JPH0240601B2 - - Google Patents

Info

Publication number
JPH0240601B2
JPH0240601B2 JP58014662A JP1466283A JPH0240601B2 JP H0240601 B2 JPH0240601 B2 JP H0240601B2 JP 58014662 A JP58014662 A JP 58014662A JP 1466283 A JP1466283 A JP 1466283A JP H0240601 B2 JPH0240601 B2 JP H0240601B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen
pressure
purity
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58014662A
Other languages
Japanese (ja)
Other versions
JPS59141405A (en
Inventor
Yoshio Myairi
Kazumi Suzuki
Satoru Uehara
Katsumi Takemoto
Kazuo Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58014662A priority Critical patent/JPS59141405A/en
Publication of JPS59141405A publication Critical patent/JPS59141405A/en
Publication of JPH0240601B2 publication Critical patent/JPH0240601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は、取扱いが容易で、しかも貯蔵性に優
れたアルコールを原料として液体水素を製造する
方法に関する。 従来は、次のようなガスを原料として、液体水
素製造用の高純度水素ガスを製造していた。 a 石油製油所等のオフガス b 食塩の電気分解装置(苛性ソーダ製造等)か
らのオフガス c 天然ガス、石油等の蒸留改質によつて得られ
る合成ガス d 天然ガス、石油等の部分酸化によつて得られ
る合成ガス これらのガスを原料とする液体水素製造用高純
度水素ガス製造の概略フローを説明する。 上記aのオフガスは水素、一酸化炭素及び軽質
炭化水素を主な成分としており、この組成は石油
製油所等の設備構成により雑多である。このオフ
ガスから上記の高純度水素ガスを製造するには、
基本的には上記cまたは上記dの合成ガスからの
製造プロセス(後述する)と同様のプロセスによ
つて製造されている。 上記bのオフガスの水素純度は通常約99.8モル
%程度なので、そのまゝ液体水素の製造に使用さ
れる。 上記cの合成ガスから上記の高純度水素ガスを
製造するプロセスは、cは合成ガスの合成工程も
含めて次の通りである。 脱硫装置で脱硫された原料(この場合、天然ガ
ス)は過熱蒸気と混合され、改質炉内に配置され
た触媒を充填した反応管内に供給され、圧力7〜
30気圧下で、燃料の燃焼により加熱(約900℃)
されてCOとH2を主成分とする粗合成ガスに転換
される。この粗合成ガスは熱回収装置で水により
熱回収されて後、CO変成工程、脱炭酸工程を経
て水素純度98モル%程度の精製水素ガスとなり、
残存するCO2、CH4、COは低温精製工程により
除去されて、水素純度約99.99モル%以上の精製
ガスとなり、液化工程に送られる。 上記dの合成ガスから上記の高純度水素ガスを
製造するプロセスは、dの合成ガスの合成工程も
含めて次の通りである。 原料(この場合、重質油)は水蒸気と混合さ
れ、例えば空気の深冷分離等によつて得られた酸
素とともにバーナーを経て反応炉内に噴射され、
部分酸化反応によりCOとH2を主成分とする粗合
成ガスに転換される。この時の反応温度は1200〜
1500℃、圧力は20〜150気圧である。この粗合成
ガスは熱回収装置で水により熱回収された後、更
に冷却・除塵装置において水で冷却されてカーボ
ンが除去されると同時にCO変成に必要な水分が
補給される。次いでCO変成工程に供給され、ガ
ス中のCOはCO2とH2に転換される。その後、ガ
スはH2S、CO2等の酸性ガスがアルカリ溶液等に
よつて吸収除去されて水素純度98モル%程度の精
製水素ガスとなり、残存するCO2、CH4、COは
低温精製工程により除去されて水素純度約99.99
モル%以上の精製ガスとなり、液化工程に送られ
る。なお、上記のアルカリ溶液等によつて除去さ
れたH2S、CO2等の酸性ガスは、硫黄プラントに
てS2、CO2等に転換される。 以上の従来法には次のような欠点がある。 上記a、bのオフガスを原料とする方法の場
合、(1)石油製油所、苛性ソーダ工場等に高純度水
素ガス製造設備、液化設備を付設するため、設置
場所に制限がある、(2)オフガスの発生量と液体水
素製造量のパターンに差異が生じ、オフガスを貯
蔵して利用せざるを得ない場合があるが、オフガ
スは貯蔵性に乏しく、取扱いが不便である、等の
欠点がある。 また、上記c、dの合成ガスを原料とする方法
の場合、(1)装置材料面では高温耐熱特殊合金が必
要であり、またプロセスによつては純酸素製造設
備が必要で装置面でも大がかりとなり、簡便な製
造法とは言い難い、(2)いずれも1000℃以上の高温
プロセスであるため、運転のスタートアツプ、シ
ヤツトダウンにかなりの時間を要し、随時又は日
単位でプラントの起動および停止を行うことは難
しい、(3)負荷変動に対する追従性、変動幅も十分
でない、等の欠点がある。 本発明は、以上の欠点を排除し、常温、常圧で
液体であるメタノール等のアルコールを原料と
し、簡便かつ経済的な液体水素製造法を提供する
ことを目的としてなされたものである。 すなわち本発明は、10〜45気圧の圧力及び200
〜400℃の温度条件で、水蒸気の存在下でアルコ
ールの改質を行わせ、改質によつて得られた高圧
粗合成ガスを吸着剤を用いた圧力スイング法によ
り水素純度99.99モル%以上の高圧水素ガスを得
ると同時に、副生する可燃性ガスを改質反応の熱
源として利用し、高圧高純度水素ガスを液化工程
で液化させるに際しては該ガスの自圧を利用し膨
張タービンを駆動させて液化工程の動力として用
いるようにしてなることを特徴とする液体水素の
製造方法である。 本発明のアイデアとして新しい点を列挙すれば
次の通りである。 (1) 液体水素の原料としてメタノール、エタノー
ル、プロピルアルコール、ブタノール、その他
のアルコール類等を用いること。 (2) 液体水素製造を目的として、例えば下記メタ
ノールの改質反応を用いること。 吸熱反応 CH3OH+H2O吸熱反応 ――――→ CO2+3H2 この反応温度は低く(200〜400℃)、反応圧力
は後段の液化工程で最適となるレベル(10〜45気
圧)で反応が行われる。 また、反応に必要な熱量は、400〜600℃程度の
低熱源を用いることができる。 従つて、1000℃以上の高温操作が不要となり、
これによりプラントの起動および停止を容易かつ
短時間に行うことができる。 (3) 常温、常圧で液体のメタノール等を原料とし
ているため、原料貯蔵が容易である。 (4) アルコール改質と、粗合成ガスより吸着剤を
用いての水素ガスの分離・精製と、膨張タービ
ンを組み込んだ水素ガスの深冷液化とを組み合
わせたアルコールからの液水製造法であるこ
と。 以上の(1)〜(4)から、本発明は次のような利点を
有するものであることが判る。 (1) 本発明方法を実施するプラントの設置場所は
特に制約を受けないので、離島等の僻地や非工
業地帯でも容易に実施することができる。 (2) 操作温度が低いため、簡単かつ安価な熱供給
方式、および簡単かつ安価な反応装置を使用す
ることができる。 (3) プラントの起動および停止が容易に行えるの
で、液体水素の需要に応じて日単位、週単位の
間歇運転ができる。 本発明方法は、一般的な液体水素製造の他に、
燃料電池用水素、油脂および食品工業向け水添用
水素、金属精錬や半導体工業向け還元用水素等の
製造にも適用することができる。 以下、添付図面等を参照して本発明方法を詳細
に説明する。 第1図は本発明方法の基本フローを示す図であ
る。 第1図において、10〜45気圧に加圧されたアル
コール5と水又は水蒸気又は後述の循環水8の混
合物は200〜400℃まで加熱されてガス状となり、
改質工程1で触媒層を通過させることにより、主
としてH2、CO2、H2Oからなる粗合成ガス6に
転換される。上記触媒としては、銅−亜鉛系、例
えばCuO−ZuO(Zn/Cu重量比=2のもの)、あ
るいは該CuO−ZnOの80wt%をγ−Al2O3の20%
wt%に担持させたもの等が使用される。 改質工程1での主な反応は、例えばメタノール
の場合、次式で表される。 CH3OH→CO+2H2 ……(1) CO+H2O→CO2+H2 ……(2) 総合的には上記二式を加算することにより次式
となる。 CH3OH+H2O→CO2+3H2 ……(3) 粗合成ガス6は冷却されて凝縮水を分離工程2
で分離して、合成ガス9は精製工程3に供給され
る。又分離された凝縮水は循環水8として改質工
程1に循環される。 精製工程3は、水素以外の不純物であるCO2
CH4、COなどの除去を目的としており、除去法
は種々あるが、先ずCO2を熱炭酸カリ法、モノエ
タノールアミン法、レクチゾール法等の脱炭酸プ
ロセスで除去した後に、残りの不純物である
CH4、COなどをPSA(圧力スイング吸着)法で除
去するか、またはPSA法のみで全不純物を除去
することが経済性の点から特に好ましい。なお、
PSA法の吸着剤としては、合成ゼオライト等が
使用される。 精製工程3から放出されるオフガス11は
CH4、CO、H2等を含んでおり燃料としての価値
を有するので、改質工程1の熱源として利用され
る。 精製工程3からの精製ガス10は略常温、10〜
45気圧、水素純度約99.99モル%以上で、液化工
程4に供給される。 なお、精製ガス10の水素純度を約99.99モル
%以上にすることにより、液化工程4での低温精
製は基本的に不要となる。 液化工程4では、精製ガス10の自圧を利用し
て膨張タービンを駆動させ、これを液化用圧縮動
力として活用することにより、自己冷却(液体水
素と同温度レベルにある水素ガスと熱交換させ
る)を行うか、窒素、ヘリウム等の冷媒を用いて
間接的に冷却を行うか、又はこれらの組合せの形
で冷却することにより、液体水素12を製造す
る。 なお、第1図中の7は改質工程1の熱源として
使用される燃料を示している。 以上詳述した本発明方法によれば、次の効果を
奏することができる。 (1) 400℃以下の温度操作しかなく、装置面、材
料面、運転面で簡素化ができ、プラントの起動
及び停止が容易であり液体水素の需要に適合し
た柔軟性のある運転ができる。 (2) 精製工程3からのオフガス11が改質工程1
の熱源として活用でき、合成ガスの自圧(10〜
45気圧)は、液化工程4の動力軽減に活用で
き、効率的かつ経済的である。 (3) 基本的には取扱い容易なアルコールさえあれ
ばプラントの立地ができ、非工業地域、離島等
の僻地でのオンサイト(現地製造)プラント上
特に有用である。 第2図は、メタノールを原料とした場合の本発
明方法の具体的な実施態様例を示す図である。 第2図において、液体メタノール105は、改
質用の補給水121と改質反応器134の出口粗
合成ガス106より分離された循環水108と混
合された後、熱媒体油118の加熱に使用された
後の熱風排ガス、改質反応器134の出口粗合成
ガス106(約250℃)および約400℃の熱媒体油
118によつて熱交換器131,132,133
を介して順次間接加熱され、改質反応器134に
供給される。 改質反応器134において、約250℃、約30気
圧の条件下でメタノールは改質されて、水素、二
酸化炭素を主とする粗合成ガス106に転換され
る。この反応に必要な熱は約400℃の熱媒体油1
18によつて間接的に供給される。 熱媒体油118は、熱風発生炉137で燃料1
07およびPSA装置139からのオフガス11
1とを空気114と燃焼させて発生した熱風によ
り、熱交換器135で加熱される。 上記の改質反応器134は、シエルアンドチユ
ーブ型熱交換器であり、管内には市販の銅−亜鉛
系触媒が充填されており、この中にメタノールガ
スを供給する。改質反応器134の加熱方法とし
ては熱媒体油118の代りに溶融塩など他の熱媒
体を用いたり、あるいは燃焼器内や燃焼ガスで反
応熱を与えることもできる。 粗合成ガス106は、熱交換器132および1
36により熱回収及び冷却され、凝縮水を分離し
た後、略常温で脱炭酸装置138に供給される。
この脱炭酸装置138は種々あるが、ここではモ
ノエタノールアミン水溶液による湿式法による装
置を用い、炭酸ガスが除去され、水素純度が約98
モル%となつた合成ガス151はPSA装置13
9に供給され、ここで水素純度は約99.99モル%
以上に精製される。 この精製ガス110中にCO、CH4等の不純物
が約0.01モル%以上含まれていると、これが液化
工程で凍結し、装置に付着し、閉塞等のトラブル
の原因となるので、PSA装置139等による不
純物の除去を行わない場合は、低温精製が必要と
なるが、PSA装置139を採用することにより
低温精製を不要としている。 PSA装置139の一例の概略を第3図に示す。 第3図では吸着剤が充填された4個の吸着塔1
56が使用されている。 第3図において、略常温、約10〜45気圧水素純
度約98モル%の合成ガス151が、吸着塔156
を通過する間に、水素以外の成分は吸着剤に吸着
される。吸着剤が不純分で飽和される前に合成ガ
ス151の供給を止めて減圧し、更に精製ガス1
10の一部を流し込み吸着剤に吸着されている不
純物を放出させて吸着剤を再生する。この再生に
要した精製ガスはオフガス111として、オフガ
スタンク158に貯蔵し、改質用熱源の燃料とし
て利用する。 なお、第3図は3塔が合成ガス151を精製中
で、1塔は精製ガス110の一部を用いて吸着剤
を再生中である状態を示している。このようにし
て各塔を吸着、減圧、再生の操作を順次サイクリ
ツクに行うことにより、水素純度約99.99モル%
以上の精製ガス110が得られる。この場合水素
の回収率は約75%である。 以上のPSA装置139を出た精製ガス110
は約40℃、約29気圧の状態で液化工程に入る。液
化工程では、まず膨張タービン140に入り、こ
こで略常圧近くまで減圧され、コールドボツクス
143,144に入り深冷ヘリウム116と間接
的に熱交換され、約20〓の液体水素となり、液体
水素タンク146に貯蔵され、製品液体水素11
2として随時使用される。 上記の冷媒であるヘリウム116は膨張タービ
ン142の出口で約1.2気圧、約15〓となり、コ
ールドボツクス(アルミ製プレート熱交換器)1
44で水素を間接的に全量液化させた後、二つの
流れに分岐され、一方のヘリウムはコールドボツ
クス(熱交換器)143で水素ガスを予冷し、他
方のヘリウムはコールドボツクス(熱交換器)1
45で圧縮機141からの約300〓、約15気圧の
ヘリウムガスを予冷する。これら分岐したヘリウ
ムガスは再び合流し、圧縮機141に送られる。
このようにヘリウムは完全クローズドサイクルを
形成する。 なお、膨張タービン140,142は液化工程
の圧縮機141の動力として回収され、不足効力
は電動機147によつて補われる。 以上の主要ラインにおける物流の概要を第1表
に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing liquid hydrogen using alcohol, which is easy to handle and has excellent storage stability, as a raw material. Conventionally, high-purity hydrogen gas for liquid hydrogen production has been produced using the following gases as raw materials. a Off-gas from petroleum refineries, etc. b Off-gas from salt electrolyzers (caustic soda production, etc.) c Synthetic gas obtained by distillation reforming of natural gas, petroleum, etc. d Synthetic gas obtained by partial oxidation of natural gas, petroleum, etc. Obtained Synthesis Gas The general flow of producing high-purity hydrogen gas for producing liquid hydrogen using these gases as raw materials will be explained. The above off-gas (a) contains hydrogen, carbon monoxide, and light hydrocarbons as main components, and its composition varies depending on the equipment configuration of the petroleum refinery and the like. To produce the above-mentioned high-purity hydrogen gas from this off-gas,
Basically, it is produced by the same process as the production process from synthesis gas (described later) in c or d above. Since the hydrogen purity of the above-mentioned off-gas (b) is usually about 99.8 mol%, it is used as is for producing liquid hydrogen. The process for producing the above-mentioned high-purity hydrogen gas from the synthesis gas in c is as follows, including the process for synthesizing the synthesis gas in c. The raw material (in this case, natural gas) desulfurized in the desulfurization equipment is mixed with superheated steam and fed into a reaction tube filled with a catalyst placed in a reformer, where the pressure is 7 to 7.
Heated by combustion of fuel under 30 atmospheres (approximately 900℃)
The gas is then converted into crude synthesis gas, whose main components are CO and H2 . This crude synthesis gas is heat-recovered using water in a heat recovery device, and then undergoes a CO conversion process and a decarboxylation process to become purified hydrogen gas with a hydrogen purity of approximately 98 mol%.
Remaining CO 2 , CH 4 , and CO are removed by a low-temperature purification process, resulting in a purified gas with a hydrogen purity of about 99.99 mol % or higher, which is sent to a liquefaction process. The process for producing the above-mentioned high-purity hydrogen gas from the synthesis gas in d above, including the step of synthesizing the synthesis gas in d, is as follows. The raw material (in this case, heavy oil) is mixed with steam and is injected into the reactor through a burner together with oxygen obtained, for example, by cryogenic separation of air.
Through a partial oxidation reaction, it is converted into crude synthesis gas whose main components are CO and H2 . The reaction temperature at this time is 1200~
The temperature is 1500℃ and the pressure is 20-150 atm. After this crude synthesis gas is heat-recovered using water in a heat recovery device, it is further cooled with water in a cooling/dedusting device to remove carbon and at the same time replenish the water necessary for CO conversion. The gas is then fed to a CO conversion process, where the CO in the gas is converted into CO 2 and H 2 . After that, acidic gases such as H 2 S and CO 2 are absorbed and removed by an alkaline solution, etc., and the gas becomes purified hydrogen gas with a hydrogen purity of about 98 mol%.The remaining CO 2 , CH 4 , and CO are removed during the low-temperature purification process. Hydrogen purity removed by approximately 99.99
It becomes a purified gas of mol% or more and is sent to the liquefaction process. Note that the acidic gases such as H 2 S and CO 2 removed by the above-mentioned alkaline solution etc. are converted into S 2 , CO 2 etc. in a sulfur plant. The above conventional method has the following drawbacks. In the case of methods a and b above, which use off-gas as a raw material, (1) high-purity hydrogen gas production equipment and liquefaction equipment are attached to oil refineries, caustic soda factories, etc., so there are restrictions on the installation location; (2) off-gas There is a difference in the pattern of the amount of hydrogen generated and the amount of liquid hydrogen produced, and off-gas may have to be stored and used. However, off-gas has drawbacks such as poor storability and inconvenience in handling. In addition, in the case of methods c and d above that use synthesis gas as a raw material, (1) a special high-temperature heat-resistant alloy is required in terms of equipment materials, and depending on the process, pure oxygen production equipment is required, which requires large-scale equipment. (2) Since both are high-temperature processes of over 1000℃, it takes a considerable amount of time to start up and shut down the plant, making it difficult to start up and shut down the plant at any time or even on a daily basis. (3) The ability to follow load fluctuations and the range of fluctuations are insufficient. The present invention has been made with the object of eliminating the above drawbacks and providing a simple and economical method for producing liquid hydrogen using alcohol such as methanol, which is liquid at room temperature and pressure, as a raw material. That is, the present invention applies pressures of 10 to 45 atmospheres and 200
Alcohol is reformed in the presence of water vapor at a temperature of ~400°C, and the high-pressure crude synthesis gas obtained by reforming is converted to hydrogen with a purity of 99.99 mol% or more using a pressure swing method using an adsorbent. At the same time as obtaining high-pressure hydrogen gas, the by-product flammable gas is used as a heat source for the reforming reaction, and when high-pressure, high-purity hydrogen gas is liquefied in the liquefaction process, the self-pressure of the gas is used to drive an expansion turbine. This is a method for producing liquid hydrogen, characterized in that the hydrogen is used as power for a liquefaction process. The new ideas of the present invention are listed below. (1) Use methanol, ethanol, propyl alcohol, butanol, and other alcohols as raw materials for liquid hydrogen. (2) For example, use the following methanol reforming reaction for the purpose of producing liquid hydrogen. Endothermic reaction CH 3 OH + H 2 O Endothermic reaction ----→ CO 2 + 3H 2The reaction temperature is low (200-400℃), and the reaction pressure is at the optimal level (10-45 atm) for the subsequent liquefaction process. will be held. Moreover, a low heat source of about 400 to 600°C can be used for the amount of heat required for the reaction. Therefore, high temperature operation over 1000℃ is not required,
This allows the plant to be started and stopped easily and in a short time. (3) Because the raw material is methanol, etc., which is liquid at room temperature and pressure, it is easy to store the raw material. (4) A method for producing liquid water from alcohol that combines alcohol reforming, separation and purification of hydrogen gas from crude synthesis gas using an adsorbent, and cryogenic liquefaction of hydrogen gas using an expansion turbine. thing. From the above (1) to (4), it can be seen that the present invention has the following advantages. (1) Since there are no particular restrictions on the installation location of a plant that implements the method of the present invention, the method can be easily implemented even in remote areas such as remote islands and non-industrial areas. (2) Since the operating temperature is low, a simple and inexpensive heat supply system and a simple and inexpensive reaction apparatus can be used. (3) Since the plant can be easily started and stopped, it can be operated intermittently on a daily or weekly basis depending on the demand for liquid hydrogen. In addition to general liquid hydrogen production, the method of the present invention also
It can also be applied to the production of hydrogen for fuel cells, hydrogen for hydrogenation for the oil and fat and food industries, and hydrogen for reduction for the metal refining and semiconductor industries. Hereinafter, the method of the present invention will be explained in detail with reference to the accompanying drawings and the like. FIG. 1 is a diagram showing the basic flow of the method of the present invention. In FIG. 1, a mixture of alcohol 5 and water or steam or circulating water 8 (described below) pressurized to 10 to 45 atmospheres is heated to 200 to 400°C and becomes gaseous.
By passing through a catalyst layer in the reforming step 1, it is converted into crude synthesis gas 6 mainly consisting of H 2 , CO 2 and H 2 O. The above catalyst may be copper-zinc based, for example, CuO-ZuO (Zn/Cu weight ratio = 2), or 80 wt% of the CuO-ZnO and 20% of γ-Al 2 O 3.
Those loaded with wt% are used. For example, in the case of methanol, the main reaction in the reforming step 1 is represented by the following formula. CH 3 OH→CO+2H 2 ...(1) CO+H 2 O→CO 2 +H 2 ...(2) Overall, by adding the above two equations, the following equation is obtained. CH 3 OH + H 2 O → CO 2 + 3H 2 ...(3) Crude synthesis gas 6 is cooled and condensed water is separated in step 2
The synthesis gas 9 is supplied to the purification step 3. Further, the separated condensed water is circulated to the reforming step 1 as circulating water 8. In the purification step 3, CO 2 which is an impurity other than hydrogen,
The purpose is to remove CH 4 , CO, etc., and there are various removal methods, but first CO 2 is removed by a decarboxylation process such as the hot potassium carbonate method, the monoethanolamine method, and the lectisol method, and then the remaining impurities are removed.
It is particularly preferable from the economic point of view to remove CH 4 , CO, etc. by the PSA (pressure swing adsorption) method, or to remove all impurities by the PSA method alone. In addition,
Synthetic zeolite or the like is used as an adsorbent in the PSA method. The off-gas 11 released from the refining process 3 is
Since it contains CH 4 , CO, H 2 , etc. and has value as a fuel, it is used as a heat source in the reforming process 1. The purified gas 10 from the purification step 3 is at approximately room temperature, 10~
The hydrogen is supplied to the liquefaction step 4 under a pressure of 45 atm and a hydrogen purity of approximately 99.99 mol% or higher. Note that by setting the hydrogen purity of the purified gas 10 to about 99.99 mol % or more, low-temperature purification in the liquefaction step 4 is basically unnecessary. In the liquefaction process 4, the self-pressure of the purified gas 10 is used to drive an expansion turbine, and this is used as compression power for liquefaction to achieve self-cooling (heat exchange with hydrogen gas at the same temperature level as liquid hydrogen). ), indirect cooling using a refrigerant such as nitrogen or helium, or a combination thereof, to produce liquid hydrogen 12. Note that 7 in FIG. 1 indicates fuel used as a heat source in the reforming step 1. According to the method of the present invention described in detail above, the following effects can be achieved. (1) The plant can only be operated at temperatures below 400°C, which simplifies equipment, materials, and operations, making it easy to start and stop the plant, and allowing flexible operation to meet the demand for liquid hydrogen. (2) Off gas 11 from purification process 3 is transferred to reforming process 1
It can be used as a heat source for synthesis gas at its own pressure (10~
45 atm) can be used to reduce the power of the liquefaction process 4, which is efficient and economical. (3) Basically, a plant can be located as long as there is alcohol that is easy to handle, and it is especially useful for on-site (local production) plants in non-industrial areas, remote areas such as remote islands. FIG. 2 is a diagram showing a specific embodiment of the method of the present invention when methanol is used as a raw material. In FIG. 2, liquid methanol 105 is mixed with make-up water 121 for reforming and circulating water 108 separated from crude synthesis gas 106 at the outlet of reforming reactor 134, and then used to heat heat medium oil 118. The heated air exhaust gas, the outlet crude synthesis gas 106 (approximately 250°C) of the reforming reactor 134, and the heat medium oil 118 of approximately 400°C are transferred to the heat exchangers 131, 132, 133.
The fuel is sequentially indirectly heated through the reactor 134 and then supplied to the reforming reactor 134. In the reforming reactor 134, methanol is reformed under conditions of about 250° C. and about 30 atmospheres, and converted into crude synthesis gas 106 mainly containing hydrogen and carbon dioxide. The heat required for this reaction is about 400℃ heat transfer oil 1
18. The heat medium oil 118 is used as fuel 1 in the hot air generating furnace 137.
07 and off gas 11 from PSA device 139
1 and the air 114 to generate hot air, which is heated in the heat exchanger 135. The above-mentioned reforming reactor 134 is a shell and tube heat exchanger, and the inside of the tube is filled with a commercially available copper-zinc catalyst, into which methanol gas is supplied. As a heating method for the reforming reactor 134, other heat carriers such as molten salt may be used instead of the heat carrier oil 118, or reaction heat may be provided within the combustor or by combustion gas. Crude synthesis gas 106 is transferred to heat exchangers 132 and 1
After the heat is recovered and cooled by 36 and the condensed water is separated, it is supplied to the decarboxylation device 138 at approximately room temperature.
There are various types of decarboxylation equipment 138, but here we use a wet method using a monoethanolamine aqueous solution to remove carbon dioxide gas and achieve a hydrogen purity of approximately 98%.
Synthesis gas 151, which has become mol%, is transferred to PSA device 13.
9, where the hydrogen purity is approximately 99.99 mol%
It is refined to a higher level. If this purified gas 110 contains impurities such as CO and CH 4 of approximately 0.01 mol% or more, they will freeze during the liquefaction process and adhere to the equipment, causing trouble such as blockage. If impurities are not removed by such methods, low-temperature purification is required, but by employing the PSA device 139, low-temperature purification is not necessary. An example of the PSA device 139 is schematically shown in FIG. Figure 3 shows four adsorption towers 1 filled with adsorbent.
56 are used. In FIG. 3, synthesis gas 151 at about room temperature and about 10 to 45 atm hydrogen purity of about 98 mol% is transferred to an adsorption column 156.
Components other than hydrogen are adsorbed by the adsorbent. Before the adsorbent is saturated with impurities, the supply of synthesis gas 151 is stopped and the pressure is reduced, and then purified gas 151 is
10 is poured into the adsorbent to release impurities adsorbed on the adsorbent and regenerate the adsorbent. The purified gas required for this regeneration is stored as an off-gas 111 in an off-gas tank 158 and used as fuel for a reforming heat source. Note that FIG. 3 shows a state in which three towers are refining the synthesis gas 151 and one tower is regenerating the adsorbent using a part of the purified gas 110. By cyclically performing adsorption, depressurization, and regeneration operations in each tower in this way, hydrogen purity of approximately 99.99 mol% is achieved.
The above purified gas 110 is obtained. In this case, the hydrogen recovery rate is approximately 75%. Purified gas 110 exiting the above PSA device 139
enters the liquefaction process at approximately 40°C and approximately 29 atm. In the liquefaction process, it first enters the expansion turbine 140, where it is depressurized to near normal pressure, enters the cold boxes 143 and 144, and indirectly exchanges heat with the deep-chilled helium 116, becoming approximately 20㎓ of liquid hydrogen. The product liquid hydrogen 11 is stored in a tank 146.
2 is used from time to time. The above-mentioned refrigerant, helium 116, has a pressure of about 1.2 atmospheres and about 15㎓ at the outlet of the expansion turbine 142, and the cold box (aluminum plate heat exchanger) 1
After indirectly liquefying the entire amount of hydrogen in step 44, it is branched into two streams: one helium stream precools the hydrogen gas in a cold box (heat exchanger) 143, and the other helium stream flows through a cold box (heat exchanger) 143. 1
45 pre-cools the helium gas from the compressor 141 at a pressure of about 300㎓ and about 15 atm. These branched helium gases are combined again and sent to the compressor 141.
Helium thus forms a completely closed cycle. Note that the expansion turbines 140 and 142 are recovered as power for the compressor 141 in the liquefaction process, and the insufficient efficiency is compensated for by the electric motor 147. Table 1 shows an overview of the logistics in the main lines mentioned above. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の基本フローを示す図、第
2図は本発明方法の一実施態様例を示す図、第3
図は第2図で使用されるPSA装置139の一具
体例を示す図である。
FIG. 1 is a diagram showing the basic flow of the method of the present invention, FIG. 2 is a diagram showing an example of an embodiment of the method of the present invention, and FIG.
The figure shows a specific example of the PSA device 139 used in FIG. 2.

Claims (1)

【特許請求の範囲】[Claims] 1 10〜45気圧の圧力及び200〜400℃の温度条件
で、水蒸気の存在下でアルコールの改質を行わ
せ、改質によつて得られた高圧粗合成ガスを吸着
剤を用いた圧力スイング法により水素純度99.99
モル%以上の高圧水素ガスを得ると同時に、副生
する可燃性ガスを改質反応の熱源として利用し、
高圧高純度水素ガスを液化工程で液化させるに際
しては該ガスの自圧を利用し膨張タービンを駆動
させて液化工程の動力として用いるようにしてな
ることを特徴とする液体水素の製造方法。
1 Alcohol is reformed in the presence of water vapor at a pressure of 10 to 45 atm and a temperature of 200 to 400°C, and the high-pressure crude synthesis gas obtained by reforming is subjected to pressure swing using an adsorbent. Hydrogen purity 99.99 by method
At the same time as obtaining high-pressure hydrogen gas of more than mol%, the combustible gas by-product is used as a heat source for the reforming reaction,
A method for producing liquid hydrogen, characterized in that when high-pressure, high-purity hydrogen gas is liquefied in a liquefaction process, the self-pressure of the gas is used to drive an expansion turbine and used as power for the liquefaction process.
JP58014662A 1983-02-02 1983-02-02 Production of liquid hydrogen Granted JPS59141405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014662A JPS59141405A (en) 1983-02-02 1983-02-02 Production of liquid hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014662A JPS59141405A (en) 1983-02-02 1983-02-02 Production of liquid hydrogen

Publications (2)

Publication Number Publication Date
JPS59141405A JPS59141405A (en) 1984-08-14
JPH0240601B2 true JPH0240601B2 (en) 1990-09-12

Family

ID=11867422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014662A Granted JPS59141405A (en) 1983-02-02 1983-02-02 Production of liquid hydrogen

Country Status (1)

Country Link
JP (1) JPS59141405A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030021743A1 (en) * 2001-06-15 2003-01-30 Wikstrom Jon P. Fuel cell refueling station and system
JP2004345592A (en) 2003-05-26 2004-12-09 Nissan Motor Co Ltd Steering device of vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953192A (en) * 1972-09-25 1974-05-23
JPS547629A (en) * 1977-06-18 1979-01-20 Fuoanee Intern Inc Radiation transmission apparatus for flame detection
JPS5756302A (en) * 1980-08-11 1982-04-03 Kiyatarisutsu Ando Chem Yuurop Metal reforming method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953192A (en) * 1972-09-25 1974-05-23
JPS547629A (en) * 1977-06-18 1979-01-20 Fuoanee Intern Inc Radiation transmission apparatus for flame detection
JPS5756302A (en) * 1980-08-11 1982-04-03 Kiyatarisutsu Ando Chem Yuurop Metal reforming method and device

Also Published As

Publication number Publication date
JPS59141405A (en) 1984-08-14

Similar Documents

Publication Publication Date Title
JP3670229B2 (en) Method and apparatus for producing hydrogen with liquefied CO2 recovery
US5865023A (en) Gasification combined cycle power generation process with heat-integrated chemical production
EP0093502B1 (en) Ammonia production process
US4725380A (en) Producing ammonia synthesis gas
EP2401052B1 (en) Improved method for the capture and disposal of carbon dioxide in an energy conversion process
AU5765499A (en) Process for preparing a H2-rich gas and a CO2-rich gas at high pressure
CN102782161A (en) Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
NO158616B (en) PROCEDURE FOR THE MANUFACTURE OF AMMONIAK.
GB2457970A (en) Energy conversion process for sequestration of carbon dioxide
EP0262894A2 (en) For the co-production of carbon dioxide and hydrogen
CN102746870B (en) FT synthesis technology
JP2003165707A (en) Method and apparatus for manufacturing hydrogen
EP1278700B1 (en) Hydrogen derived from methanol cracking is used as a clean fuel for power generation while reinjecting co-product carbon dioxide
JPH0798643B2 (en) Method for producing ammonia synthesis gas
JPH10273301A (en) Hydrogen manufacturing equipment
JP3923766B2 (en) Hydrogen production equipment
AU2021286875B2 (en) Method for the production of hydrogen
JPH0240601B2 (en)
JP3322923B2 (en) Method for producing carbon monoxide and hydrogen
JPH07119491A (en) Lng reformed gas combustion gas turbine composite generating plant
JPH0243681B2 (en)
JPH03242302A (en) Production of hydrogen and carbon monoxide
JPH05287284A (en) Process for reforming liquefied natural gas
WO1996019642A1 (en) Igcc/refinery utilities unit
JPH04366200A (en) Preparation of high-btu town gas