JPH0240537A - Apparatus for measuring change in refractive index - Google Patents

Apparatus for measuring change in refractive index

Info

Publication number
JPH0240537A
JPH0240537A JP19149888A JP19149888A JPH0240537A JP H0240537 A JPH0240537 A JP H0240537A JP 19149888 A JP19149888 A JP 19149888A JP 19149888 A JP19149888 A JP 19149888A JP H0240537 A JPH0240537 A JP H0240537A
Authority
JP
Japan
Prior art keywords
light
waveform
dbr
refractive index
fabry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19149888A
Other languages
Japanese (ja)
Inventor
Naoki Shimozaka
直樹 下坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19149888A priority Critical patent/JPH0240537A/en
Publication of JPH0240537A publication Critical patent/JPH0240537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To prevent decrease in resolution due to the use of a compact optical system by sweeping the frequency of a light source with the formation of an interference waveform, and taking out the interference waveform on a time axis. CONSTITUTION:A current is injected into a DBR (turnable distributed Bragg- reflector semiconductor laser) 1 as a reference laser apparatus from the outside. The current is repeatedly swept with a sawtooth wave generator 2. The oscillating frequency of the output light of the DBR 1 is transformed into the sawtooth wave. The output light from the DBR 1 is transformed into parallel light through a lens 3. Thereafter, the light is inputted into a Fabry-Perot interferometers 5. As the interferometers 5, two semitransparent mirrors are arranged so that the mirror surfaces are in parallel. The gap between the interferrometers is filled with a medium wherein change in refractive index is measured. The output light from the DBR 1 is inputted. The waveform of the light that is transmitted through the interferometers 5 is detected with a photodetector 6 as a waveform detecting means.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は任意の液体もしくは気体の屈折率変化を測定す
る屈折率変化測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a refractive index change measuring device for measuring the refractive index change of any liquid or gas.

高精度に屈折率変化を測定する装置としては、従来、久
保田広著「波動光学」(岩波書店刊)の第106ページ
に記載された装置が知られている。この装置は、2枚の
半透鏡を平行に配置し、その間を被測定媒体で充填した
フアブリーペロ干渉計に、ある程度空間的に拡がった光
源からの出射光を入射し、その出射光である干渉環の半
径の変化により屈折率変化を測定するものである(第2
図参照)。この構成ではm次の強度極大の方向甲工は2
ndcostpm=mat で与えられる。ただし、nは被測定媒体の屈折率、λは
光源の波長、dはフアブリーペロ干渉計の鏡面間隔であ
る。nの変化Δnによる甲。の移動量をΔ甲。とすると
、上式から 、口。
As an apparatus for measuring changes in refractive index with high precision, the apparatus described on page 106 of "Wave Optics" by Hiroshi Kubota (published by Iwanami Shoten) is conventionally known. This device inputs light emitted from a light source that is spread out to some extent spatially into a Fabry-Perot interferometer, which has two semi-transparent mirrors arranged in parallel and filled with a medium to be measured. This method measures the change in refractive index by changing the radius of
(see figure). In this configuration, the direction of the m-th maximum strength is 2
It is given by ndcostpm=mat. Here, n is the refractive index of the medium to be measured, λ is the wavelength of the light source, and d is the mirror spacing of the Fabry-Perot interferometer. Instep due to the change Δn in n. The amount of movement is ΔK. Then, from the above equation, the mouth.

と算出される。この式から干渉計出射部後方に配置した
焦点距離fのレンズの焦点での干渉環半径の変化Δpは で与えられる。従ってΔpを測定することにより、Δn
が算出できる。
It is calculated as follows. From this equation, the change Δp in the radius of the interference ring at the focal point of the lens having the focal length f placed behind the interferometer emission section is given by: Therefore, by measuring Δp, Δn
can be calculated.

(発明が解決しようとする課題) 上記の構成においては光源として空間的に拡がったもの
を使用していることから大型の半透鏡から成るフアブリ
ーペロ干渉計を用いる必要があること、及び干渉計出射
光を集光するためのレンズの焦点距離に相当する長さの
干渉環観察筒を設ける必要があることから、全体の装置
が大型化するという課題があった。
(Problems to be Solved by the Invention) Since the above configuration uses a spatially spread light source, it is necessary to use a Fabry-Perot interferometer consisting of a large semi-transparent mirror, and the interferometer output light Since it is necessary to provide an interference ring observation tube with a length corresponding to the focal length of the lens for condensing the light, there is a problem that the overall device becomes larger.

また、干渉計を構成する半透鏡の反射率が角度依存性を
持ち、かつ干渉計への入射光の入射角が広い範囲にわた
って分布していることから干渉計のフィネスが低下する
角度範囲が存在し、この範囲で分解能が低下するという
課題もあった。さらに、干渉計出射光を集光するレンズ
の波面収差によりレンズ焦点面での干渉環がぼけ、これ
により分解能が低下することも考えられる。
In addition, the reflectance of the semi-transparent mirror that makes up the interferometer is angularly dependent, and the angle of incidence of the light incident on the interferometer is distributed over a wide range, so there is an angular range in which the finesse of the interferometer decreases. However, there was also the problem that the resolution decreased in this range. Furthermore, it is also conceivable that the interference ring at the focal plane of the lens becomes blurred due to wavefront aberration of the lens that condenses the interferometer output light, thereby reducing the resolution.

本発明の目的はこのような従来の課題を除去せしめて、
外型で使用する光学系による分解能低下が起こらない屈
折率変化測定装置を提供することにある。
The purpose of the present invention is to eliminate such conventional problems,
It is an object of the present invention to provide a refractive index change measuring device that does not cause a decrease in resolution due to an optical system used in an outer mold.

(課題を解決するための手段) 上記の目的を達成するため本発明では外部からの入力信
号に応じて発振周波数が掃引された参照用レーザ装置と
、鏡面が互いに平行になるように配置し、その間に屈折
率変化を測定する対象である媒質を充填するための空隙
を設けた2枚の半透鏡から成ゆ、前記参照用レーザ装置
出射光を入力とするフアブリーペロ干渉計と、該フアブ
リーペロ干渉計の透過光波形を検出する波形検出手段か
ら構成されることを特徴としている。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a reference laser device whose oscillation frequency is swept in accordance with an external input signal and a reference laser device are arranged so that their mirror surfaces are parallel to each other, A Fabry-Perot interferometer consisting of two semi-transparent mirrors with a gap between them for filling a medium whose refractive index change is to be measured, and which receives the light emitted from the reference laser device as input; and the Fabry-Perot interferometer. It is characterized by comprising a waveform detection means for detecting the transmitted light waveform.

(作用) 本発明においては干渉計への入射光を点光源としている
。干渉波形の生成に際しては入射角を掃引する代わりに
光源の周波数を掃引、し、時間軸上で干渉波形を描出し
ている。従って、干渉計への入射光を空間的に拡げる必
要がないため、干渉計を構成する半透鏡は光線のビーム
径程度の大きさがあればよい。また光源のコリメート用
レンズ、干渉計、干渉波形観察用光検出器はこの順にほ
ぼ密着させて配置できるので光軸方向の装置の長さも大
幅に短縮できる。
(Function) In the present invention, the light incident on the interferometer is a point light source. When generating an interference waveform, instead of sweeping the incident angle, the frequency of the light source is swept, and the interference waveform is depicted on the time axis. Therefore, since it is not necessary to spatially spread the light incident on the interferometer, the semi-transparent mirror forming the interferometer only needs to have a size approximately equal to the beam diameter of the light beam. Furthermore, since the collimating lens for the light source, the interferometer, and the photodetector for observing interference waveforms can be arranged in this order in close contact with each other, the length of the device in the optical axis direction can be significantly shortened.

また干渉計への光線が点光源からの入射であり、拡散光
源からの光線のように角度分布を持たないこと、及び本
発明が空間的な干渉波形を使用しておらず、レンズでの
収差が問題にならないことから、分解能の低下を防ぐこ
とができる。
In addition, the light rays entering the interferometer are incident from a point light source and do not have an angular distribution like the light rays from a diffuse light source, and the present invention does not use a spatial interference waveform, resulting in aberrations in the lens. Since this is not a problem, it is possible to prevent a decrease in resolution.

(実施例) 以下、本発明を実施例について詳細に説明する。第1図
は本発明の実施例の構成図である。
(Example) Hereinafter, the present invention will be described in detail with reference to Examples. FIG. 1 is a block diagram of an embodiment of the present invention.

1.55pm帯波長可変分布ブラッグ反射型半導体レー
ザ(以下DBR)1への注入電流は鋸歯状波発生器2に
より繰り返し周波数500Hzで掃引されている。
The current injected into the 1.55 pm wavelength tunable distributed Bragg reflection semiconductor laser (hereinafter referred to as DBR) 1 is swept by a sawtooth wave generator 2 at a repetition frequency of 500 Hz.

DBRIの出射光の発振周波数は、このような注入電流
により鋸歯波状に変化している。なお、DBRIの構成
、特性については1987年発行のエレクトロニクスレ
ターズの第403ページ所載の打出らの論文に詳しい。
The oscillation frequency of the light emitted from the DBRI changes in a sawtooth waveform due to such an injection current. The structure and characteristics of DBRI are detailed in the paper by Uchide et al. on page 403 of Electronics Letters published in 1987.

DBRIからの出射光はレンズ3で平行光に変換された
後、フアブリーペロ干渉計5に入射される。このとき、
入射光をフアブリーペロ干渉計に垂直入射させれば、フ
アブリーペロ干渉計をビーム径と同等の大きさまで小型
化できる。フアブリーペロ干渉計5は反射率95%の2
枚の半透鏡を空隙を挟んで対向させて構成したもので、
被測定媒体である流体を通流させるための流体槽4内に
配置されている。流体槽4の壁のうち光路と交わる部分
には無反射コーティングが施しである。フアブリーペロ
干渉計5の出射光波形は光検出器6で電気信号に変換さ
れた後、オシロスコープ7上に表示される。被測定媒体
の屈折率が変化すると、オシロスコープ7上の干渉波形
のピークの位置が左または右に移動する。すなわち、出
射光ピークの時間間隔が変化する。その移動量は、DB
RIの周波数掃引幅から光周波数軸上の移動量δfに換
算できる。一方フアプリーペロ干渉Ht 5のフリース
ベクトルレンジFは (Cは真空中の光速、nは被測定媒体の屈折率、■は鏡
面間隔)であるから、屈折率変化量ΔnによるFの変化
ΔFは ΔF    Δn F      n で与えられる。左辺は、観察している共振ピークを与え
る光周波数をfoとするとδf/foで与えられるから
、上記の換算結果から屈折率の変化量を算出できる。
The light emitted from the DBRI is converted into parallel light by a lens 3, and then enters a Fabry-Perot interferometer 5. At this time,
By making the incident light perpendicular to the Fabry-Perot interferometer, the Fabry-Perot interferometer can be downsized to a size equivalent to the beam diameter. The Fabry-Perot interferometer 5 has a reflectance of 95%.
It consists of two semi-transparent mirrors facing each other with a gap in between.
It is arranged in a fluid tank 4 through which a fluid, which is a medium to be measured, flows. A portion of the wall of the fluid tank 4 that intersects with the optical path is coated with an anti-reflection coating. The output light waveform of the Fabry-Perot interferometer 5 is converted into an electrical signal by a photodetector 6, and then displayed on an oscilloscope 7. When the refractive index of the medium to be measured changes, the position of the peak of the interference waveform on the oscilloscope 7 moves to the left or right. That is, the time interval between the peaks of the emitted light changes. The amount of movement is DB
The frequency sweep width of RI can be converted into the amount of movement δf on the optical frequency axis. On the other hand, since the Fries vector range F of the Furi-Perot interference Ht 5 is (C is the speed of light in vacuum, n is the refractive index of the medium to be measured, and ■ is the distance between mirror surfaces), the change ΔF in F due to the amount of change in refractive index Δn is ΔF Δn It is given by F n . Since the left side is given by δf/fo, where fo is the optical frequency that gives the observed resonance peak, the amount of change in the refractive index can be calculated from the above conversion result.

本実施例ではフアブリーペロ干渉計5の鏡面間隔は固定
したがこれを大きくすることにより、分解能を上げるこ
とができる。また光源には1.55pmのDBRを使用
したが、外部からの信号で発振周波数が掃引できる光源
なら、波長は任意であり、また光源の種類も半導体レー
ザに限定されない。
In this embodiment, the mirror spacing of the Fabry-Perot interferometer 5 is fixed, but by increasing it, the resolution can be increased. Furthermore, although a 1.55 pm DBR was used as the light source, any wavelength can be used as long as the oscillation frequency can be swept by an external signal, and the type of light source is not limited to semiconductor lasers.

(発明の効果) 以上述べてきたように従来の屈折率変化測定装置の小型
化、高分解能化が可能となった。
(Effects of the Invention) As described above, it has become possible to downsize and increase the resolution of the conventional refractive index change measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は従来の屈
折率変化測定装置の構成図である。 図において 1・・・1.55pm帯波長可変分布ブラッグ反射型半
導体レーザ、2・・・鋸歯状波発生器、3・・・レンズ
、4・・・流体槽、5・・・フアブリーペロ干渉計、6
・・・光検出器、7・・・オシロスコープ。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional refractive index change measuring device. In the figure, 1... 1.55 pm band wavelength tunable distributed Bragg reflection semiconductor laser, 2... Sawtooth wave generator, 3... Lens, 4... Fluid tank, 5... Fabry-Perot interferometer, 6
...Photodetector, 7...Oscilloscope.

Claims (1)

【特許請求の範囲】[Claims] 外部からの入力信号に応じて発振周波数が掃引された参
照用レーザ装置と、鏡面が互いに平行になるように配置
し、その間に屈折率変化を測定する対象である媒質を充
填するための空隙を設けた2枚の半透鏡から成り、前記
参照用レーザ装置出射光を入力とするフアブリーペロ干
渉計と、該フアブリーペロ干渉計の透過光波形を検出す
る波形検出手段から構成されることを特徴とする屈折率
変化測定装置。
A reference laser device whose oscillation frequency is swept in response to an external input signal is placed so that its mirror surfaces are parallel to each other, and an air gap is placed in between to fill the medium whose refractive index change is to be measured. A refraction device comprising a Fabry-Perot interferometer which is made up of two semi-transparent mirrors and which inputs the light emitted from the reference laser device, and a waveform detection means which detects the waveform of the transmitted light of the Fabry-Perot interferometer. Rate change measuring device.
JP19149888A 1988-07-29 1988-07-29 Apparatus for measuring change in refractive index Pending JPH0240537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19149888A JPH0240537A (en) 1988-07-29 1988-07-29 Apparatus for measuring change in refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19149888A JPH0240537A (en) 1988-07-29 1988-07-29 Apparatus for measuring change in refractive index

Publications (1)

Publication Number Publication Date
JPH0240537A true JPH0240537A (en) 1990-02-09

Family

ID=16275650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19149888A Pending JPH0240537A (en) 1988-07-29 1988-07-29 Apparatus for measuring change in refractive index

Country Status (1)

Country Link
JP (1) JPH0240537A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599845A (en) * 1991-10-08 1993-04-23 Nippon Sanso Kk Water content analysis device using semiconductor laser
WO2007037520A1 (en) * 2005-09-30 2007-04-05 Fujifilm Corporation Sensing system
US7450789B2 (en) 2005-07-13 2008-11-11 Hitachi, Ltd. Micro sensor device
CN105717069A (en) * 2016-04-08 2016-06-29 暨南大学 Refractive index sensor based on DBR (distributed Bragg reflector) laser with microchannel structure and preparation method of DBR laser with microchannel structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599845A (en) * 1991-10-08 1993-04-23 Nippon Sanso Kk Water content analysis device using semiconductor laser
US7450789B2 (en) 2005-07-13 2008-11-11 Hitachi, Ltd. Micro sensor device
WO2007037520A1 (en) * 2005-09-30 2007-04-05 Fujifilm Corporation Sensing system
US7843571B2 (en) 2005-09-30 2010-11-30 Fujifilm Corporation Sensing system
CN105717069A (en) * 2016-04-08 2016-06-29 暨南大学 Refractive index sensor based on DBR (distributed Bragg reflector) laser with microchannel structure and preparation method of DBR laser with microchannel structure

Similar Documents

Publication Publication Date Title
US5341205A (en) Method for characterization of optical waveguide devices using partial coherence interferometry
US9285385B2 (en) Vector velocimeter
US20120013849A1 (en) Apparatus and method of monitoring and measurement using spectral low coherence interferometry
Amin et al. High resolution laser self-mixing displacement sensor under large variation in optical feedback and speckle
US4571080A (en) Michelson interferometer with a photorefractive mirror
JPH07286939A (en) Apparatus and method for measurement of refractive index of material
US5041779A (en) Nonintrusive electro-optic field sensor
JP5121150B2 (en) Tunable laser light source
CN104330054A (en) Micro angle measurement method and device based on laser self mixture and intervene
JPH0240537A (en) Apparatus for measuring change in refractive index
JP3542346B2 (en) Method and apparatus for measuring thin film thickness
Yáñez et al. Improvement of the signal-to-noise ratio in a low power self-mixing interferometer using a coupled interferometric effect
JPH10332354A (en) Interference measuring device
US9945740B2 (en) Two wavelength optical interferometric pressure switch and pressure transducers
JP2626099B2 (en) Optical transmission line measuring instrument
JPH06501547A (en) speedometer
JPH03269302A (en) Absolute length measuring device
JP3842301B2 (en) Interference measurement device
JP3422804B2 (en) Spectral linewidth controller for laser oscillator
El Assad Analysis of self-mixing moderate and strong feedback regimes for mechatronics applications
RU2060455C1 (en) Device measuring linear translations
JP3804391B2 (en) Self-mixing laser Doppler vibrometer
JP2780868B2 (en) Method and apparatus for determining the surface contour of a diffusely reflecting object
JPH01282488A (en) Optical fiber sensor
Jestel Integrated optical Michelson-interferometer in glass