JPH0240625A - Liquid crystal electrooptic device - Google Patents

Liquid crystal electrooptic device

Info

Publication number
JPH0240625A
JPH0240625A JP19193788A JP19193788A JPH0240625A JP H0240625 A JPH0240625 A JP H0240625A JP 19193788 A JP19193788 A JP 19193788A JP 19193788 A JP19193788 A JP 19193788A JP H0240625 A JPH0240625 A JP H0240625A
Authority
JP
Japan
Prior art keywords
liquid crystal
phase
smectic
ferroelectric
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19193788A
Other languages
Japanese (ja)
Other versions
JP2804763B2 (en
Inventor
Yuichiro Yamada
祐一郎 山田
Kaoru Mori
薫 森
Norio Yamamoto
典生 山本
Giichi Suzuki
義一 鈴木
Takashi Ogiwara
隆 荻原
Ichiro Kawamura
一朗 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Denso Corp
Original Assignee
Showa Shell Sekiyu KK
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK, NipponDenso Co Ltd filed Critical Showa Shell Sekiyu KK
Priority to JP63191937A priority Critical patent/JP2804763B2/en
Publication of JPH0240625A publication Critical patent/JPH0240625A/en
Application granted granted Critical
Publication of JP2804763B2 publication Critical patent/JP2804763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To recover the display function even when the liquid crystal electrooptic device is exposed to low temperature, then the temperature rises by constituting the liquid crystal electrooptic device by using ferroelectric liquid crystal having a crystal layer which does not decrease in smectic layer interval in a crystal phase. CONSTITUTION:The ferroelectric liquid crystal material 6 is charged hermetically between two electrode substrates 1 and 2 which are arranged at an interval of 2-10mum in parallel to each other. A liquid crystal cell is heated into an anisotropic liquid phase, then cooled on the whole gradually at a speed of 0.1-1.0 deg.C per minute into a chiral smectic C phase. Consequently, liquid crystal molecules are oriented as shown in a figure (b) and the layer direction of the smectic phase 20 crosses the liquid crystal molecules 10 almost at right angles. In such a state, an electric field is applied from the top side of the paper surface to the reverse side and then the liquid molecules tilt to the left at a tilt angle theta as shown in a figure (a). When, the electric field is applied from the reverse surface of the paper surface, the liquid crystal molecules are reoriented as shown in a figure (c). Thus, liquid crystal cells are sandwiched between a 102-directional polarizing plate and an orthogonal polarizing plate, so that a figure (b) shows a drak display and figures (a) and (c) show bright displays.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶電気光学装置に関するものであって、例
えば光シヤツターや壁掛はテレビのような平面表示素子
に用いて好適なものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid crystal electro-optical device, and for example, an optical shutter or a wall-mounted device is suitable for use in a flat display device such as a television.

〔従来の技術〕[Conventional technology]

液晶を用いた電気光学装置としては、時計、電卓、自動
車用メータ類に用いられている、ネマチック液晶をねじ
れ構造にしたツィステッドネマチック(TN)モードに
よる表示が主流である。−方、スメクチック液晶、その
中でも強誘電性を示すカイラルスメクチックC及びH相
の高速応答。
The mainstream of electro-optical devices using liquid crystals is a twisted nematic (TN) mode display in which a nematic liquid crystal has a twisted structure, which is used in watches, calculators, and automobile meters. - On the other hand, smectic liquid crystals, especially chiral smectic C and H phases that exhibit ferroelectricity, exhibit high-speed response.

相安定に関する報告(Appl、Pbys、Lett、
 36,899゜1980年)がなされて以来、液晶の
新たな応用分野を開拓するものとして、研究開発が進め
られている。
Reports on phase stability (Appl, Pbys, Lett,
36,899° in 1980), research and development has been progressing to develop new application fields for liquid crystals.

さて、この様な液晶を用いた表示素子の使用温度範囲を
考えてみると、先ずTN液晶表示素子では、車載用のメ
ータ類に用いる場合、ネマチック相の温度範囲が一30
°Cから+85°Cの液晶(例えばZL I−1565
(Merck社製))が使われている。液晶表示装置の
ガラス基板の内面には液晶分子を一方向に並べる配向処
理が施され、ネマチック相で液晶分子は一方向に配向し
ている。使用温度が下がりネマチック温度よりも下がる
と液晶は結晶相に相転移し、表示機能は失なわれる。
Now, if we consider the operating temperature range of a display element using such a liquid crystal, first of all, in a TN liquid crystal display element, when used in automotive meters, the temperature range of the nematic phase is 130°C.
°C to +85 °C liquid crystal (e.g. ZL I-1565
(manufactured by Merck) is used. The inner surface of the glass substrate of a liquid crystal display device is subjected to alignment treatment to align liquid crystal molecules in one direction, and the liquid crystal molecules are aligned in one direction in a nematic phase. When the operating temperature drops below the nematic temperature, the liquid crystal undergoes a phase transition to a crystalline phase and loses its display function.

次に使用温度が上昇し、結晶相からネマチック相に相転
移すると、通常通りTN液晶としての表示機能は回復し
、従来通り表示することができる。
Next, when the operating temperature rises and a phase transition occurs from the crystalline phase to the nematic phase, the display function as a TN liquid crystal is restored as usual, and the display can be performed as before.

つまり、表示素子のガラス基板の内面に配向処理を施し
ておけば、冷却して結晶に相転移した後に温度さえ元に
戻せば、液晶分子は元通り配向する。
In other words, if the inner surface of the glass substrate of a display element is subjected to alignment treatment, the liquid crystal molecules will be oriented back to their original state as long as the temperature is returned to the original state after cooling and phase transition to crystals.

一方、後述の強誘電性液晶素子の場合、強誘電性液晶材
料として、例えばMeyerらによって初めて合成され
た(L、 de、 Phys、 L69.1975年)
P−デシロキシベンジリデンP′−アミノ2〜メチルブ
チルシンナメート(通商DOBAMBC)を配向処理法
としてラビング処理やスペーサエツジ法(Jpn、 J
、 Appl、 Phys、 23. L211.19
84年)を用いて配向させると、カイラルスメクチック
C相ではラビング法ではラビング方向にほぼ垂直に、ス
ペーサエツジ法ではスペーサエツジにほぼ垂直にスメク
チック層がほぼ一様に形成される。従って直交した偏光
板下で観察するとほぼモノドメインが形成されているた
め、印加電界の方向に対して明暗を示す。この表示素子
を先に述べたTN素子と同様に温度を下げて結晶に相転
移させると、カイラルスメクチックC相で得られていた
モノドメインは壊れ、表示機能は失なわれる。この表示
素子を再度温度を上昇させ結晶相からカイラルスメクチ
ックC相に相転移させると、先にカイラルスメクチック
C相で得られていたスメクチック層がほぼ一様に並んだ
モノドメインは壊れたままで、表示機能は復帰しない。
On the other hand, in the case of the ferroelectric liquid crystal element described later, for example, a ferroelectric liquid crystal material was synthesized for the first time by Meyer et al. (L, de Phys, L69, 1975).
P-decyloxybenzylidene P'-amino 2-methylbutyl cinnamate (DOBAMBC) was used as an alignment treatment method such as rubbing treatment or spacer edge method (Jpn, J
, Appl, Phys, 23. L211.19
(1984), a smectic layer is formed almost uniformly in the chiral smectic C phase almost perpendicular to the rubbing direction in the rubbing method and almost perpendicular to the spacer edge in the spacer edge method. Therefore, when observed under orthogonal polarizing plates, almost mono-domains are formed, and therefore, it shows brightness and darkness in the direction of the applied electric field. When this display element is subjected to a phase transition into a crystal by lowering the temperature in the same way as the TN element described above, the monodomain obtained in the chiral smectic C phase is broken and the display function is lost. When the temperature of this display element is raised again to cause a phase transition from the crystalline phase to the chiral smectic C phase, the monodomains in which the smectic layers previously obtained in the chiral smectic C phase are arranged almost uniformly remain broken, and the display Functionality will not be restored.

〔発明が解決しようとする課題] 強誘電性スメクチック相を利用した液晶電気光学装置の
開発が望まれているものの、特に車載用の液晶電気光学
装置、寒冷地で使用する液晶電気光学装置光を考えた場
合、使用温度範囲の下限に問題がある。つまり、先に述
べた様に強誘電性液晶素子では強誘電性スメクチック相
でほぼ一様な方向に並べられたスメクチック層は、温度
が下がり結晶に相転移した後、再び温度が上昇し強誘電
性スメクチック相に相転移した場合、先に一様に配向し
ていたスメクチック層の並び方は壊されてしまい、表示
素子としての表示機能を失うと言う重大な欠点がある。
[Problems to be Solved by the Invention] Although it is desired to develop a liquid crystal electro-optical device using a ferroelectric smectic phase, it is particularly difficult to develop a liquid crystal electro-optical device for use in automobiles, and for liquid crystal electro-optical devices used in cold regions. If you think about it, there is a problem with the lower limit of the operating temperature range. In other words, as mentioned earlier, in a ferroelectric liquid crystal element, the smectic layer, which is a ferroelectric smectic phase and is arranged in a nearly uniform direction, decreases in temperature and undergoes a phase transition to a crystal, and then the temperature rises again and the smectic layer becomes ferroelectric. When a phase transition occurs to a smectic phase, the previously uniform alignment of the smectic layers is destroyed, resulting in a serious drawback in that the display function as a display element is lost.

この壊れたスメクチック層をほぼ一様な方向に並べるに
は、等方性液体相に温度を上昇した後、強誘電性スメク
チック相まで毎分0.1〜1°C程度で除冷する必要が
ある。このスメクチック層の一様な配向が結晶化により
壊れる事を防止するために、必要以上に強誘電性スメク
チック相の下限を下げる事が対策として考えられるが、
低温域で強誘電性スメクチック相を示す液晶材料の合成
はむづかしく、また多種液晶のブレンド効果による低温
化にも限界がある。
In order to arrange this broken smectic layer in a nearly uniform direction, it is necessary to raise the temperature to an isotropic liquid phase and then gradually cool it down to a ferroelectric smectic phase at a rate of about 0.1 to 1°C per minute. be. In order to prevent the uniform orientation of this smectic layer from being broken due to crystallization, one possible countermeasure is to lower the lower limit of the ferroelectric smectic phase more than necessary.
It is difficult to synthesize liquid crystal materials that exhibit a ferroelectric smectic phase at low temperatures, and there is also a limit to lowering the temperature due to the blending effect of various types of liquid crystals.

そこで、本発明は結晶相まで温度が低下し、結晶相に相
転移しても強誘電性スメクチック相で一様に配向してい
たスメクチック層の一様性はそのまま保存され、再度強
誘電性スメクチック相まで温度を上昇させても、先に配
向させたスメクチック層が壊れることなく表示素子とし
て表示可能な液晶電気光学装置の提供を目的とする。
Therefore, in the present invention, the uniformity of the smectic layer, which was uniformly oriented in the ferroelectric smectic phase, is preserved as it is even when the temperature decreases to the crystalline phase and the phase transitions to the crystalline phase. An object of the present invention is to provide a liquid crystal electro-optical device capable of displaying as a display element without destroying a smectic layer that has been oriented in advance even if the temperature is increased to a phase.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、第一の電極基板
と所定の間隔を隔てて配置されている第二の電極基板の
間に強誘電性液晶が挟まれてなる液晶電気光学装置にお
いて、前記第一及び第二の電極基板に電界形成用の電圧
が印加される様に構成されており、前記強誘電性液晶は
、結晶でスメクチック層間隔が縮まらない結晶相を有す
る液晶であり、この液晶は強誘電性スメクチック相でほ
ぼ一方向に配列したスメクチック層構造を冷却過程で維
持しつつ結晶相に相転移し、結晶相からの加熱過程で前
記強誘電性スメクチック相に相転移後、はぼ一方向に配
列された前記スメクチック層構造が復帰する構成を備え
ている。
To achieve the above object, the present invention provides a liquid crystal electro-optical device in which a ferroelectric liquid crystal is sandwiched between a first electrode substrate and a second electrode substrate arranged at a predetermined distance. , the ferroelectric liquid crystal is configured such that a voltage for forming an electric field is applied to the first and second electrode substrates, and the ferroelectric liquid crystal is a liquid crystal having a crystal phase in which the smectic layer spacing is not reduced; This liquid crystal is a ferroelectric smectic phase, which undergoes a phase transition to a crystalline phase while maintaining a smectic layer structure arranged in approximately one direction during the cooling process, and after the phase transition from the crystalline phase to the ferroelectric smectic phase during the heating process, The structure is such that the smectic layer structure arranged in one direction returns to its original state.

〔作用〕[Effect]

上記構成の液晶電気光学装置において、強誘電性液晶が
強誘電性スメクチック相でのスメクチック層構造を保存
するような結晶相を有するため、前記液晶電気光学装置
が液晶相に転移する程の低温にさらされた後、強誘電性
スメクチック相に戻した後、従来のTN型液晶電気光学
装置の場合と同様に表示機能は復帰し、冷却前と同程度
の表示性能を示すことができる。
In the liquid crystal electro-optical device having the above configuration, since the ferroelectric liquid crystal has a crystal phase that preserves the smectic layer structure in the ferroelectric smectic phase, the liquid crystal electro-optical device can be heated to a temperature low enough to transition to the liquid crystal phase. After being exposed and returned to the ferroelectric smectic phase, the display function is restored as in the case of a conventional TN type liquid crystal electro-optical device, and display performance comparable to that before cooling can be exhibited.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例である液晶電気光学装置
の構造を示すものである。例えば2〜10μmの間隔に
隔てられ、互いに平行に配置された2枚の電極基板1.
 2の間に後述の強誘電性液晶材料6を密封する。電極
基板1には、第1図のごとく透明状のガラスあるいは樹
脂の透明基板lCの内側表面に沿い、酸化インジウムあ
るいは酸化すずなどの透明状の導電膜よりなる電極1a
を形成しである。もう一方の電極基板2についても同様
の構成となっている。透明電極1a、2aの内側表面に
は液晶分子を基板と平行にそろえるための配向処理が施
された高分子膜の配向glib。
FIG. 1 shows the structure of a liquid crystal electro-optical device according to a first embodiment of the present invention. For example, two electrode substrates 1.
A ferroelectric liquid crystal material 6, which will be described later, is sealed between the holes 2 and 2. As shown in FIG. 1, the electrode substrate 1 includes an electrode 1a made of a transparent conductive film such as indium oxide or tin oxide along the inner surface of a transparent substrate 1C made of transparent glass or resin.
It is formed. The other electrode substrate 2 also has a similar configuration. On the inner surfaces of the transparent electrodes 1a and 2a, there is an alignment glib of a polymer film that has been subjected to alignment treatment to align liquid crystal molecules parallel to the substrate.

2bが配置されている。また、この他にも電極基板への
ラビング処理、あるいは、表面への酸化けい素等の斜め
蒸着、あるいは、界面活性剤による処理などの一般に液
晶を配向させるものが適用できる。この電極基板1,2
は液晶が一方向に並ぶように平行に組み合わせて液晶セ
ルとしている。
2b is placed. In addition, other techniques that generally align liquid crystals, such as rubbing the electrode substrate, obliquely vapor depositing silicon oxide or the like on the surface, or treating with a surfactant, can be applied. These electrode substrates 1 and 2
The liquid crystal cells are assembled in parallel so that the liquid crystals are aligned in one direction.

このセルに、下記化学式で表わされるTFHPOBCを
等方性液体相に加熱して注入した。
TFHPOBC represented by the following chemical formula was heated to an isotropic liquid phase and injected into this cell.

(4−(1−計1jluor methyl hept
oxy carbonylBhenyl)4’ 4ct
yl biphenyl−4−carboxylate
 )この化合物の相転移を示差熱分析(DSC)と偏光
顕微鏡で測定した結果衣の様になった。
(4-(1-total 1jluor methyl hept
Oxy carbonyl Bhenyl) 4' 4ct
yl biphenyl-4-carboxylate
) The phase transition of this compound was measured using differential thermal analysis (DSC) and a polarizing microscope, and the result was that it became like a batter.

81.7°c       111.0°C120,7
°CCr       S m C” ←−−−S m
 A−1ここで、Cr;結晶相、SmC”  ;カイラ
ルスメクチックC相(強誘電性液晶相) 、 S m 
A ;スメクチックA相、1;等方性液体相を示す。尚
、DSCの測定結果で第4図に示し、偏光顕微鏡の結果
と良く近似していることが分かる。
81.7°c 111.0°C120,7
°CCr S m C” ←---S m
A-1 Where, Cr: crystalline phase, SmC": chiral smectic C phase (ferroelectric liquid crystal phase), Sm
A: Smectic A phase, 1: Isotropic liquid phase. The DSC measurement results are shown in FIG. 4, and it can be seen that they closely approximate the polarization microscope results.

さて、前記強誘電性液晶を封入した液晶セルを加熱して
等方性液体相にした後、液晶セル全体を毎分0.1〜1
.0°Cにて除冷し、カイラルスメクチックC相まで冷
却する。このような冷却の結果、カイラルスメクチック
C相となった液晶分子10は第2図(b)の様に配向す
る。このとき、スメクチック相20の層方向は液晶分子
IOとほぼ直交する方向に形成されている。この様にほ
ぼ一様にスメクチック層が形成された状態で電界を紙面
の表側から裏側に印加すると液晶分子は第2図(a)の
様に向かって左側にチルト角θだけチルトする。次に紙
面の裏から表に電界を印加すると液晶分子は第2図(C
)の様に再配向する。この様な構成の液晶セルを102
の方向の偏光板とそれと直交する方向の偏光板の間に挟
めば、第2図(b)は暗、(a)、 (C)は明の状態
となり表示が可能である。まず、100°Cで30V印
加時の明と暗のコントラスト比はl:10程度であった
Now, after heating the liquid crystal cell containing the ferroelectric liquid crystal to make it into an isotropic liquid phase, the entire liquid crystal cell is heated at a rate of 0.1 to 1
.. It is slowly cooled at 0°C until it reaches the chiral smectic C phase. As a result of such cooling, the liquid crystal molecules 10 in the chiral smectic C phase are oriented as shown in FIG. 2(b). At this time, the layer direction of the smectic phase 20 is formed in a direction substantially perpendicular to the liquid crystal molecules IO. When an electric field is applied from the front side to the back side of the paper with the smectic layer formed almost uniformly in this manner, the liquid crystal molecules are tilted to the left by a tilt angle θ as shown in FIG. 2(a). Next, when an electric field is applied from the back to the front of the paper, the liquid crystal molecules will move as shown in Figure 2 (C
). 102 liquid crystal cells with this configuration
If it is placed between a polarizing plate in the direction of , and a polarizing plate in a direction perpendicular to the polarizing plate, it is possible to display the image in FIG. 2(b) in the dark state and in FIG. First, the contrast ratio between bright and dark when 30 V was applied at 100° C. was about 1:10.

次にこの様に電界の印加によって明暗表示が可能な液晶
セルを室温(22°C)に放置し、充填された液晶が結
晶相に転移した事を、電界印加によって液晶分子IOが
動かないことで確認した。このとき液晶セルを顕微鏡下
で観察した結果、カイラルスメクチックC相でのスメク
チック層の配列状態をそのまま維持していることがわか
った。
Next, we left the liquid crystal cell, which can display bright and dark images by applying an electric field, at room temperature (22°C), and confirmed that the filled liquid crystal had transitioned to a crystalline phase, and that the liquid crystal molecules IO did not move due to the application of an electric field. I confirmed it. At this time, the liquid crystal cell was observed under a microscope, and it was found that the alignment state of the smectic layer in the chiral smectic C phase was maintained as it was.

次にこの液晶セルを再度カイラルスメクチックC温度域
まで上昇させて外部電界を印加した所、第2図に示す様
に(b)の状態から、電界を紙面の表から裏に印加した
場合(a)の状態に、紙面の裏から表に印加した場合(
C)の状態にスイッチングする事を確認した。なお、1
00°Cで30V印加時の明と暗のコントラスト比は、
冷却前とほぼ同程度の1:10であった。
Next, this liquid crystal cell was raised again to the chiral smectic C temperature range and an external electric field was applied. ), if an electric current is applied from the back of the paper to the front (
It was confirmed that the state was switched to state C). In addition, 1
The contrast ratio between bright and dark when applying 30V at 00°C is
The ratio was 1:10, which was almost the same as before cooling.

この様にカイラルスメクチックC相でほぼ一方向に配列
していたスメクチック層構造が、温度を下げて結晶相に
相転移させるという履歴を経ても、前記スメクチック層
構造が優れないことを調べるためにX線回折により層間
隔を測定した。前記強誘電性液晶TFHPOBCのポリ
ドメインのX線回折ピークをRU−200(リガク社)
を用いて測定し、そのピーク値より計算した層間隔の温
度変化を調べたのが第5図である。スメクチック層間隔
を示す回折ピークは測定した温度域ではほとんどその位
置は変化せず、これはスメクチック層間隔がほぼ一定で
ある事を示している。即ち、結晶相、カイラルスメクチ
ックC相、スメクチックA相を通して29.5人〜31
.5人とほぼ一定の値を示している。
In order to investigate that the smectic layer structure, which was oriented almost in one direction in the chiral smectic C phase, is not superior even after undergoing a history of lowering the temperature and undergoing a phase transition to the crystalline phase, the X Layer spacing was measured by line diffraction. The X-ray diffraction peak of the polydomain of the ferroelectric liquid crystal TFHPOBC was measured using RU-200 (Rigaku Corporation).
Figure 5 shows the temperature change in the layer spacing calculated using the peak value. The position of the diffraction peak indicating the smectic layer spacing hardly changes in the measured temperature range, indicating that the smectic layer spacing is almost constant. That is, 29.5 to 31 through the crystalline phase, chiral smectic C phase, and smectic A phase.
.. 5 people, showing an almost constant value.

次に、他の強誘電性液晶化合物P−デシロキシヘンジリ
デンP′−アミノ2−メチルブチルシンナメート(DO
BAMBC) C1゜t(z+0@−CI(=N勺−CH,CH−C−
0−CH□−G)[−(:2H5について調べた。この
強誘電性液晶は次の様な相変化を示す。
Next, another ferroelectric liquid crystal compound P-desyloxyhenzylidene P'-amino 2-methylbutylcinnamate (DO
BAMBC) C1゜t(z+0@-CI(=N勺-CH, CH-C-
0-CH□-G)[-(:2H5 was investigated. This ferroelectric liquid crystal exhibits the following phase change.

N ここで、S□  ;スメクチックA相を示す。N Here, S□ indicates a smectic A phase.

この強誘電性液晶DOBAMBCについては、カイラル
スメクチック相で配列したスメクチック層は、前記実施
例とは異なり、結晶相に相転移させ、再度カイラルスメ
クチック相に戻した時、スメクチック層構造が崩れて、
表示素子としての機能を失ってしまう。前述のDOBA
MBCのスメクチック層間隔の温度変化については、l
1idakaらにより円rase Transitio
ns、  1984.  vo14. P225〜23
9 に詳しく記載されている如く、層間隔の温度依存性
を見るとカイラルスメクチックC相からカイラルスメク
チックH相に転移する事で層間隔が大きく変化すること
がわかる。この論文では60゛Cまでしか層間隔を測定
していないが、室温(35°C)で層間隔を測定した結
果、25.5人とカイラルスメクチック8層での旧da
kaらのデータとほぼ等しかった。この様に層構造の壊
れるDOBAMBCではスメクチック層間隔が結晶、S
、、5cSA相で大きく異なる。
Regarding this ferroelectric liquid crystal DOBAMBC, unlike the above embodiment, the smectic layer arranged in the chiral smectic phase undergoes a phase transition to the crystalline phase, and when it returns to the chiral smectic phase again, the smectic layer structure collapses.
It loses its function as a display element. The aforementioned DOBA
Regarding the temperature change in the smectic layer spacing of MBC, l
Idaka et al.
ns, 1984. vo14. P225-23
9, when looking at the temperature dependence of the interlayer spacing, it can be seen that the interlayer spacing changes significantly due to the transition from the chiral smectic C phase to the chiral smectic H phase. In this paper, the layer spacing was measured only up to 60°C, but as a result of measuring the layer spacing at room temperature (35°C), the old da
The data were almost equal to those of ka et al. In DOBAMBC, where the layer structure is broken in this way, the smectic interlayer spacing is crystalline, S
, , 5cSA phase differs greatly.

次に、本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第1の実施例と同様の液晶セルに下記化学式で示される
強誘電性液晶を等方性液体相に加熱して液晶セル内部に
注入した。
A ferroelectric liquid crystal represented by the following chemical formula was heated to an isotropic liquid phase and injected into the same liquid crystal cell as in the first example.

(4−(1−Monofluor methyl no
noxy carbony!phenyl)−4’−0
ctyl biphenyl−4−carboxyla
te)この化合物の相転移をDSCと偏光顕微鏡で測定
した結果、次の様になった。
(4-(1-Monofluor methyl no
Noxy carbon! phenyl)-4'-0
ctyl biphenyl-4-carboxyla
te) The phase transition of this compound was measured using DSC and a polarizing microscope, and the results were as follows.

S、H” さて、前記強誘電性液晶を封入した液晶セルを加熱して
等方性液体相に相転移させた後、液晶セル全体を毎分0
.1〜1.0″Cにて除冷し、カイラルスメクチックC
相まで冷却する。この時スメクチック層20は第3図に
示す如くほぼ一方向に配列し、外部電場印加に対し液晶
分子10は第3図(a)。
S, H" Now, after heating the liquid crystal cell filled with the ferroelectric liquid crystal to cause a phase transition to an isotropic liquid phase, the entire liquid crystal cell is heated at 0 per minute.
.. Chiral smectic C
Cool to phase. At this time, the smectic layer 20 is aligned substantially in one direction as shown in FIG. 3, and the liquid crystal molecules 10 are aligned in the same direction as shown in FIG. 3(a) when an external electric field is applied.

(b)の様な動きをする。即ち外部電界が紙面の裏から
表の場合、第3図(b)の様に、紙面の表から裏の場合
第3図(a)の様に2つの状態間をスイッチングする。
It moves like (b). That is, when the external electric field is from the back of the paper to the front, switching occurs between two states as shown in FIG. 3(b), and when the external electric field is from the front to the back of the paper, as shown in FIG. 3(a).

この時、偏光板の偏光軸の第3図102の方向のものと
これと直交する方向のもので挟んだ時の(a)、 (b
)のコントラスト比は1:15程度であった。この液晶
セルを液晶相まで温度を下げて液晶相に相転移させた後
、再度温度を上昇させ、カイラルスメクチックC相で冷
却前と同様に液晶分子の配向状態2表示特性を調べた所
、配向状態は結晶相に相転移する以前と同じ程度で、配
向の壊れはなく、コントラスト比も1:15と良好であ
った。なお、層間隔のX線回折結果は第1実施例のTF
HPOBCと同様の傾向を示した。
At this time, (a), (b) when the polarizing plate is sandwiched between the polarizing axis in the direction shown in FIG. 3 102 and the polarizing plate in the direction orthogonal to this.
) had a contrast ratio of about 1:15. After lowering the temperature of this liquid crystal cell to the liquid crystal phase and causing a phase transition to the liquid crystal phase, the temperature was raised again and the orientation state 2 display characteristics of the liquid crystal molecules were investigated in the chiral smectic C phase in the same manner as before cooling. The state was the same as before the phase transition to the crystalline phase, there was no break in orientation, and the contrast ratio was as good as 1:15. Note that the X-ray diffraction results for the layer spacing are for the TF of the first example.
It showed the same tendency as HPOBC.

以上で明らかな様に、結晶相でスメクチック層間隔が縮
まない様な結晶相を有する強誘電性液晶では、冷却時に
結晶相転移の履歴を持った場合でも強誘電性スメクチッ
ク相でスメクチック層の配列が乱れず、−様な配向が維
持できるものである。
As is clear from the above, in a ferroelectric liquid crystal that has a crystal phase in which the smectic layer spacing does not decrease, even if there is a history of crystal phase transition during cooling, the smectic layers are aligned in the ferroelectric smectic phase. is not disturbed, and a --like orientation can be maintained.

この様なことは、上記実施例で用いた液晶化合物のみに
適用されるものではなく、結晶相でスメクチック層間隔
がほとんど縮まらない結晶相を有する全ての強誘電性液
晶に適用されるものであり、二種以上の化合物の混合液
晶であっても同様である。
This applies not only to the liquid crystal compound used in the above example, but also to all ferroelectric liquid crystals that have a crystal phase in which the smectic layer spacing is hardly reduced. The same applies to a liquid crystal mixture of two or more kinds of compounds.

また上記実施例では特に述べなかったが、液晶が二色性
を有する、あるいは二色性色素との混合物であっても同
様である。
Although not specifically mentioned in the above embodiments, the same applies even if the liquid crystal has dichroism or is a mixture with a dichroic dye.

さらに、液晶セルの構造もしくは、電極基板1゜2にお
いて、各々ストライプ状の透明電極を複数本平行に形成
し、これらの基板lと基板2とが互いに直交するように
配置し、電極にはダイナミックに駆動が行なえるような
回路を含む外部電源を接続してマトリックス形表示装置
を形成することもできる。
Furthermore, in the structure of the liquid crystal cell or in the electrode substrates 1 and 2, a plurality of striped transparent electrodes are formed in parallel, and these substrates 1 and 2 are arranged so as to be perpendicular to each other. A matrix type display device can also be formed by connecting an external power supply including a circuit that can drive the display device.

〔発明の効果] 以上述べたような本発明は、結晶相でスメクチック層間
隔が縮まらない結晶層を有する強誘電性液晶を用いて液
晶電気光学装置を構成しているので、液晶電気光学装置
が結晶相に転移する程の低温にさらされた後、温度が上
昇した場合でも、表示機能は復帰し、冷却前と同程度の
表示性能を得ることができる。
[Effects of the Invention] The present invention as described above constitutes a liquid crystal electro-optical device using a ferroelectric liquid crystal that has a crystalline phase and a crystal layer in which the smectic layer spacing does not decrease. Even if the temperature rises after being exposed to a low temperature that causes a transition to a crystalline phase, the display function is restored and display performance comparable to that before cooling can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す液晶電気光学装置の構
成を示す側断面図、第2図(a)、 (b)、 (C)
は第1の実施例の液晶分子の動きを説明する概略図、第
3図(a)、 (b)は第2の実施例の液晶分子の動き
を説明する概略図、第4図は第1の実施例における強誘
電性液晶の示差熱分析(DSC)の結果を示す特性図、
第5図は第1の実施例における強誘電性液晶の温度に対
するスメクチック層間隔を示す特性図である。 1・・・第1の電極基板、2・・・第2の電極基板、4
゜5・・・偏光板、6・・・強誘電性液晶、10・・・
液晶分子。 20・・・スメクチック層。
FIG. 1 is a side sectional view showing the configuration of a liquid crystal electro-optical device showing an embodiment of the present invention, and FIGS. 2(a), (b), (C)
3(a) and 3(b) are schematic diagrams explaining the motion of liquid crystal molecules in the second embodiment, and FIG. 4 is a schematic diagram illustrating the motion of liquid crystal molecules in the first embodiment. A characteristic diagram showing the results of differential thermal analysis (DSC) of the ferroelectric liquid crystal in the example of
FIG. 5 is a characteristic diagram showing the smectic layer spacing versus temperature of the ferroelectric liquid crystal in the first embodiment. 1... First electrode substrate, 2... Second electrode substrate, 4
゜5...Polarizing plate, 6...Ferroelectric liquid crystal, 10...
liquid crystal molecules. 20...Smectic layer.

Claims (1)

【特許請求の範囲】  第一の電極基板と所定の間隔を隔てて配置されている
第二の電極基板の間に強誘電性液晶が挟まれてなる液晶
電気光学装置において、 前記第一及び第二の電極基板に電界形成用の電圧が印加
される様に構成されており、 前記強誘電性液晶は、結晶相でスメクチック層間隔が縮
まらない結晶相を有する液晶であり、この液晶は強誘電
性スメクチック相でほぼ一方向に配列したスメクチック
層構造を冷却過程で維持しつつ結晶相に相転移し、結晶
相からの加熱過程で前記強誘電性スメクチック相に相転
移後、ほぼ一方向に配列された前記スメクチック層構造
が復帰することを特徴とする液晶電気光学装置。
[Scope of Claims] A liquid crystal electro-optical device in which a ferroelectric liquid crystal is sandwiched between a first electrode substrate and a second electrode substrate arranged at a predetermined distance, comprising: The ferroelectric liquid crystal is configured such that a voltage for forming an electric field is applied to the second electrode substrate, and the ferroelectric liquid crystal is a liquid crystal having a crystal phase in which the smectic layer spacing does not decrease; The smectic layer structure, which is a smectic phase and is aligned in almost one direction, undergoes a phase transition to a crystalline phase while maintaining it during the cooling process, and after the phase transition from the crystalline phase to the ferroelectric smectic phase in the heating process, the smectic layer structure is aligned in almost one direction. A liquid crystal electro-optical device characterized in that the smectic layer structure is restored.
JP63191937A 1988-07-29 1988-07-29 Liquid crystal electro-optical device Expired - Fee Related JP2804763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63191937A JP2804763B2 (en) 1988-07-29 1988-07-29 Liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63191937A JP2804763B2 (en) 1988-07-29 1988-07-29 Liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPH0240625A true JPH0240625A (en) 1990-02-09
JP2804763B2 JP2804763B2 (en) 1998-09-30

Family

ID=16282936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63191937A Expired - Fee Related JP2804763B2 (en) 1988-07-29 1988-07-29 Liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JP2804763B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330678A (en) * 1992-08-19 1994-07-19 Showa Shell Sekiyu Kabushiki Kaisha Liquid crystal compound
US5972242A (en) * 1996-06-04 1999-10-26 Denso Corporation Smectic liquid crystal composition and liquid crystal display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307837A (en) * 1986-09-08 1988-12-15 Daicel Chem Ind Ltd Optical active compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307837A (en) * 1986-09-08 1988-12-15 Daicel Chem Ind Ltd Optical active compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330678A (en) * 1992-08-19 1994-07-19 Showa Shell Sekiyu Kabushiki Kaisha Liquid crystal compound
US5972242A (en) * 1996-06-04 1999-10-26 Denso Corporation Smectic liquid crystal composition and liquid crystal display

Also Published As

Publication number Publication date
JP2804763B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JPS61249019A (en) Liquid crystal element
JPH06347796A (en) Liquid crystal device
JP2746486B2 (en) Ferroelectric liquid crystal device
US5559619A (en) Liquid crystal electro-optical device and manufacturing method for the same
KR100266184B1 (en) Smetic liquid crystal material and liquid crystal optical element
JP2647828B2 (en) Liquid crystal device manufacturing method
JPH0240625A (en) Liquid crystal electrooptic device
KR100802306B1 (en) Liquid Crystal Display Device and Method of Fabricating the same
KR0161377B1 (en) Ferroelectric liquid crystal display element
JP2851500B2 (en) Liquid crystal display
US5844653A (en) Liquid crystal mixture
JPH028292A (en) Ferroelectric liquid crystal display element
JP2996866B2 (en) Manufacturing method of liquid crystal display element
JP2719527B2 (en) Liquid crystal electro-optical device
JPS63163821A (en) Ferroelectric liquid crystal display element
JPH07181495A (en) Ferroelectric liquid crystal element
JPH02176723A (en) Orientation control method for ferroelectric liquid crystal
JPH07270830A (en) Smectic liquid crystal device and its production
JPS61205921A (en) Liquid crystal element
JPS62146984A (en) Ferroelectric liquid crystal composition
JPH05339572A (en) Liquid crystal composition and liquid crystal element and display containing same
JP2550556C (en)
JPH02151684A (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPS62235932A (en) Liquid crystal element
JPH08328014A (en) Ferroelectric smectic liquid crystal electro-optic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees