホル
ミルメチル基に変えることができる。この反応は
また、通常のオレフインの酸化分解反応によつて
も行うことができる。 (2)→(3) 本段階では、式(2)のアルデヒド誘導体を酸化反
応に付すことにより、アルデヒド基がカルボキシ
ル基に酸化された(3)の化合物に変える。 この反応は、通常の酸化反応を用いることがで
きるが、好ましくはクロム酸を用いた、例えば、
Jones酸化などによつて行うことができる。 (3)→(4) 本段階では式(3)の化合物をそれ自体公知の炭素
―炭素結合形成反応によつてケトエステル体式(4)
の化合物に変えることができる。例えば、式(3)の
化合物をN,N′―カルボニルジイミダゾールと
処理して得られるイミダゾライドとマグネシウム
―モノ―p―ニトロベンジルマロネートを反応さ
せ、式(4)の化合物を得ることができる。 (4)→(5) 本段階では上記の如くに得られた式(4)のケトエ
ステル体をオゾン分解、更にメタノリシスするこ
とによつて、アゼチジノンの1位側鎖(メチル―
3―メチルブテノエート―2―イル)を脱離せし
めることによつて式(5)の化合物に変える。 (5)→(6) 本段階では、式(5)化合物をトシルアジドで処理
し、式(6)で示されるジアゾケトエステルに変換せ
しめる。 (6)→() 本段階では、カルベンの挿入反応によつて閉環
し、ビシクリル体式()の2―オキソ―カルバ
ペナム誘導体に変えることができる。例えば、上
記の如くして得られる式(6)のジアゾケトエステル
をロジウム又は銅触媒で処理し、又は光照射によ
つてカルベンを生成させることによつて行なうこ
とができる。 以上の各反応は、必要により、各反応段階で得
られる生成物をそれ自体公知の分離手段により精
製して用いるのが好適であり、また、各工程で得
られる化合物の立体配置は保存されたまま式
()で示される本発明の目的化合物まで導くこ
とができる。 かくして得られる式()の化合物は、前述し
た如く、生物活性を発現するための好適な立体配
置を有しており、それ自体公知の3位変換方法に
より6位にアミノ基を有するカルバペネム誘導体
の立体選択的合成中間体として有用である。 以下に製造の実施例を示し、本発明をより具体
的に説明する。 実施例 1 5(R),6(S)―3.7―ジオキソ―6―フタル
イミド―1―アザビシクロ〔3・2・0〕ヘプ
タン―2―カルボン酸パラニトロベンジルエス
テルの製法 アミノアゼチジノン(a)〜297mg(1.185mmol)を
アセトン3mlにとかし、99.4mg(1.183mmol)の
無水NaHCO3を3mlの水にとかした液を加えた。
この混合液にN―カルボエトキシフタルイミド
260mg(1.183mmol)を加え、一夜室温でかきま
ぜた。反応液を塩化メチレン(以後CH2Cl2と略
記する)で希釈し、飽和食塩水で洗浄後、有機層
を無水硫酸ナトリウムで乾燥した。溶媒を留去し
たあとシリカゲルカラム(ベンゼン:アセトン=
20:1)で精製し340mg(75.2%)の目的物を得
た。 NMR(CDCl3)δ1.35(3H,m,=CH−CH3),
2.25,2.27(各々3H,s,【式】),2.35 (2H,m,−CH2 −CH=),3.75(3H,s,
OCH3),4.24(1H,m,C−4H),5.18(2H,
m,−C,=C−),5.42(1H,d,J=5
Hz,C−3H),7.60〜7.85(4H,m,ArH) IR(CHCl3) 1780(sh),1765,1725,1395cm-1 β―フタルイミド―β―クロチルアゼチジノン
(b)〜100mg(0.262mmol)をCH2Cl220mlに溶解し、
−78℃に冷却し、5分間オゾンを通した。過剰の
オゾンをN2ガスで除去した。過剰のジメチルス
ルフイドを加え、室温で30分間かきまぜた。溶媒
を減圧留去し、得られた油状物をバイオビーズ
(バイオ・ラツド社製)カラムにかけ、82.8mg
(85.4%)の目的物を得た。 NMR(CDCl3)δ 2.17,2.20(各々3H,s,
【式】),2.66〜3.10(2H,m,−CH2 CHO),3.77(3H,s,OCH3),4.73(1H,m,
C−4H,5.50(1H,d,J=5Hz,C−3H),
7.62〜7.86(4H,m,ArH),9.57(1H,s,C
HO) IR(CHCl3) 1780(sh),1760,1740(sh),
1725,1390cm-1 アルデヒド(c)〜73.2mg(0.204mmol)を20mlのア
セトンにとかし、氷冷下に無水クロム酸30.6mg
(0.306mmol)と1〜2滴の濃硫酸を加え、20分
間反応させた。反応液をCH2Cl2で希釈し、砕氷
に注いだ。有機層を飽和食塩水で洗浄し、乾燥
後、溶媒を留去し、バイオビーズカラム(ベンゼ
ン)で精製し、63mg(79.9%)の目的物を得た。 NMR(CDCl3)δ 2.20,2.23(各々3H,s,
【式】),2.57(1H,dd,J=7,18Hz,− CHCOOH),2.84(1H,dd,J=7,18Hz,
−CHCOOH),3.75(3H,s,CCH3),4.56
(1H,dt,J=5,7Hz,C−4H),5.50(1H,
d,J=5Hz,C−3H),5.6〜6.3(1H,m,
COO),7.63〜7.85(4H,m,ArH) IR(CHCl3) 1780(sh),1760,1720,1385cm-1 フタルイミドカルボン酸(d)〜432.8mg
(1.121mmol)を30mlTHFに溶解し、N,N′―カ
ルボニルジイミダゾール200mg(1.233mmol)の
4mlテトラヒドロフラン(以後THFと略記する)
溶液を加えた。室温で、窒素中、6時間反応し
た。反応液にマグネシウム・モノ―p―ニトロベ
ンジルマロネート618.8mg(1.233mmol)の8.6ml
THF溶液を加え、窒素下室温で16時間反応した。
反応液を150mlのCH2Cl2で希釈し、飽和重曹水と
飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥
した。溶媒を減圧留去し、シリカゲルカラム(ク
ロロホルム)で精製して285.9mg(45.3%)の目
的物を得た。 NMR(CDCl3)δ 2.17,2.23(各々3H,s,
【式】),2.90(1H,dd,J=7,18Hz,− CHCO−),3.14(1H,dd,J=7,18Hz,
−CHCO−),3.36(2H,s,−COCH2
COO−),3.79(3H,s,OCH3),4.72(1H,
q,J=5,7Hz,C−4H),5.05(2H,s,
CH2Ar),5.56(1H,d,J=5Hz,C−3H),
7.46(2H,d,J=9Hz,ArH),7.30〜7.53
(4H,m,ArH),8.15(2H,d,J=9Hz,
ArH) IR(CHCl3) 1780(sh),1760,1720,1525,
1385,1350cm-1 Mass(m/z) 563(M+ ケトエステル(e)〜204mg(0.362mmol)を30mlの
CH2Cl2にとかし、−78℃に冷却後、オゾンを10分
間通気した。同温度でジメチルスルフイドを2滴
加え、室温まで昇温後(30分反応)、溶媒を減圧
留去した。残留物をTHF2mlに溶解し、メタノー
ル15mlと水3mlを加え、10分間加熱、還流する。
溶媒を減圧留去し、残留物をCH2Cl2に溶解し、
水洗、乾燥(無水硫酸ナトリウム)後、溶媒を減
圧留去して無色油状物152mg(93.1%)を得た。 NMR(CDCl3)δ 2.83(1H,dd,J=7,18
Hz,−CH−CO−),3.30(1H,dd,J=8,
18Hz,−CHCO−),3.48(2H,s,−CO−C
H2−COO−),4.30(1H,m,J=5,7,8
Hz,C−4H),5.12(2H,s,CH3Ar),5.43
(1H,d,J=5Hz,C−3H),7.42(2H,d,
J=9Hz,ArH),7.66〜7.88(4H,m,
ArH),8.13(2H,d,J=9Hz,ArH) IR(KBr) 1780,1765,1715,1520,1385cm-1 Mass(m/z) 452(M++1) ケトエステル(f)〜310mg(0.687mmol)を1.0mlの
ジメチルホルムアミドにとかし、9.0mlのアセト
ニトリルを加えた。トシルアジド271mg
(1.375mmol)とトリエチルアミン103mg
(1.018mmol)を加え、室温で3時間かきまぜた。
反応液をクロロホルムで希釈し、水洗した。無水
硫酸ナトリウムで乾燥し、溶媒を減圧留去後シリ
カゲルカラム(CHCl3)で精製し、300mg(91.5
%)の目的物を得た。 NMR(CDCl3)δ 3.10(1H,dd,J=6,18
Hz,−CHCO−),3.37(1H,dd,J=8,
18Hz,−CHCO−),4.37(1H,m,J=5,
6,8Hz,C−4H),5.23(2H,s,−CH2
Ar),5.46(1H,d,J=5Hz,C−3H),
6.58(1H,s,NH),7.38(2H,d,J=8
Hz,ArH),7.67〜7.87(4H,m,ArH),8.10
(2H,d,J=8Hz,ArH) IR(CHCl3) 2140,1780,1765,1720,1525,
1390cm-1 ジアゾケトエステル(f)〜380mg(0.797mmol)を
乾燥ベンゼン150mlにとかし、ロジウムアセテー
ト10mgを加えた。溶媒の脱気を行ない、50℃で20
分間反応した。反応液を冷却し、触媒を別、洗
浄したあと、液と洗液を減圧留去し、196.8mg
(55%)の目的物を得た。 TLC Rf値:0.76(シリカゲルTLCメルク) ベンゼン:アセトン3:1(v/v) 実施例 2 5(R),6(S)3―(2―ヒドロキシエチル)
チオ―7―オキソ―6―フタルイミド―1―ア
ザビシクロ〔3・2・0〕ヘプト―2―エン―
2―カルボン酸ナトリウム塩の製法 ビシクロケトエステル196.8mgを100mlのアセト
ニトリルに加え、0℃でジフエニルクロロホスフ
エート257mg(0.957mmol)、ジイソプロピルエチ
ルアミン124mg(0.961mmol)を加え、30分間反
応した。このあと、2―ヒドロキシエチルメルカ
プタン74.7mg(0.957mmol)とジイソプロピルエ
チルアミン124mg(0.961mmol)加え、5℃で一
夜反応した。反応液をCH2Cl2で希釈し、水洗、
乾燥後、シリカゲルカラム(ベンゼン:アセトン
=5:1(v/v))で分離、精製し162.2mg(70
%)を得た。 NMR(CDCl3)δ 2.93(2H,t,J=6Hz,−
SCH2 CH2OH),2.97(1H,dd,J=10,18Hz,
C−4Hα),3.32(1H,dd,J=8,18Hz,C
−4Hβ),3.42(2H,t,J=6Hz,−SCH2C
H2OH),4.53(1H,m,J=6,8,10Hz,
C−5H),5.23(1H,d,J=14Hz,C
HAr),5.50(1H,d,J=14Hz,CHAr),
5.74(1H,d,J=6Hz,C−6H),7.60(2H,
d,J=9Hz,ArH),7.36〜7.87(4H,m,
ArH),8.15(2H,d,J=9Hz,ArH) IR(CHCl3) 1795,1780,1725,1700(sh),
1525,1385cm-1 High mass(m/z) 509.0866(計算値
C24H19N3O8S1 509.0890) 〔α〕22 D=−108.3゜(c1.0,CHCl3) UV 323,306,271(nm) 21mgのパラニトロベンジルエステルを2mlのジ
オキサンにとかし、さらに2mlの水を加えた。こ
の溶液に酸化白金20mgを加え、4.5Kg/cm2の水素
下で2時間反応した。触媒を別し、液を
QAEセフアデツクス カラムにかけ、0〜1.0M
食塩水による濃度勾配傾斜法により溶出した。活
性区分をセフアデツクス HP20AGカラムにか
け、20%アセトン水で溶出した。活性区分を高速
液体クロマトグラフイーで検出し、凍結乾燥し
て、5.3mgの目的物を得た。 (1) 理化学的性状 NMR(D2O)δ 3.00(2H,t,J=6Hz,−
SCH2 CH2OH),3.13(2H,d,J=10Hz,
C−4H),3.80(2H,t,J=6Hz,−
SCH2CH2 OH),4.70(1H,m,C−5H,重
水との重なり),5.93(1H,d,J=6Hz,
C−6H),7.95(4H,m,ArH) UV λH2O nax=300.5nm(ε11900) (2) 該抗生物質の抗菌活性(各種病原性被験菌に
対する最小発育阻止濃度) 例えば、 被 検 菌 M.I.C(μg/ml) バチルス・ズブチリスATCC6633 1.56 スタフイロコツカス・アウレウス209P 0.39 プロテウス・レトゲリP―7 6.26
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to novel 2-oxo-carbapenam derivatives, more specifically, In the formula, R 1 and R 2 each independently represent an acyl group or together represent an imide-forming residue, and R 3 represents a substituted or unsubstituted benzyl group. - Regarding carbapenam derivatives. The following formula 7-oxo-1-azabicyclo [3.
2.0] Antibiotics with hept-2-ene-2-carboxylic acid cores (hereinafter referred to as carbapenem antibiotics) generally have high antibacterial activity and β-lactamase inhibitory activity, and have traditionally been processed using fermentation methods. Various derivatives have been produced by , semi-synthetic methods, and total synthetic methods [for example, Thienamycin (Journal of Antibiotics, Vol. 32 (1979), 1-
p. 12, PS-5 (ibid., vol. 32 (1979), 262-286
page), derivatives having a wide range of substituents at the 3- and 4-positions (for example, JP-A-56-5478, etc.)]. In addition, the following formula is used as an important intermediate for producing these antibiotics. 2-oxo-azetidine derivatives represented by the following formula, where R represents a hydrogen atom or a methyl group [see Tetrahedron Letters No. 40 (1979), pp. 3867-3870 or JP-A-56-131565] are known, but all of these are 6 of the carbapenem bone nucleus.
It is provided for the purpose of producing carbapenem antibiotics that have no substituent or a carbon-carbon bond at the position. On the other hand, US Pat. No. 4,218,459 discloses carbapenem antibiotics having an amino group protected by an acyl group at the 6-position and a method for producing them. However, this production method requires the isolation of the target antibacterial active substance from the mixture of stereoisomers generated, and a method for producing the target substance in a higher yield has been desired. The present inventors conducted research to develop a selective synthesis of carbapenem antibiotics having the desired three-dimensional structure having an amino group at the 6-position.
By subjecting the oxo-azetidine derivative to a known ozonolysis while keeping the amino group at the 3-position in the imide form, the double bond of the crotyl group substituted at the 4-position can be oxidatively cleaved to lead to an aldehyde; Furthermore, by performing a cyclization reaction known per se, the aldehyde body can be converted to 2 represented by the formula ().
-Oxo-carbapenam derivatives can be obtained, and the present invention has been completed. It should be noted that regarding the above ozonolysis, biologically active type [2-oxo-azetidine used in the present invention, 3
(S), 4(R)], the configuration of the substituents at the 3- and 4-positions of the 2-oxo-azetidine ring is cis, and 3
When the positional substituent is an amide group, what is produced by ozonolysis is not the desired aldehyde, but a ring-closed formula of the hydrogen atom of the amide group and the aldehyde. In the formula, R 1 represents the above-mentioned meaning, and R represents an ester residue. Since the compound represented by the following is mainly produced, the object of the present invention cannot be achieved. According to the invention, R 1 and
Examples of the acyl group for R 2 include acetyl, propionyl, butyroyl, benzoyl, phenylacetyl, trichloroacetyl,
Examples include monochloroacetyl or dichloroacetyl groups, or phthalyl groups when expressed at the same time, but in order to obtain a carbapenem antibiotic having an amino group protected with an acyl group at the 6-position, R 1 and R 2 The acyl groups are groups with different electronegativities, for example, when R 1 is a phenylacetyl group, R 2 is a trichloroacetyl group,
A monochloroacetyl group or a dichloroacetyl group is preferably selected. In addition, examples of the substituted or unsubstituted benzyl group for R 3 include benzyl, p-nitrobenzyl,
Examples include p-methoxybenzyl, p-bromobenzyl, benzhydryl, trityl, phenacyl, or phthalidyl groups, and preferred examples include p-nitrobenzyl or benzhydryl groups, which can be easily removed if necessary. can. These compounds include, for example, tetrahedron.
The following reaction scheme was prepared according to the method described in Letters, Volume 21 (1980), pages 4221-4224. (However, in the formula, R 1 , R 2 and R 3 have the above-mentioned meanings, and R 4 represents various organic groups.) It is useful as a synthetic intermediate that can lead to carbapenem antibiotics, which are known per se and have an s-substituent at the 3-position. According to the invention, the compound of formula () may be, for example:
Said Tetrahedron Letters, No. 40 (1979),
According to the method described on pages 3867-3870, the following reaction scheme was obtained from penicillin G. (In the formula, Pc represents penicillin and Tr represents a trityl group.) The natural form represented by formula (a) obtained through each step,
It can be synthesized using a 2-oxo-azetidine (3(S), 4(R)) derivative as a starting material, for example, by a synthetic route shown in the reaction formula below. (However, in the reaction formula, R 1 , R 2 and R 3 have the above meanings.) The unit reactions at each stage shown in the above reaction formula are known per se, and can be carried out by known methods. However, a brief explanation of each step of the reaction is as follows. (a)→(1) When R 1 or R 2 each represents an independent group in the reaction of this step, for example, the 2 -oxo-azetidine derivative of formula (a) is After obtaining an amide compound by reacting it with a reactive derivative of an acid (for example, a halide such as chlorobrome of the carboxylic acid, an active ester of an isopropenyl group, or an acid anhydride), the above-mentioned compound selected depending on the purpose is further obtained. This can be carried out by reacting a reactive derivative in the presence of a reaction accelerator such as a basic, acidic or salt catalyst if necessary (see, for example, Japanese Patent Publication No. 33919/1983). In addition, when R 1 or R 2 together represent an imide residue, for example, by reacting the compound of formula (a) with an N-alkyloxycarbonylimide compound, the 3-position of formula (1) can be It can be converted into a 2-oxo-azetidine (hereinafter also referred to as azetidinone) derivative in which the amino group is protected by an imide residue. This reaction can be carried out using a known imidization reaction of an amino group. (1)→(2) In this step, the crotyl group at the 4-position of azetidinone can be changed to a formylmethyl group by ozonolysis of the compound of formula (1). This reaction can also be carried out by a conventional olefin oxidative decomposition reaction. (2)→(3) In this step, the aldehyde derivative of formula (2) is subjected to an oxidation reaction to convert it into the compound (3) in which the aldehyde group is oxidized to a carboxyl group. This reaction can be carried out using a normal oxidation reaction, but preferably using chromic acid, for example,
This can be done by Jones oxidation or the like. (3)→(4) In this step, the compound of formula (3) is converted into a ketoester form of formula (4) by a carbon-carbon bond forming reaction known per se.
It can be converted into a compound of For example, the compound of formula (4) can be obtained by reacting the imidazolide obtained by treating the compound of formula (3) with N,N'-carbonyldiimidazole and magnesium-mono-p-nitrobenzylmalonate. can. (4)→(5) In this step, the ketoester of formula (4) obtained as described above is ozonolyzed and further methanolyzed to obtain the 1-position side chain (methyl-
3-methylbutenoate-2-yl) is converted into the compound of formula (5). (5)→(6) In this step, the compound of formula (5) is treated with tosyl azide to convert it into a diazoketoester represented by formula (6). (6)→() In this step, the ring is closed by a carbene insertion reaction, and it can be converted into a 2-oxo-carbapenam derivative of the bicyclyl formula (). For example, this can be carried out by treating the diazoketoester of formula (6) obtained as described above with a rhodium or copper catalyst, or by generating a carbene by irradiation with light. In each of the above reactions, if necessary, it is preferable to purify the product obtained in each reaction step by a separation means known per se, and to preserve the configuration of the compound obtained in each step. This can lead to the target compound of the present invention represented by the formula (). As mentioned above, the compound of formula () thus obtained has a suitable configuration for exhibiting biological activity, and is converted into a carbapenem derivative having an amino group at the 6-position by a known 3-position conversion method. Useful as a stereoselective synthetic intermediate. The present invention will be explained in more detail with reference to production examples below. Example 1 Method for producing 5(R),6(S)-3.7-dioxo-6-phthalimido-1-azabicyclo[3.2.0]heptane-2-carboxylic acid paranitrobenzyl ester Aminoazetidinone (a) ~297 mg (1.185 mmol) was dissolved in 3 ml of acetone, and 99.4 mg (1.183 mmol) of anhydrous NaHCO 3 dissolved in 3 ml of water was added.
Add N-carboethoxyphthalimide to this mixture.
260 mg (1.183 mmol) was added and stirred overnight at room temperature. The reaction solution was diluted with methylene chloride (hereinafter abbreviated as CH 2 Cl 2 ), washed with saturated brine, and the organic layer was dried over anhydrous sodium sulfate. After distilling off the solvent, a silica gel column (benzene:acetone=
20:1) to obtain 340 mg (75.2%) of the desired product. NMR (CDCl 3 ) δ1.35 (3H, m, = CH−C H3 ),
2.25, 2.27 (3H, s, [formula] respectively), 2.35 (2H, m, -CH 2 -CH=), 3.75 (3H, s,
OCH 3 ), 4.24 (1H, m, C-4H), 5.18 (2H,
m, -C H , =C H -), 5.42 (1H, d, J = 5
Hz, C-3H), 7.60-7.85 (4H, m, ArH) IR (CHCl 3 ) 1780 (sh), 1765, 1725, 1395cm -1 β-phthalimide-β-crotylazetidinone
(b) ~100 mg (0.262 mmol) was dissolved in 20 ml of CH2Cl2 ,
It was cooled to −78° C. and ozone was passed through it for 5 minutes. Excess ozone was removed with N2 gas. Excess dimethyl sulfide was added and stirred at room temperature for 30 minutes. The solvent was distilled off under reduced pressure, and the resulting oil was applied to a BioBead (Bio-Rad) column, and 82.8mg
(85.4%) of the target objects were obtained. NMR (CDCl 3 ) δ 2.17, 2.20 (3H, s, respectively
[Formula]), 2.66-3.10 (2H, m, -CH 2 CHO), 3.77 (3H, s, OCH 3 ), 4.73 (1H, m,
C-4H, 5.50 (1H, d, J=5Hz, C-3H),
7.62-7.86 (4H, m, ArH), 9.57 (1H, s, C
HO) IR (CHCl 3 ) 1780 (sh), 1760, 1740 (sh),
1725, 1390cm -1 Dissolve ~73.2 mg (0.204 mmol) of aldehyde (c) in 20 ml of acetone, and add 30.6 mg of chromic anhydride under ice cooling.
(0.306 mmol) and 1-2 drops of concentrated sulfuric acid were added and reacted for 20 minutes. The reaction was diluted with CH 2 Cl 2 and poured onto crushed ice. The organic layer was washed with saturated brine, dried, and then the solvent was distilled off and purified using a biobead column (benzene) to obtain 63 mg (79.9%) of the desired product. NMR (CDCl 3 ) δ 2.20, 2.23 (3H, s, respectively
[Formula]), 2.57 (1H, dd, J = 7, 18Hz, - C H HCOOH), 2.84 (1H, dd, J = 7, 18Hz,
-CH H COOH), 3.75 (3H, s, CCH 3 ), 4.56
(1H, dt, J=5.7Hz, C-4H), 5.50 (1H,
d, J=5Hz, C-3H), 5.6~6.3(1H, m,
COO H ), 7.63-7.85 (4H, m, ArH) IR (CHCl 3 ) 1780 (sh), 1760, 1720, 1385 cm -1 Phthalimidocarboxylic acid (d) ~432.8mg
(1.121 mmol) was dissolved in 30 ml THF, and 200 mg (1.233 mmol) of N,N'-carbonyldiimidazole was dissolved in 4 ml of tetrahydrofuran (hereinafter abbreviated as THF).
solution was added. The reaction was carried out at room temperature under nitrogen for 6 hours. 8.6 ml of 618.8 mg (1.233 mmol) of magnesium mono-p-nitrobenzyl malonate was added to the reaction solution.
A THF solution was added and the mixture was reacted under nitrogen at room temperature for 16 hours.
The reaction solution was diluted with 150 ml of CH 2 Cl 2 , washed with saturated aqueous sodium bicarbonate and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified using a silica gel column (chloroform) to obtain 285.9 mg (45.3%) of the desired product. NMR (CDCl 3 ) δ 2.17, 2.23 (3H, s, respectively
[Formula]), 2.90 (1H, dd, J = 7, 18Hz, - C H HCO -), 3.14 (1H, dd, J = 7, 18Hz,
-CH H CO-), 3.36 (2H, s, -COC H 2 -
COO−), 3.79 (3H, s, OCH 3 ), 4.72 (1H,
q, J = 5,7 Hz, C-4H), 5.05 (2H, s,
CH 2 Ar), 5.56 (1H, d, J = 5Hz, C-3H),
7.46 (2H, d, J=9Hz, ArH), 7.30~7.53
(4H, m, ArH), 8.15 (2H, d, J=9Hz,
ArH) IR ( CHCl3 ) 1780 (sh), 1760, 1720, 1525,
1385, 1350cm -1 Mass (m/z) 563 (M + ) Keto ester (e) ~204 mg (0.362 mmol) in 30 ml
After dissolving in CH 2 Cl 2 and cooling to −78° C., ozone was bubbled through for 10 minutes. Two drops of dimethyl sulfide were added at the same temperature, and after raising the temperature to room temperature (reaction for 30 minutes), the solvent was distilled off under reduced pressure. Dissolve the residue in 2 ml of THF, add 15 ml of methanol and 3 ml of water, and heat under reflux for 10 minutes.
The solvent was removed under reduced pressure and the residue was dissolved in CH 2 Cl 2 .
After washing with water and drying (anhydrous sodium sulfate), the solvent was distilled off under reduced pressure to obtain 152 mg (93.1%) of a colorless oil. NMR (CDCl 3 ) δ 2.83 (1H, dd, J = 7, 18
Hz, -CH H -CO-), 3.30 (1H, dd, J=8,
18Hz, -CH H CO-), 3.48 (2H, s, -CO-C
H 2 −COO−), 4.30 (1H, m, J = 5, 7, 8
Hz, C-4H), 5.12 (2H, s, CH 3 Ar), 5.43
(1H, d, J=5Hz, C-3H), 7.42 (2H, d,
J = 9Hz, ArH), 7.66-7.88 (4H, m,
ArH), 8.13 (2H, d, J = 9Hz, ArH) IR (KBr) 1780, 1765, 1715, 1520, 1385cm -1 Mass (m/z) 452 (M + +1) ~310 mg (0.687 mmol) of ketoester (f) was dissolved in 1.0 ml of dimethylformamide and 9.0 ml of acetonitrile was added. Tosylazide 271mg
(1.375mmol) and triethylamine 103mg
(1.018 mmol) was added and stirred at room temperature for 3 hours.
The reaction solution was diluted with chloroform and washed with water. Dry over anhydrous sodium sulfate, remove the solvent under reduced pressure, and purify with a silica gel column (CHCl 3 ) to give 300 mg (91.5
%) of the target product was obtained. NMR (CDCl 3 ) δ 3.10 (1H, dd, J = 6, 18
Hz, -CH HCO- ), 3.37 (1H, dd, J=8,
18Hz, -CH H CO-), 4.37 (1H, m, J=5,
6,8Hz,C-4H),5.23(2H,s,-C H 2
Ar), 5.46 (1H, d, J=5Hz, C-3H),
6.58 (1H, s, NH), 7.38 (2H, d, J=8
Hz, ArH), 7.67-7.87 (4H, m, ArH), 8.10
(2H, d, J=8Hz, ArH) IR (CHCl 3 ) 2140, 1780, 1765, 1720, 1525,
1390cm -1 ~380 mg (0.797 mmol) of diazoketo ester (f) was dissolved in 150 ml of dry benzene and 10 mg of rhodium acetate was added. Degas the solvent and incubate at 50°C for 20
It reacted for minutes. After cooling the reaction liquid and separating and washing the catalyst, the liquid and washing liquid were distilled off under reduced pressure to obtain 196.8 mg.
(55%) of the target objects were obtained. TLC Rf value: 0.76 (Silica gel TLC Merck) Benzene:acetone 3:1 (v/v) Example 2 5(R),6(S)3-(2-hydroxyethyl)
Thio-7-oxo-6-phthalimido-1-azabicyclo[3.2.0]hept-2-ene-
Method for producing 2-carboxylic acid sodium salt 196.8 mg of bicycloketoester was added to 100 ml of acetonitrile, and 257 mg (0.957 mmol) of diphenylchlorophosphate and 124 mg (0.961 mmol) of diisopropylethylamine were added at 0°C, and the mixture was reacted for 30 minutes. Thereafter, 74.7 mg (0.957 mmol) of 2-hydroxyethyl mercaptan and 124 mg (0.961 mmol) of diisopropylethylamine were added, and the mixture was reacted at 5°C overnight. The reaction solution was diluted with CH 2 Cl 2 and washed with water.
After drying, it was separated and purified using a silica gel column (benzene: acetone = 5:1 (v/v)) to give 162.2 mg (70
%) was obtained. NMR (CDCl 3 ) δ 2.93 (2H, t, J=6Hz, -
SC H 2 CH 2 OH), 2.97 (1H, dd, J = 10, 18Hz,
C-4Hα), 3.32 (1H, dd, J=8, 18Hz, C
-4Hβ), 3.42 (2H, t, J=6Hz, -SCH 2 C
H 2 OH), 4.53 (1H, m, J = 6, 8, 10Hz,
C-5H), 5.23 (1H, d, J = 14Hz, C H
HAr), 5.50 (1H, d, J=14Hz, CH H Ar),
5.74 (1H, d, J=6Hz, C-6H), 7.60 (2H,
d, J=9Hz, ArH), 7.36-7.87 (4H, m,
ArH), 8.15 (2H, d, J=9Hz, ArH) IR (CHCl 3 ) 1795, 1780, 1725, 1700 (sh),
1525, 1385cm -1 High mass (m/z) 509.0866 (calculated value
C 24 H 19 N 3 O 8 S 1 509.0890) [α] 22 D = −108.3° (c1.0, CHCl 3 ) UV 323, 306, 271 (nm) 21 mg of paranitrobenzyl ester was dissolved in 2 ml of dioxane and an additional 2 ml of water was added. 20 mg of platinum oxide was added to this solution and reacted for 2 hours under 4.5 Kg/cm 2 of hydrogen. Separate the catalyst and drain the liquid.
Apply to QAE Sephadex column, 0-1.0M
Elution was performed by concentration gradient gradient method using saline. The active fraction was applied to a Sephadex HP20AG column and eluted with 20% acetone water. The active fraction was detected by high performance liquid chromatography and freeze-dried to obtain 5.3 mg of the target product. (1) Physical and chemical properties NMR (D 2 O) δ 3.00 (2H, t, J=6Hz, -
SC H 2 CH 2 OH), 3.13 (2H, d, J = 10Hz,
C-4H), 3.80 (2H, t, J=6Hz, -
SCH 2 C H 2 OH), 4.70 (1H, m, C-5H, overlap with heavy water), 5.93 (1H, d, J = 6Hz,
C-6H), 7.95 (4H, m, ArH) UV λ H2O nax = 300.5nm (ε11900) (2) Antibacterial activity of the antibiotic (minimum inhibitory concentration against various pathogenic test bacteria) For example, test bacteria MIC (μg/ml) Bacillus subtilis ATCC6633 1.56 Staphylococcus aureus 209P 0.39 Proteus retogeri P-7 6.26

Claims (1)

【特許請求の範囲】 1 式 式中、R1及びR2は、それぞれ独立にアシル基
を表わすが若しくは一緒になつてイミド形成残基
を表わし、R3は置換又は未置換のベンジル基を
表わす、 で示される化合物。 2 R1及びR2がそれぞれ独立にアセチル,プロ
ピオニル,ブチロイル,ベンゾイル,フエニルア
セチル,トリフロロアセチル,モノクロロアセチ
ル,若しくはジクロロアセチル基を表わすか、又
は一緒になつてフタリル基を表わす特許請求の範
囲第1項記載の化合物。 3 R1及びR2が一緒になつてフタリル基を表わ
す特許請求の範囲第1項記載の化合物。
[Claims] 1 formula A compound represented by the following formula, wherein R 1 and R 2 each independently represent an acyl group or together represent an imide-forming residue, and R 3 represents a substituted or unsubstituted benzyl group. 2 Claims in which R 1 and R 2 each independently represent an acetyl, propionyl, butyroyl, benzoyl, phenylacetyl, trifluoroacetyl, monochloroacetyl, or dichloroacetyl group, or together represent a phthalyl group A compound according to item 1. 3. The compound according to claim 1, wherein R 1 and R 2 together represent a phthalyl group.
JP57056015A 1982-04-06 1982-04-06 2-oxo-carbapenam derivative Granted JPS58174382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57056015A JPS58174382A (en) 1982-04-06 1982-04-06 2-oxo-carbapenam derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57056015A JPS58174382A (en) 1982-04-06 1982-04-06 2-oxo-carbapenam derivative

Publications (2)

Publication Number Publication Date
JPS58174382A JPS58174382A (en) 1983-10-13
JPH0240670B2 true JPH0240670B2 (en) 1990-09-12

Family

ID=13015227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57056015A Granted JPS58174382A (en) 1982-04-06 1982-04-06 2-oxo-carbapenam derivative

Country Status (1)

Country Link
JP (1) JPS58174382A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138050A (en) * 1988-06-30 1992-08-11 Merck & Co., Inc. 6-amido-1-methyl carbapenems
US5395931A (en) * 1988-06-30 1995-03-07 Merck & Co., Inc. 6-amido-1-methyl-2-(substituted-thio)carbapenems

Also Published As

Publication number Publication date
JPS58174382A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
SE405857B (en) PROCEDURE FOR SUBSTITUTING A GROUP IN A 6-RESP 7 POSITION WITH A PENICILLANIC ACID ASSOCIATION OR CEPHALOSPORANIC ACID ASSOCIATION
JPH0557980B2 (en)
JPH0631255B2 (en) Penems production method
US4093800A (en) Process for preparing cepham compounds
US5028427A (en) "Cephalosporin" compounds
JPH0240670B2 (en)
JP2002513403A (en) Selective epoxidation method for producing pharmaceutical compounds
US4704385A (en) 3-formamido azetidinone antibacterial agents, their preparation and use
Webber et al. Chemistry of cephalosporin antibiotics. 28. Preparation and biological activity of 3-(substituted) vinyl cephalosporins
JPH075590B2 (en) 4-substituted β-lactam compound
EP0237027A2 (en) 6-(Disubstituted amino) carbapenam compounds
IE50650B1 (en) Method for producing penicillanic acid derivatives
CA2019482A1 (en) Process for the preparation of 4-acyloxyazetidin-2-one by electrochemical methods
Aratani et al. Synthesis of 1-oxa-2-oxocephalosporins
JPS59104390A (en) Manufacture of 1-oxa-beta-lactam
US3985746A (en) 7-(α-Cyanomethylthio)acetamido-3-cephem carboxylates
SU703023A3 (en) Method of preparing 3-acyloxymethyl-delta-2-cephems
US4455314A (en) Penicillin derivatives
JP2959809B2 (en) Method for producing 7-amino-3-chloromethyl- △ (3) -cephem-4-carboxylic acid esters
JPH11255767A (en) 1-isothiazolidinone derivative of azetidin-2-one and its production
JPH0354110B2 (en)
KR810000716B1 (en) Process for preparing 1-oxadethiacepham compounds
JPH0516432B2 (en)
KR810000715B1 (en) Process for preparing 1-oxadethiacepham compounds
JPH0348681A (en) Redox preparation of 4-acyloxyazetidine-2-one