JPH0240558Y2 - - Google Patents

Info

Publication number
JPH0240558Y2
JPH0240558Y2 JP1985142877U JP14287785U JPH0240558Y2 JP H0240558 Y2 JPH0240558 Y2 JP H0240558Y2 JP 1985142877 U JP1985142877 U JP 1985142877U JP 14287785 U JP14287785 U JP 14287785U JP H0240558 Y2 JPH0240558 Y2 JP H0240558Y2
Authority
JP
Japan
Prior art keywords
graphite
heat
ceramic
tile
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985142877U
Other languages
Japanese (ja)
Other versions
JPS6251299U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985142877U priority Critical patent/JPH0240558Y2/ja
Publication of JPS6251299U publication Critical patent/JPS6251299U/ja
Application granted granted Critical
Publication of JPH0240558Y2 publication Critical patent/JPH0240558Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)

Description

【考案の詳細な説明】 〔考案の利用分野〕 本考案は100W/cm2以上の熱負荷を間欠的に受
ける様な耐熱防護壁、特に核融合炉の第一壁の炉
壁構造及びその強度部材に関する。
[Detailed description of the invention] [Field of application of the invention] This invention is a heat-resistant protective wall that is intermittently subjected to a heat load of 100 W/cm 2 or more, especially the structure and strength of the first wall of a fusion reactor. Regarding parts.

〔考案の背景〕[Background of the idea]

従来の装置は、特開昭59−151084号公報に記載
のように高熱伝導性セラミクス焼結体が直接プラ
ズマら対面する構造となつていた。一般に焼結体
セラミクスは耐熱衝撃性が低く、核融合炉の寿命
中に約1000回以上の瞬間的な数100MW/m2を越
える熱負荷が避け得ない使用条件下ではこのよう
な構造では炉運転期間中に壁面の1部が破壊され
炉の正常な運転が不可能となることが予想され
る。
Conventional devices have a structure in which a highly thermally conductive ceramic sintered body directly faces plasma, as described in Japanese Patent Application Laid-Open No. 59-151084. Generally, sintered ceramics have low thermal shock resistance, and under usage conditions where instantaneous heat loads exceeding several 100 MW/ m2 are unavoidable approximately 1,000 times or more during the life of a fusion reactor, such a structure cannot be used. It is expected that part of the wall will be destroyed during the operation period, making normal operation of the furnace impossible.

〔考案の目的〕[Purpose of invention]

本考案の目的は数100W/cm2以上、数秒間の繰
り返し熱負荷に耐え、かつ非正常運転時に加わる
瞬間的な高熱負荷によつても著しい破壊に至るこ
とのない高い耐熱衝撃性を有する耐熱防護壁を提
供することにある。
The purpose of this invention is to have high thermal shock resistance that can withstand repeated heat loads of several 100 W/cm 2 or more for several seconds, and that will not cause significant damage even under momentary high heat loads applied during abnormal operation. The purpose is to provide a protective barrier.

〔考案の概要〕[Summary of the idea]

核融合炉の耐熱防護壁材料としてSiC,A
N,TiCなどのセラミクス焼結体と、黒鉛材とを
比較すると900℃以下において1部の焼結体は、
黒鉛よりも高い熱伝導率を持ち壁面温度を低く保
つことが出来る。しかし1000℃以上では熱伝導率
の点では大きな差は認められないだけでなく、黒
鉛材の方が優れている場合もある。いつぽう耐熱
衝撃性の面から比較すると一般のセラミクス焼結
体に比べ黒鉛材は遥かに優れた特性を有すること
が知られている。高温における黒鉛の優れた熱機
械的特性と900℃以下でのセラミクス焼結体の高
い熱伝導性と電気的特性を結合した耐熱タイルが
得られれば、耐熱防護壁の性能及び信頼性を著し
く改善する事が期待出来る。このような耐熱タイ
ルは黒鉛材,焼結セラミクス層及び水冷金属基体
の接合された積層構造によつて実現出来る。黒鉛
材と焼結セラミクスの高強度の接合は、焼結セラ
ミクス材をホツトプレス法で作製する場合接合し
たい黒鉛板と圧粉成形体とを重ねて加圧焼結する
ことにより強固な接合が得られる。予め黒鉛治具
の焼結体に接する側の面を所望の形状に加工して
おくことにより、焼結体の前面のみならず側面
も、黒鉛で被覆したり、焼結体内部に黒鉛埋め込
み層を形成したりすることが可能である。被覆す
る黒鉛材の熱膨張率は被覆される焼結体セラミク
スの熱膨張率と同程度であることが接合部分の熱
応力を低く保ち、接合部での破壊を防ぐ上で重要
である。また被覆黒鉛層の厚さは少なくとも1mm
とする。
SiC, A as heat-resistant protective wall material for fusion reactors
Comparing ceramic sintered bodies such as N and TiC with graphite materials, some sintered bodies at 900℃ or below
It has higher thermal conductivity than graphite and can keep wall surface temperatures low. However, at temperatures above 1000°C, not only is there no significant difference in thermal conductivity, but graphite materials are sometimes superior. When compared in terms of thermal shock resistance, graphite materials are known to have far superior properties compared to general ceramic sintered bodies. If heat-resistant tiles that combine the excellent thermomechanical properties of graphite at high temperatures with the high thermal conductivity and electrical properties of ceramic sintered bodies at temperatures below 900°C can be obtained, the performance and reliability of heat-resistant protective walls will be significantly improved. I can hope that you will. Such a heat-resistant tile can be realized by a laminated structure in which a graphite material, a sintered ceramic layer, and a water-cooled metal substrate are bonded together. High-strength bonding between graphite material and sintered ceramics can be achieved by stacking the graphite plate and powder compact to be bonded together and sintering them under pressure when the sintered ceramic material is manufactured using the hot press method. . By processing the side of the graphite jig in contact with the sintered body into the desired shape in advance, not only the front side but also the side surfaces of the sintered body can be coated with graphite, or a graphite embedded layer can be formed inside the sintered body. It is possible to form It is important that the coefficient of thermal expansion of the graphite material to be coated be on the same level as that of the sintered ceramic to be coated, in order to keep the thermal stress at the joint part low and to prevent breakage at the joint part. In addition, the thickness of the coating graphite layer is at least 1 mm.
shall be.

セラミクス焼結体は少なくとも1000℃以下にお
いて黒鉛材よりも高い熱伝導率を有することが望
ましい。このような構成にすれば耐熱性セラミク
スタイルの表面層及び内部の各層のうち最も高温
で使用される最外表面層は高温において比較的高
い熱伝導率を有する黒鉛が、比較的低い温度に保
持される内部の層では室温付近で高い熱伝導性を
有する焼結体セラミクスが熱を伝達するのでより
効果的な冷却が可能となる。
It is desirable that the ceramic sintered body has a higher thermal conductivity than the graphite material at least at temperatures below 1000°C. With this structure, the outermost surface layer, which is used at the highest temperature among the surface layer and internal layers of the heat-resistant ceramic tile, is made of graphite, which has a relatively high thermal conductivity at high temperatures, but maintains the temperature at a relatively low temperature. In the inner layer, sintered ceramics, which have high thermal conductivity near room temperature, transfer heat, making more effective cooling possible.

黒鉛被覆はまた、耐熱防護壁を核融合炉第一壁
として使用する場合第一表面における局所的な電
荷の蓄積による放電を抑える上で有効である。セ
ラミクス焼結体のうちSiC,ANなどは黒鉛よ
りも電気伝導性が低いので磁場の変動によるタイ
ル内部に誘起される渦電流を低く抑え、従つてタ
イルに加わる電磁力を黒鉛の厚いタイルの場合よ
り小さく抑えることが出来る。
The graphite coating is also effective in suppressing electrical discharge due to local charge build-up on the first surface when the heat-resistant barrier is used as the first wall of a fusion reactor. Among ceramic sintered bodies, SiC, AN, etc. have lower electrical conductivity than graphite, so they suppress the eddy current induced inside the tile due to magnetic field fluctuations, and therefore reduce the electromagnetic force applied to the tile in the case of thick graphite tiles. It can be kept smaller.

黒鉛被覆層の存在は、高熱負荷による焼結体表
面からのより高い蒸気圧成分、例えばSiCにおけ
るSiの蒸発を防ぐバリヤーとしての効果がある。
Siのような相対的に高い電子番号を有する元素の
プラズマ中への混入を防ぐことはプラズマ性能向
上のために極めて重要である。
The presence of the graphite coating layer is effective as a barrier to prevent higher vapor pressure components such as Si in SiC from evaporating from the surface of the sintered body due to high heat loads.
Preventing elements with relatively high electron numbers, such as Si, from entering the plasma is extremely important for improving plasma performance.

黒鉛被覆材の表面はプラズマ粒子の照射に対し
耐スパツタリング性を有する必要がある。純粋の
黒鉛に比べ30重量%以下のSi,A,Ti,Beを
含む黒鉛材は水素プラスマによる化学スパツタリ
ング率が低い特徴がある。黒鉛被覆材表面には、
これらの不純物元素が含まれていることが望まし
い。イオン注入法で高速のSi,A,Ti,Beイ
オンを黒鉛被覆材表面に注入するか、又は化学蒸
着法でこれらの元素を含む黒鉛皮膜を形成するこ
とが可能である。もちろん、バルク組成中にこれ
らの元素を含む黒鉛材を使用することは有効な方
法である。
The surface of the graphite coating must have sputtering resistance against plasma particle irradiation. Compared to pure graphite, graphite materials containing 30% by weight or less of Si, A, Ti, and Be are characterized by a low chemical sputtering rate due to hydrogen plasma. On the surface of graphite coating material,
It is desirable that these impurity elements be included. It is possible to inject high-velocity Si, A, Ti, Be ions into the surface of the graphite coating by ion implantation, or to form a graphite film containing these elements by chemical vapor deposition. Of course, it is an effective method to use graphite materials containing these elements in the bulk composition.

第3図に、電子ビーム溶接機を用いて本考案に
よる黒鉛被覆焼結セラミクスタイルの耐熱衝撃性
に関する照射試験を行つた結果を示す。焼結SiC
セラミクスタイル表面に黒鉛被覆を行うことによ
り負荷時間にして1桁、熱流束において約4倍の
向上が確認され、実際の核融合炉において予測さ
れている定常及び不安定条件運転時の壁への負荷
を上回つている。
FIG. 3 shows the results of an irradiation test regarding the thermal shock resistance of the graphite-coated sintered ceramic tile according to the present invention using an electron beam welding machine. Sintered SiC
By coating the ceramic tile surface with graphite, it was confirmed that the load time was improved by an order of magnitude and the heat flux was improved by about 4 times. It is exceeding the load.

〔考案の実施例〕[Example of idea]

以下、本考案の実施例を図によつて説明する。
第1図は本考案の炉壁構造を適用した一例を示す
耐熱防護壁の斜視図である。内部に冷媒が通る流
路4が設けられた冷却構造を有する金属基体3に
タイル状のセラミクス体1が接合層5によつて接
合された構造を有する。セラミクス体1はさらに
黒鉛を主体とする被覆層2によつて前面又は側面
を覆われている。セラミクスタイル5は互いに間
隙6が設けられる。間隙6を設けることによつて
加熱冷却による熱応力を低くすることが出来る。
冷却金属基体3が入射粒子例えばプラズマ粒子に
よる照射を直接受けないようにセラミクスタイル
は互いに一部が重ね合わされるように配置されて
いる。各タイルの黒鉛被覆層には凸部2′及び凹
部2″とが一方が他方に埋め込まれるように形成
してある。セラミクスタイルは幾つかを1組とし
てブロツクを形成する。ブロツクの端に配置され
たタイルの側面は前面と同様、黒鉛被覆層2で
被覆されており、斜め前方向からの熱の流入に対
してセラミクスタイルを保護するようにしてあ
る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of a heat-resistant protective wall showing an example to which the furnace wall structure of the present invention is applied. It has a structure in which a tile-shaped ceramic body 1 is bonded by a bonding layer 5 to a metal base 3 having a cooling structure in which a flow path 4 for a coolant to pass is provided. The ceramic body 1 is further covered on the front or side surfaces with a coating layer 2 mainly composed of graphite. A gap 6 is provided between the ceramic tiles 5. By providing the gap 6, thermal stress caused by heating and cooling can be reduced.
The ceramic tiles are arranged partially overlapping each other so that the cooled metal substrate 3 is not directly irradiated by incident particles, such as plasma particles. The graphite coating layer of each tile has a convex portion 2' and a concave portion 2'' formed so that one is embedded in the other. Several ceramic tiles are grouped together to form a block. Arranged at the edge of the block. The side surfaces of the ceramic tile are covered with a graphite coating layer 2, like the front surface, to protect the ceramic tile from inflow of heat from the diagonally forward direction.

セラミクスタイルとしては理論密度98%以上の
AN焼結体、TiC焼結体、2重量%AN入り
SiC焼結体、0.1重量%A入りSiC焼結体、2重
量%BeO入りSiC焼結体を使用した。焼結体は厚
さ8mm、40mm角である。
Ceramic styles include AN sintered body with a theoretical density of 98% or more, TiC sintered body, and 2% AN by weight.
A SiC sintered body, a SiC sintered body containing 0.1% by weight of A, and a SiC sintered body containing 2% by weight of BeO were used. The sintered body is 8 mm thick and 40 mm square.

黒鉛被覆層として等方性黒鉛を70重量%以上含
み、Si,Ti,A,Be,BおよびNのうち1種
以上を含む焼成材か或は高純度の黒鉛材が用いら
れた。焼結体の黒鉛材による被覆は、まず黒鉛被
覆材を用意しこれに焼結前の原料セラミクス圧粉
成形体を重ねて、黒鉛型の中に挿入し焼結温度
2050℃、圧力20MPaで加圧焼結を行つた。
As the graphite coating layer, a fired material containing 70% by weight or more of isotropic graphite and one or more of Si, Ti, A, Be, B, and N, or a high-purity graphite material was used. To coat a sintered body with graphite material, first prepare the graphite coating material, overlay the raw material ceramic powder compact before sintering, insert it into a graphite mold, and adjust the sintering temperature.
Pressure sintering was performed at 2050°C and a pressure of 20 MPa.

黒鉛を被覆したセラミクスタイルのもう一方の
面にまず銅−炭素繊維複合を接合し、次いで更に
銅−炭素繊維複合体の上に厚さ100μm銅箔を介在
させてアルミニウムからなる冷却基体を接合し
た。
First, a copper-carbon fiber composite was bonded to the other side of the graphite-coated ceramic tile, and then a cooling substrate made of aluminum was bonded to the copper-carbon fiber composite by interposing a 100 μm thick copper foil. .

第2図は本考案を炉壁構造に適用した他の実施
例を示す耐熱防護壁を構成する素子の断面図であ
る。内部に冷媒が通る流路4を有する金属基体3
にタイル状のセラミクス体1がボルト7、ワツシ
ヤ8によつて固定されている構造を示す。タイル
1の中心部分には表面被覆層2と一体の柱状埋め
込み部分9が形成してある。この埋め込み部分9
にはボルト7に対応するネジ穴が切つてあり、タ
イルを金属基体に固定し、かつタイルと金属基体
間の熱的な接触を図つている。
FIG. 2 is a sectional view of an element constituting a heat-resistant protective wall showing another embodiment in which the present invention is applied to a furnace wall structure. Metal base 3 having a flow path 4 through which a refrigerant passes inside
1 shows a structure in which a tile-shaped ceramic body 1 is fixed with bolts 7 and washers 8. A columnar embedded portion 9 integral with the surface coating layer 2 is formed in the center portion of the tile 1. This embedded part 9
A screw hole corresponding to the bolt 7 is cut in the hole to fix the tile to the metal base and to establish thermal contact between the tile and the metal base.

〔考案の効果〕 本考案によれば、冷却効率にすぐれ、炉の異常
運転時における瞬間的な高熱負荷に対する耐熱衝
撃性に優れ、かつプラズマによる化学的パツタリ
ングにも耐性のある核融合炉第一壁を提供するこ
とが出来る。
[Effects of the invention] According to the invention, the first fusion reactor has excellent cooling efficiency, excellent thermal shock resistance against instantaneous high heat loads during abnormal reactor operation, and resistance to chemical patter caused by plasma. We can provide walls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考明の一実施例の耐熱防護壁の斜視
図、第2図は本考案の炉壁構造の断面図、第3図
は性能を示す説明図である。 1……セラミクス焼結体、2……黒鉛被覆層、
3……冷却金属基体、4……冷媒の通路、5……
接合層、7……固定用ボルト、8……ワツシヤ。
FIG. 1 is a perspective view of a heat-resistant protective wall according to an embodiment of the present invention, FIG. 2 is a sectional view of the furnace wall structure of the present invention, and FIG. 3 is an explanatory diagram showing performance. 1... Ceramic sintered body, 2... Graphite coating layer,
3... Cooling metal base, 4... Refrigerant passage, 5...
Bonding layer, 7...Fixing bolt, 8...Washer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 分割された多数の耐熱性セラミクスタイルと、
強制的に冷却された金属基体とが積層的に接合さ
れた耐熱防護壁において、該耐熱性セラミクスタ
イルは表面側を黒鉛を主成分とする厚さ1mm以上
の被覆層、基体金属側をセラミクス焼結体で構成
することを特徴とする耐熱防護壁。
A large number of divided heat-resistant ceramic tiles,
In a heat-resistant protective wall that is laminated and bonded to a forcibly cooled metal base, the heat-resistant ceramic tile has a coating layer with a thickness of 1 mm or more mainly composed of graphite on the surface side, and a ceramic sintered layer on the base metal side. A heat-resistant protective wall characterized by being composed of aggregates.
JP1985142877U 1985-09-20 1985-09-20 Expired JPH0240558Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985142877U JPH0240558Y2 (en) 1985-09-20 1985-09-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985142877U JPH0240558Y2 (en) 1985-09-20 1985-09-20

Publications (2)

Publication Number Publication Date
JPS6251299U JPS6251299U (en) 1987-03-30
JPH0240558Y2 true JPH0240558Y2 (en) 1990-10-29

Family

ID=31052028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985142877U Expired JPH0240558Y2 (en) 1985-09-20 1985-09-20

Country Status (1)

Country Link
JP (1) JPH0240558Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569078B2 (en) * 1987-10-19 1997-01-08 株式会社日立製作所 Fusion reactor wall

Also Published As

Publication number Publication date
JPS6251299U (en) 1987-03-30

Similar Documents

Publication Publication Date Title
TW456157B (en) Carrier
KR101105065B1 (en) Laminated Components for Nuclear Fusion Furnace
US4690793A (en) Nuclear fusion reactor
US8164909B2 (en) Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material
US9366506B2 (en) Coated ballistic structures and methods of making same
EP2952496B1 (en) Joined material and method for producing same
EP2573205A2 (en) Sputter target assembly having a low-temperature high-strength bond
JP2022187981A (en) Composites and heat dissipation components
JPH0240558Y2 (en)
JP5275555B2 (en) Composite member with structured tungsten element
CN118201185A (en) A neutron source lithium target comprising a lithium diffusion barrier layer and a preparation method thereof
KR20140015367A (en) Diffusion-bonded sputtering target assembly and method of manufacturing
WO2022218599A1 (en) Graded interlayer
WO2016028657A1 (en) Encapsulated composite backing plate
EP0455229B1 (en) Ceramic substrate used for an electric or electronic circuit
JPH05256968A (en) First wall of fusion reactor
US4463797A (en) Inhibiting shrinkage pipe formation of metal casting
JP3779438B2 (en) The first wall of the fusion device
US20240429071A1 (en) Thermal leveler blank for integration with thermal management
US20250040097A1 (en) Thermal management device with comprising an array of thermally conductive pieces
JP6973158B2 (en) How to manufacture a board for a power module with a heat sink
JPS62184388A (en) Fusion device heat receiving plate
CN107379661A (en) A kind of more metal hybrid ceramic matric composites
JP2024515656A (en) Gradual middle tier
JPS61104291A (en) Vacuum vessel for nuclear fusion device and its manufacturing method