JPH0240532A - Method and apparatus for measuring sediment concentration of influent water in hydraulic machine - Google Patents

Method and apparatus for measuring sediment concentration of influent water in hydraulic machine

Info

Publication number
JPH0240532A
JPH0240532A JP19062188A JP19062188A JPH0240532A JP H0240532 A JPH0240532 A JP H0240532A JP 19062188 A JP19062188 A JP 19062188A JP 19062188 A JP19062188 A JP 19062188A JP H0240532 A JPH0240532 A JP H0240532A
Authority
JP
Japan
Prior art keywords
water
sediment
concentration
differential pressure
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19062188A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Okamura
共由 岡村
Masami Toshima
戸嶋 正美
Takeo Takagi
高木 武夫
Joshiro Sato
佐藤 譲之良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19062188A priority Critical patent/JPH0240532A/en
Publication of JPH0240532A publication Critical patent/JPH0240532A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten a measuring time largely and to make it possible to perform measurement at a low cost by providing a water column incorporating sediment and a pure water column which does not incorporate sediment, and measuring the pressure difference between the lower ends of both water columns with the differential pressure. CONSTITUTION:A draining valve 11 is opened. Water in an upper water tank 4 is guided into a pipe 9 for water incorporating sediment. The water is drained through a draining pipe 12. After the pipe 9 is filled, the draining valve 11 is closed. Aqueduct water 7 is supplied into a pure water pipe 8 from the outside. The upper end of the pipe 8 is aligned with the water surface of the water tank 4. This can be achieved readily by opening the water supply port for the water 7 and making the water overflow into a container-like float 6. In this way, the liquid column in the pipes 9 and 8 are prepared at the same height. Thereafter, a differential pressure DELTAP' in a differential pressure gage 10 is read. A sediment concentration C' for the measured differential pressure DELTAP' is obtained from the relationship between a differential pressure DELTAP and a sediment concentration C which are measured and prepared beforehand. When the concentration C' exceeds an allowable concentration Ca which is determined from the life of a water turbine, the operation of the water turbine is stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水力機械流入水の土砂濃度測定方法およびそ
の装置に係り、特に土砂の含有量が高い河川に設置され
る、例えば水力発電所の水車に流入する水の土砂濃度の
測定に好適な水力機械流入水の土砂濃度測定方法および
その装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method and device for measuring sediment concentration in inflow water from a hydraulic machine, and particularly to a method for measuring sediment concentration in inflow water from a hydraulic machine, and particularly for a hydroelectric power plant installed in a river with a high sediment content. The present invention relates to a method and apparatus for measuring the sediment concentration of water flowing into a hydraulic machine, which is suitable for measuring the sediment concentration of water flowing into a hydraulic machine.

〔従来の技術〕[Conventional technology]

土砂を含む水の濃度の測定は、通常水のようにして行わ
れる。
Measurement of the concentration of water containing sediment is normally carried out as in water.

すなわち、土砂含有水をメツシリンダに採取し、体積(
vs+vw)と重量(W s + W −)を測定する
In other words, water containing sediment is collected into a cylinder, and the volume (
vs+vw) and weight (Ws+W-).

次に、土°砂を沈澱させ、土砂を取出し乾燥させて水分
のない土砂に分離し、その土砂の重量Ws、体積Vs 
を測定する。
Next, the earth and sand are precipitated, and the earth and sand are taken out and dried to separate them into moisture-free earth and sand, and the weight of the earth and sand is Ws, and the volume is Vs.
Measure.

これから、 または、 を算出する。from now, or Calculate.

ここに、Vs:土砂の体積、vW:水の体積Ws:土砂
の重量、Ww:水の重量 である。
Here, Vs: volume of earth and sand, vW: volume of water, Ws: weight of earth and sand, and Ww: weight of water.

また、液体の密度あるいは比重を測定する装置で、液柱
と圧力計を利用する装置に関連するものには1例えば、
特開昭50−80162号、特開昭50−57272号
、実開昭56−151956号、実開昭61−8224
9号の各公報記載の技術が知られている。
In addition, devices for measuring the density or specific gravity of liquids that are related to devices that use a liquid column and a pressure gauge include 1, for example:
JP 50-80162, JP 50-57272, JP 56-151956, JP 61-8224
The techniques described in each publication of No. 9 are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記前半に記述した従来技術は、測定精度は高いが測定
に多大の時間を要し、臨機応変に水力機械を運転、停止
することが難かしいという問題があった。
Although the conventional technology described in the first half above has high measurement accuracy, it takes a lot of time to measure, and there are problems in that it is difficult to start and stop the hydraulic machine as needed.

また、上記後半に記述した関連公知例では、差圧計や圧
力計を2個用いるために装置が複雑になったり、測定精
度が低かったり、コストが高くなったりすることについ
て十分に配慮されていなかった。
In addition, in the related known examples described in the latter half of the above, sufficient consideration was not given to the fact that the use of two differential pressure gauges or pressure gauges makes the device complicated, the measurement accuracy is low, and the cost is high. Ta.

本発明は、上記従来技術における課題を解除するために
なされたもので、測定精度を余り落さずに、測定に要す
る時間を大幅に短縮するとともに安価に測定できる水力
機械流入水の土砂濃度測定方法および測定装置を提供す
ることを、その目的とするものである。
The present invention has been made to solve the above-mentioned problems in the prior art, and it is possible to significantly shorten the time required for measurement without significantly reducing measurement accuracy, and to measure sediment concentration in water flowing into hydraulic machines at low cost. The object is to provide a method and a measuring device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明に係る水力機械流入
水の土砂濃度測定方法は、水力機械流入水となる土砂含
有水の上水槽水面と水力機械吸入部との高低差に基づく
土砂含有水の液柱の下端に働く圧力と、同一高低差の清
水の液柱の下端に働く圧力とめ差圧を測定し、あらかじ
め検定した上記差圧と土砂含有水の濃度との関係から土
砂含有水の土砂濃度を求めるようにしている。
In order to achieve the above object, the method for measuring the sediment concentration of water flowing into a hydraulic machine according to the present invention is based on the height difference between the upper water tank water surface of the water containing soil, which becomes the water flowing into a hydraulic machine, and the intake part of a hydraulic machine. The pressure acting on the lower end of the liquid column and the differential pressure acting on the lower end of the liquid column of fresh water with the same height difference are measured, and from the relationship between the above differential pressure verified in advance and the concentration of the sediment-containing water, I am trying to find the sediment concentration.

なお詳しくは、水力機械吸水部の高さ位置に連通部を有
する0字管形マノメータの一方の管には、水車流入水と
なる土砂含有水の上水槽水面に液柱上端の水面レベルを
持つ土砂含有水を汁スし、他方の管には、前記上水槽水
面と同一液柱上端の水面レベルを持つ清水を注入し、下
端の連通部には差圧計を設置して差圧を測定し、あらか
じめ検定した上記差圧と土砂含有水の濃度との関係から
土砂含有水の土砂濃度を求めることにしている。
In detail, one tube of the 0-shaped manometer, which has a communication part at the height of the hydraulic machine water suction part, has a water surface level at the top of the liquid column above the water tank water surface of the sediment-containing water that becomes the water flowing into the turbine. The soil-containing water is drained, and fresh water with a water surface level at the top of the liquid column is injected into the other pipe, and a differential pressure gauge is installed in the communication section at the bottom to measure the differential pressure. The sediment concentration of the sediment-containing water is determined from the relationship between the above differential pressure verified in advance and the concentration of the sediment-containing water.

また、上記目的を達成するために、本発明に係る水力機
械流入水の土砂濃度測定装置は、水力機械流入水となる
土砂含有水の上水槽を、その上水槽水面が水車入口と所
定の高低差を保つように設け、この上水槽の水面と同一
レベルの水面を保つ清水入りの容器状フロートを前記上
水槽の水面に浮べ、水力機械吸水部の高さ位置に連通部
を有するU字管形マノメータを設け、一方の管は前記土
砂含有水の上水槽に接続して土砂含有水の導管とし、他
方の管は前記清水入りの容器状フロートに接続して清水
導管とし、これら両導管の連通部に差圧計を設けたもの
である。
In addition, in order to achieve the above object, the device for measuring the sediment concentration of inflow water from a hydraulic machine according to the present invention has a water tank for water containing sediment, which becomes inflow water from a hydraulic machine. A container-shaped float containing fresh water is floated on the water surface of the water tank, and the U-shaped pipe has a communication part at the height of the water absorption part of the hydraulic machine. A type manometer is provided, one pipe is connected to the water tank for the sediment-containing water to serve as a conduit for the sediment-containing water, and the other pipe is connected to the container-shaped float containing the fresh water to serve as a fresh water conduit. A differential pressure gauge is installed in the communication section.

なお付記すると、上記目的は、土砂含有水中の土砂を分
離摘出してその量を調べて濃度を算出するのではなく、
土砂含有水の水柱と土砂を含まない清水の水柱を設け1
両水柱下端の圧力差を差圧力により測定し、あらかじめ
検定した差圧と土砂濃度との関係から土砂濃度を求める
ことにより。
It should be noted that the above purpose is not to separate and extract the sediment from the sediment-containing water and calculate the concentration by examining the amount.
A water column of sediment-containing water and a water column of fresh water that does not contain sediment are established.1
By measuring the pressure difference between the lower ends of both water columns using differential pressure, and determining the sediment concentration from the relationship between the pre-verified differential pressure and sediment concentration.

達成される。achieved.

〔作用〕[Effect]

上記技術的手段による働きを、第3図および第4図を参
照して説明する。
The operation of the above technical means will be explained with reference to FIGS. 3 and 4.

第3図は、本発明の作用を示す差圧計に接続した液柱の
概念図、第4図は、液柱の差圧と土砂濃度との関係を示
す線図である。
FIG. 3 is a conceptual diagram of a liquid column connected to a differential pressure gauge showing the effect of the present invention, and FIG. 4 is a diagram showing the relationship between the differential pressure of the liquid column and the sediment concentration.

一般に、土砂を含んだ水の重量濃度Cは次のように定義
される。
Generally, the weight concentration C of water containing soil and sand is defined as follows.

ここに、Ws :単位体積の土砂含有水に含まれる土砂
の重量 Ww :単位体積の土砂含有水の水の重量 一方、土砂含有水の比重量γは次の通りである。
Here, Ws: Weight of sediment contained in a unit volume of sediment-containing water Ww: Weight of unit volume of sediment-containing water Meanwhile, the specific weight γ of the sediment-containing water is as follows.

ここに、vs:単位体積の土砂含有水中の土砂の体積 vW:単位体積の土砂含有水の水の体積また、土砂の比
重量γS、清水の比重量γ、は、vs ■1 と表わせられる。(1)〜(4)式から土砂の重量濃度
Cは次の通りとなる。
Here, vs: volume of sediment in unit volume of sediment-containing water vW: volume of unit volume of sediment-containing water. Also, the specific weight γS of sediment and the specific weight γ of fresh water are expressed as vs 1. From equations (1) to (4), the weight concentration C of the earth and sand is as follows.

一方、第3図に示すように、上端の大気開放にしだ液柱
高さHの土砂含有水の導管9と清水の導管8との液柱下
端における差圧ΔPを圧力計10で測定するとき、次の
関数が得られる。
On the other hand, as shown in FIG. 3, when measuring the pressure difference ΔP at the lower end of the liquid column between the conduit 9 of earth and sand-containing water with the liquid column height H and the conduit 8 of fresh water whose upper end is open to the atmosphere, the pressure gauge 10 is used. , we get the following function:

ΔP=(γ−γw) H・・・(6) ここに、ΔP:液柱下端の差圧 H:液柱の高さ (6)式を(5)式に代入すると。ΔP=(γ−γw) H...(6) Here, ΔP: Differential pressure at the bottom of the liquid column H: height of liquid column Substituting equation (6) into equation (5) yields.

となる。ここで、一つの定った河川では、土砂の比重量
γSはほとんど一定で、かつ、γw、Hは既知であるか
ら、ΔPを測定すると濃度Cを求めることができる。
becomes. Here, in one fixed river, the specific weight γS of sediment is almost constant, and γw and H are known, so the concentration C can be determined by measuring ΔP.

すなわち、差圧ΔPと濃度Cとの関係は第4図に示すよ
うな線図になる。したがって、このような関係を、理論
的または実験的にあらかじめ検定しておくと、差圧ΔP
′のときの土砂の濃度C′を求めることができる。
That is, the relationship between the differential pressure ΔP and the concentration C becomes a diagram as shown in FIG. Therefore, if such a relationship is verified theoretically or experimentally in advance, the differential pressure ΔP
The soil concentration C' can be determined when '.

例えば、H=40 m、 γ−= 1000kgf /
ni’、vs = 3000 kg f / m”、濃
度C=3%のとき、ΔP=0.082 kgf/dとな
り、測定差圧ヘッドΔh=0.82mである。そのとき
、Δh/H=2.05%であり、差圧計の測定精度は0
.1〜0.05 %は容易に得られるので十分測定可能
である。
For example, H = 40 m, γ- = 1000 kgf /
ni', vs = 3000 kg f / m'', concentration C = 3%, ΔP = 0.082 kgf/d, and the measurement differential pressure head Δh = 0.82 m. Then, Δh/H = 2 .05%, and the measurement accuracy of the differential pressure gauge is 0.
.. 1 to 0.05% is easily obtained and can be sufficiently measured.

〔実施例〕〔Example〕

以下、本発明の各実施例を第1図、第2図、ならびに第
5図ないし第7図を参照して説明する。
Embodiments of the present invention will be described below with reference to FIG. 1, FIG. 2, and FIGS. 5 to 7.

第1図は、本発明の一実施例に係る水車流入水の土砂濃
度測定装置の構成図、第2図は、液柱の差圧と土砂含有
水の土砂濃度との関係を示す線図である。
FIG. 1 is a block diagram of a device for measuring the sediment concentration of water flowing into a water turbine according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the differential pressure of the liquid column and the sediment concentration of the sediment-containing water. be.

第1図において、1は、水力機械に係る水車、2は発電
機、3は水圧管路、4は土砂含有水の上水槽、5は吸出
し管で、上水槽4の水面と水車入口の基準高さとは高低
差(液柱高さ)Hを保ち水力発電所が構成さ才している
In Fig. 1, 1 is a water turbine related to a hydraulic machine, 2 is a generator, 3 is a penstock pipe, 4 is a water tank for water containing sediment, 5 is a suction pipe, and is a reference for the water surface of the water tank 4 and the water turbine inlet. Hydroelectric power plants are constructed by maintaining a height difference (liquid column height) H.

6は、上水槽4の水面と同一レベルの水面を保つ清水入
りの容器状フロートで、この容器状フロート6は、土砂
含有水の上水槽4の水面に浮べられている。7は、容器
状フロート6の上部に配設された水道水の給水口である
Reference numeral 6 denotes a container-shaped float containing fresh water that maintains the water level at the same level as the water surface of the water tank 4, and this container-shaped float 6 is floated on the water surface of the water tank 4 containing soil and sand. Reference numeral 7 denotes a tap water supply port disposed on the upper part of the container-shaped float 6.

8は、上端が容器状フロート6の底部に接続し下端がU
字管の連通部となる清水導管で、清水の液柱高さHを構
成する。9は、上端が土砂含有水の上水MI4に接続し
下端がU字管の連通部となる土砂含有水導管で、土砂含
有水の液柱高さHを構成する。10は、清水導管8、土
砂含有水導管9の連通部に設置した差圧計である。
8 has an upper end connected to the bottom of the container-shaped float 6 and a lower end connected to the bottom of the container-shaped float 6.
The fresh water conduit that serves as the communication part of the pipe constitutes the liquid column height H of fresh water. Reference numeral 9 denotes a sediment-containing water conduit whose upper end is connected to the water supply MI4 for sediment-containing water and whose lower end is a communication part of the U-shaped pipe, and constitutes a liquid column height H of the sediment-containing water. Reference numeral 10 denotes a differential pressure gauge installed in a communication section between the fresh water conduit 8 and the earth and sand-containing water conduit 9.

次に、第1図を参照してより詳しい構成を説明する。Next, a more detailed configuration will be explained with reference to FIG.

土砂を含有する河川水は、上水槽4に流入し。River water containing sediment flows into the water tank 4.

水圧管路3を経て水車1に流入し、吸出し管5から流出
し発電機2を回転させる。
The water flows into the water wheel 1 through the hydraulic pipe 3 and flows out through the suction pipe 5 to rotate the generator 2.

土砂含有水の上水槽4には、土砂含有水の液柱を構成す
る土砂含有水導管9を接続する入口端9aと1.清水の
液柱を構成する容器状フロート6が設置されている。入
口端9aは上水槽4の底面に設けても側面に設けてもよ
い。
The water tank 4 for sediment-containing water has an inlet end 9a connecting a sediment-containing water conduit 9 constituting a liquid column of sediment-containing water; A container-shaped float 6 that constitutes a liquid column of fresh water is installed. The inlet end 9a may be provided on the bottom or side surface of the water tank 4.

容器状フロート6は土砂含有水の水面に浮き、その容器
内には水道水等の清水で供給され、フロート内の清水の
水面と上水槽4は土砂含有水の水面とは同一レベルとな
るように設定されている。
The container-shaped float 6 floats on the surface of the water containing sediment, and the container is supplied with fresh water such as tap water, so that the surface of the fresh water in the float and the water surface of the water tank 4 are at the same level as the water surface of the water containing sediment. is set to .

容器状フロート6の下部には、可撓性の導管8aが接続
され、水面が変化してもフロートに追随できるようにな
っており、この導管8aは清水導管8の一端を形成し、
少なくとも上水槽4内における部分を可撓性としている
A flexible conduit 8a is connected to the lower part of the container-shaped float 6, so that it can follow the float even when the water surface changes, and this conduit 8a forms one end of the fresh water conduit 8.
At least a portion inside the water tank 4 is made flexible.

清水導管8および土砂含有水導管9は、一般に鋼管やポ
リエチレンチューブ等の可撓性のある材料を用いている
が、可撓性導管88部は、特に可撓性が配慮されている
The fresh water conduit 8 and the earth and sand-containing water conduit 9 are generally made of flexible materials such as steel pipes and polyethylene tubes, but the flexibility of the flexible conduit 88 section is particularly taken into consideration.

両溝管8,9下端のU字管状連通部には差圧計10が接
続されている。土砂含有水導管9の最下端は排水管12
となり、排水弁11が具備されている。
A differential pressure gauge 10 is connected to the U-shaped tubular communication portion at the lower end of both grooved pipes 8 and 9. The lowest end of the sediment-containing water conduit 9 is a drain pipe 12
A drain valve 11 is provided.

次に、このような構成の水車流入水の土砂濃度測定装置
による測定手順(測定方法)を説明する。
Next, a measurement procedure (measurement method) using the sediment concentration measurement device for water turbine inflow water having such a configuration will be explained.

排水弁11を開き、上水槽4の水を土砂含有水導管9に
導き排水管12から放出する。前記の導管9内が土砂含
有水で満たされたのち排水弁11を閉じる。
The drain valve 11 is opened, and the water in the water tank 4 is led to the soil-containing water conduit 9 and discharged from the drain pipe 12. After the inside of the conduit 9 is filled with water containing earth and sand, the drain valve 11 is closed.

一方、清水導管8には、外部からの水道水7を供給し清
水導管8の上端(清水液性上端)を上水槽4の水面に合
わせる。これは、水道水の給水ロアを開いて水道水を容
器状フロート6にオーバ・−フローさせることにより容
易に可能である。
On the other hand, the fresh water conduit 8 is supplied with tap water 7 from the outside, and the upper end (fresh water liquid upper end) of the fresh water conduit 8 is adjusted to the water surface of the clean water tank 4 . This can be easily done by opening the tap water supply lower and causing the tap water to overflow into the container-shaped float 6.

このように土砂含有水導管9の液柱と清水導管8の液柱
とが同一の液柱高さに準備されたのち、差圧計10の差
圧ΔP′を読みとる。そして、第2図に示すようにあら
かじめ検定され用意しである差圧ΔPと土砂濃度Cとの
関係を用いて測定差圧ΔP′に対する土砂濃度C′を求
める。
After the liquid column in the soil-containing water conduit 9 and the liquid column in the fresh water conduit 8 are prepared at the same liquid column height in this way, the differential pressure ΔP' of the differential pressure gauge 10 is read. Then, as shown in FIG. 2, the sediment concentration C' with respect to the measured differential pressure ΔP' is determined using the relationship between the differential pressure ΔP and the sediment concentration C, which has been previously verified and prepared.

得られた土砂濃度C′が、水車の寿命から定めた許容濃
度Ca以上であると水車の運転を停止する。
When the obtained sediment concentration C' is equal to or higher than the allowable concentration Ca determined based on the life of the water turbine, the operation of the water turbine is stopped.

このよ゛うに、水車を流れる土砂含有水の土砂濃度を測
定するには、排水弁11を開放し、数分間排水管12か
ら排出し、その後排水弁11を閉じ、そして差圧を測る
ことにより得られ、極めて短時間で濃度を把握すること
ができる。
In this way, to measure the sediment concentration of the sediment-containing water flowing through the water turbine, open the drain valve 11, drain the water from the drain pipe 12 for several minutes, then close the drain valve 11, and measure the differential pressure. The concentration can be determined in a very short time.

本実施例によれば、水車に流入する土砂含有水の土砂濃
度を短時間に、かつ精度よく、また比較的安価に測定す
ることができる。
According to this embodiment, the sediment concentration of the sediment-containing water flowing into the water turbine can be measured in a short time, with high accuracy, and at a relatively low cost.

本実施例を土砂濃度に関する運転規準にのっとった水車
運転保全法の一環として適用すると、定時的土砂濃度測
定が容易となり、ひいては水車の寿命を延ばしうる効果
がある。
If this embodiment is applied as part of a water turbine operation maintenance method that complies with operation standards regarding sediment concentration, it becomes easy to periodically measure sediment concentration, which has the effect of extending the life of the water turbine.

次に、第5図は、本発明の他の実施例に係る土砂濃度測
定装置の制御系の要部構成図、第6図は、制御用コンピ
ュータの処理内容を示すフローチャートである。
Next, FIG. 5 is a block diagram of main parts of a control system of a sediment concentration measuring device according to another embodiment of the present invention, and FIG. 6 is a flowchart showing processing contents of a control computer.

第5図において、第1図と同一符号のものは同等部分を
示し、第5@に図示しない装置は第1図と同等のもので
ある。
In FIG. 5, the same reference numerals as in FIG. 1 indicate equivalent parts, and devices not shown in FIG. 5 are equivalent to those in FIG. 1.

第5図に示す土砂濃度測定装置では、土砂含有水導管9
の液柱および清水導管8の液柱の下端に。
In the sediment concentration measuring device shown in Fig. 5, the sediment-containing water conduit 9
and at the lower end of the liquid column of fresh water conduit 8.

それぞれ排水管12a、12b部を有し、演算制御手段
に係るコンピュータ13からの信号により作動する排水
弁11a、llbをそれぞれ設け、土砂濃度を測定する
ために、清水導管8、土砂含有水導管9に清水、土砂含
有水を注入する動作をコンピュータ13の指示により行
うようにしている。
Each has a drain pipe 12a, 12b portion, and is provided with a drain valve 11a, llb, which is operated by a signal from a computer 13 related to an arithmetic control means, respectively, and a fresh water conduit 8, a sediment-containing water conduit 9, in order to measure the sediment concentration. The operation of injecting fresh water and soil-containing water into the tank is performed according to instructions from the computer 13.

コンピュータ13の処理手順は第6図に示すとおりであ
る。すなわち、コンピュータ13にはあらかしめ検定ま
たは設定されたデータが読み込まれる。データは、土砂
の比重量γ8.清水の比重量γ1.液柱高さH2排水弁
開放時間T V 、差圧計圧力整定時間Tfl、体積濃
度CV 、許容濃度C&等である。
The processing procedure of the computer 13 is as shown in FIG. That is, the preliminary test or set data is read into the computer 13. The data is based on the specific weight of soil γ8. Specific weight of fresh water γ1. These are liquid column height H2, drain valve opening time TV, differential pressure gauge pressure settling time Tfl, volume concentration CV, allowable concentration C&, etc.

土砂含有水導管9.清水導管8下部の排水弁11a、l
lbを時間Tv開き、各導管に土砂含有水、清水が満た
されたところで前記各排水弁を閉止する。差圧計圧力整
定時間TRを待機し、差圧計出力ΔPが読込む。
Sediment-containing water conduit9. Drain valves 11a, l at the bottom of the fresh water pipe 8
lb is opened for a time Tv, and when each conduit is filled with earth and sand-containing water and fresh water, each drain valve is closed. Wait for the differential pressure gauge pressure settling time TR and read the differential pressure gauge output ΔP.

このよ“うに差圧計10により測定された差圧信号はコ
ンピュータ13に取込まれ、コンピュータ内部に記憶さ
れている第2図に示す関係に基づき土砂濃度Cを(7)
式により算出する。その結果を出力装置にて出力し、も
し得られた土砂濃度が運転許容濃度以上であれば警報信
号14を発したり、水車停止指令信号15を発するよう
になっている。
The differential pressure signal thus measured by the differential pressure gauge 10 is taken into the computer 13, and the sediment concentration C is determined based on the relationship shown in FIG. 2 stored in the computer (7).
Calculated using the formula. The results are outputted by an output device, and if the obtained soil concentration is equal to or higher than the operating permissible concentration, an alarm signal 14 or a water turbine stop command signal 15 is issued.

第5図の実施例によれば、第1図の実施例と同様の効果
を自動的にコンピュータ制御で得られる。
According to the embodiment shown in FIG. 5, the same effect as the embodiment shown in FIG. 1 can be obtained automatically under computer control.

次に、第7図は1本発明のさらに他の実施例に係る土砂
濃度測定装置のフロート部の構成図である。図中、第1
図と同一符号のものは同等部分を示し、第7図に図示し
ない装置は第1図と同等のものである。
Next, FIG. 7 is a configuration diagram of a float section of a sediment concentration measuring device according to still another embodiment of the present invention. In the figure, the first
Components with the same reference numerals as in the figures indicate equivalent parts, and devices not shown in FIG. 7 are equivalent to those in FIG. 1.

第7図(a)、(b)において、16は、給水ロアに具
備された給水弁、17は浮子で、この浮子17は、容器
状フロート6の清水面20に浮ぶ浮子17aと土砂含有
水の上水槽4の水面19に浮ぶ浮子17bとをレバー1
8によって容器状フロート6の側壁に等分に支持したも
のであり、これら浮子17a、17bの上下動作に連動
して給水弁16の開度が制御されるように構成されてい
る。21は、水道水を供給する可撓管である。
In FIGS. 7(a) and (b), 16 is a water supply valve provided in the water supply lower, 17 is a float, and this float 17 is composed of a float 17a floating on the fresh water surface 20 of the container-shaped float 6 and a water containing sediment. The lever 1 moves the float 17b floating on the water surface 19 of the water tank 4.
8 are equally supported on the side wall of the container-shaped float 6, and the opening degree of the water supply valve 16 is controlled in conjunction with the vertical movement of these floats 17a and 17b. 21 is a flexible pipe that supplies tap water.

第7図(a)に示す状態は、上水槽4の水面19と容器
状フロート6の清水面20とが同一レベルであり、浮子
17a、17bを結ぶレバー18が水平に保たれている
In the state shown in FIG. 7(a), the water surface 19 of the water tank 4 and the fresh water surface 20 of the container-shaped float 6 are at the same level, and the lever 18 connecting the floats 17a and 17b is kept horizontal.

この状態から、第7図(b)に示すように、容器状フロ
ート6内の清水面20が上水槽4の土砂含有水の水面1
9より低くなると、浮子17aが下、浮子17bが上に
なりレバー18は傾いて給水弁16を開き、給水ロアか
ら清水を注入する。
From this state, as shown in FIG.
When it becomes lower than 9, the float 17a is at the bottom and the float 17b is at the top, the lever 18 is tilted, the water supply valve 16 is opened, and fresh water is injected from the water supply lower.

やがて第7図(a)に示すように清水面20と土砂含有
水の水面19とが同一レベルに達すると給水弁16は閉
止状態となり容器状フロート6への清水の注入は停止さ
れる。したがって、常に清水の液柱の上端の清水面20
は土砂含有水の液柱の上端の水面19と同一レベルにあ
り、差圧計に対する両液柱の高さHが同じであるため精
度の高い土砂濃度の測定が可能となる。
Eventually, as shown in FIG. 7(a), when the fresh water level 20 and the water level 19 of the sediment-containing water reach the same level, the water supply valve 16 is closed and the injection of fresh water into the container-shaped float 6 is stopped. Therefore, the fresh water surface 20 at the top of the clear water column is always
is at the same level as the water surface 19 at the upper end of the liquid column of sediment-containing water, and the height H of both liquid columns relative to the differential pressure gauge is the same, making it possible to measure the sediment concentration with high accuracy.

なお、°上記の各実施例は、水力発電所の水車に対する
流入水の土砂濃度測定方法およびその装置の例を説明し
たが、本発明は、水車のみに限らず。
In addition, although each of the above embodiments describes an example of a method and an apparatus for measuring the sediment concentration of inflow water to a water wheel of a hydroelectric power plant, the present invention is not limited to the water wheel.

同様の効果が期待される範囲でポンプ設備にも適用可能
なものである。
It can also be applied to pump equipment to the extent that similar effects are expected.

〔発明の効果〕〔Effect of the invention〕

以上述べたように1本発明によれば、測定精度を余り落
さずに、測定に要する時間を大幅に短縮するとともに安
価に測定できる水力機械流入水の土砂濃度測定方法およ
び測定装置を提供するものである。
As described above, according to the present invention, there is provided a method and a measuring device for measuring the sediment concentration of hydraulic machine inflow water, which can significantly shorten the time required for measurement and perform measurement at low cost without significantly reducing measurement accuracy. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る水車流入水の土砂濃
度測定装置の構成図、第2図は、液柱の差圧と土砂含有
水の土砂濃度との関係を示す線図、第3図は1本発明の
作用を示す差圧計に接続した液柱の概念図、第4図は、
液柱の差圧と土砂濃度との関係を示す線図、第5図は、
本発明の他の実施例に係る土砂濃度測定装置の制御系の
要部構成図、第6図は、制御用コンピュータの処理内容
を示すフローチャート、第7図は、本発明のさらに他の
実施例に係る土砂濃度測定装置のフロート部の構成図で
ある。 1・・・水車、・・・上水槽、6・・・容器状フロート
、7・・・給水口、8・・・清水導管、8a・・・可撓
性導管、9・・・土砂含有水導管、10・・・差圧計、
11.lla。 11b・・・排水弁、13・・・コンピュータ、16・
・・給水弁、17 、17 a 、 17 b ・−浮
子、18−・・レバ! 図 図 一−−水車 差圧、ap 珊糾水弁 ■ 図 冨 国 (乙−) (b)
FIG. 1 is a configuration diagram of a device for measuring the sediment concentration of water flowing into a water turbine according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the differential pressure of the liquid column and the sediment concentration of the sediment-containing water. Fig. 3 is a conceptual diagram of a liquid column connected to a differential pressure gauge showing the effect of the present invention, and Fig. 4 is a conceptual diagram of a liquid column connected to a differential pressure gauge.
Figure 5 is a diagram showing the relationship between the differential pressure in the liquid column and the sediment concentration.
A main part configuration diagram of a control system of a sediment concentration measuring device according to another embodiment of the present invention, FIG. 6 is a flowchart showing processing contents of a control computer, and FIG. It is a block diagram of the float part of the sediment concentration measuring device concerning this. DESCRIPTION OF SYMBOLS 1... Water wheel,... Water tank, 6... Container-shaped float, 7... Water supply port, 8... Fresh water conduit, 8a... Flexible conduit, 9... Sediment-containing water Conduit, 10... Differential pressure gauge,
11. lla. 11b...Drain valve, 13...Computer, 16.
... Water supply valve, 17, 17 a, 17 b ... Float, 18-... Lever! Figure 1 - Water turbine differential pressure, ap Coral water valve ■ Figure Fukuni (Otsu-) (b)

Claims (1)

【特許請求の範囲】 1、水力機械流入水となる土砂含有水の上水槽水面と水
力機械吸入部との高低差に基づく土砂含有水の液柱の下
端に働く圧力と、同一高低差の清水の液柱の下端に働く
圧力との差圧を測定し、あらかじめ検定した上記差圧と
土砂含有水の濃度との関係から土砂含有水の土砂濃度を
求めることを特徴とする水力機械流入水の土砂濃度測定
方法。 2、水力機械吸水部の高さ位置に連通部を有するU字管
形マノメータの一方の管には、水車流入水となる土砂含
有水の上水槽水面に液柱上端の水面レベルを持つ土砂含
有水を注入し、他方の管には、前記上水槽水面と同一液
柱上端の水面レベルを持つ清水を注入し、下端の連通部
には差圧計を設置して差圧を測定し、あらかじめ検定し
た上記差圧と土砂含有水の濃度との関係から土砂含有水
の土砂濃度を求めることを特徴とする水力機械流入水の
土砂濃度測定方法。 3、水力機械流入水となる土砂含有水の上水槽を、その
上水槽水面が水車入口と所定の高低差を保つように設け
、この上水槽の水面と同一レベルの水面を保つ清水入り
の容器状フロートを前記上水槽の水面に浮べ、水力機械
吸水部の高さ位置に連通部を有するU字管形マノメータ
を設け、一方の管は前記土砂含有水の上水槽に接続して
土砂含有水の導管とし、他方の管は前記清水入りの容器
状フロートに接続して清水導管とし、これら両導管の連
通部に差圧計を設けたことを特徴とする水力機械流入水
の土砂濃度測定装置。 4、特許請求の範囲第3項記載のものにおいて、清水入
りの容器状フロート上部に水道水の給水口を配設し、上
水槽の水位が変化しても容器状フロート内清水面の水位
を上水槽の水位と同一水位に保持できるように、浮子の
上下に連動して開閉する給水弁を設けるとともに、前記
容器状フロートに接続する清水導管を、少なくとも上水
槽内における部分を可撓性導管としたことを特徴とする
水力機械流入水の土砂濃度測定装置。 5、特許請求の範囲第3項記載のものにおいて、土砂含
有水の導管の下部に排水弁と排水管を設け、排水弁の開
閉により被測定土砂含有水を土砂含有水の導管に注入し
うるようにしたことを特徴とする水力機械流入水の土砂
濃度測定装置。 6、特許請求の範囲第3項ないし第5項記載のもののい
ずれかにおいて、土砂含有水の導管下部の排水弁、およ
び導管連通部の差圧計を演算処理装置に接続し、差圧か
ら土砂含有水の土砂濃度を演算するとともに、土砂濃度
出力警報、水車停止指令を発信しうるように制御回路を
構成したことを特徴とする水力機械流入水の土砂濃度測
定装置。
[Scope of Claims] 1. Pressure acting on the lower end of the liquid column of sediment-containing water based on the height difference between the upper water tank water surface of the sediment-containing water that becomes inflow water of the hydraulic machine and the intake part of the hydraulic machine, and fresh water with the same height difference. The method is to measure the differential pressure between the pressure acting at the lower end of the liquid column and to determine the sediment concentration of the sediment-containing water from the relationship between the pre-verified differential pressure and the concentration of the sediment-containing water. Sediment concentration measurement method. 2. One pipe of the U-shaped manometer, which has a communication part at the height of the water intake part of the hydraulic machine, has a sediment-containing manometer that has a water surface level at the top of the liquid column at the water tank water surface of the sediment-containing water that becomes the water flowing into the turbine. Water is injected into the other pipe, and fresh water with a water surface level at the top of the liquid column, which is the same as the water level in the water tank, is injected into the other pipe. A differential pressure gauge is installed in the lower end communication section to measure the differential pressure, and the pressure is verified in advance. A method for measuring the sediment concentration of water flowing into a hydraulic machine, characterized in that the sediment concentration of the sediment-containing water is determined from the relationship between the above-mentioned differential pressure and the concentration of the sediment-containing water. 3. A water tank for water containing sediment, which will be inflow water from the hydraulic machine, is installed so that the water level of the water tank maintains a predetermined difference in height from the water turbine inlet, and a container containing fresh water that maintains the water level at the same level as the water surface of this water tank. A U-shaped manometer having a communication part is installed at the height of the water absorption part of the hydraulic machine, and one pipe is connected to the water tank for the sediment-containing water to drain the sediment-containing water. An apparatus for measuring sediment concentration in inflow water from a hydraulic machine, characterized in that the other pipe is connected to the container-shaped float containing fresh water to form a fresh water pipe, and a differential pressure gauge is provided at a communicating portion of both pipes. 4. In the item described in claim 3, a tap water inlet is provided at the upper part of the container-shaped float containing fresh water, so that even if the water level in the water tank changes, the water level of the fresh water surface in the container-shaped float is maintained. In order to maintain the water level at the same level as the water level in the water tank, a water supply valve that opens and closes in conjunction with the top and bottom of the float is provided, and the fresh water conduit connected to the container-shaped float is constructed such that at least the portion inside the water tank is a flexible pipe. A device for measuring sediment concentration in inflow water from a hydraulic machine, characterized by: 5. In the item described in claim 3, a drain valve and a drain pipe are provided at the lower part of the conduit for sediment-containing water, and the soil-containing water to be measured can be injected into the conduit for sediment-containing water by opening and closing the drain valve. A device for measuring sediment concentration in inflow water from a hydraulic machine, characterized in that: 6. In any one of claims 3 to 5, the drain valve at the bottom of the conduit for water containing sediment and the differential pressure gauge at the conduit communication part are connected to an arithmetic processing device, and the sediment-containing water is determined from the differential pressure. A device for measuring sediment concentration in water flowing into a hydraulic machine, characterized in that a control circuit is configured to calculate the sediment concentration in water, and to issue a sediment concentration output alarm and a water turbine stop command.
JP19062188A 1988-08-01 1988-08-01 Method and apparatus for measuring sediment concentration of influent water in hydraulic machine Pending JPH0240532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19062188A JPH0240532A (en) 1988-08-01 1988-08-01 Method and apparatus for measuring sediment concentration of influent water in hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19062188A JPH0240532A (en) 1988-08-01 1988-08-01 Method and apparatus for measuring sediment concentration of influent water in hydraulic machine

Publications (1)

Publication Number Publication Date
JPH0240532A true JPH0240532A (en) 1990-02-09

Family

ID=16261119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19062188A Pending JPH0240532A (en) 1988-08-01 1988-08-01 Method and apparatus for measuring sediment concentration of influent water in hydraulic machine

Country Status (1)

Country Link
JP (1) JPH0240532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086479A (en) * 2014-10-23 2016-05-19 ダイキン工業株式会社 Fluid system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086479A (en) * 2014-10-23 2016-05-19 ダイキン工業株式会社 Fluid system

Similar Documents

Publication Publication Date Title
CN103754815B (en) A kind of it is easy to drug metering and the chemicals dosing plant of regulation and method thereof
RU2299322C1 (en) Method for oil and gas-condensate well production measurement in air-tight oil collection systems
CN109932272B (en) CO (carbon monoxide) 2 Displacement experiment system and displacement experiment method
CN106767936A (en) The concentration detection system and its detection method of a kind of use integration technology
CN205776060U (en) A kind of measure the assay device of embankment project Piping phenomenon under different ground compactness
JPH0240532A (en) Method and apparatus for measuring sediment concentration of influent water in hydraulic machine
RU2299321C2 (en) Method and device for oil and gas-condensate well production measurement in air-tight oil collection systems
CN205607469U (en) Experimental device for utilize minor diameter pipeline flowmeter to calculate major diameter pipeline flow
CN107477364A (en) High degree type fluid piping system
RU2220282C1 (en) Process measuring production rate of oil wells in systems of sealed gathering and gear for its implementation
CN209706794U (en) A kind of automatic slowly priming apparatus applied to water-pipe type settlement instrument
CN209723061U (en) Underground structure still water buoyancy model test apparatus in sand foundation
RU2190096C2 (en) Plant determining yield of well
RU2131027C1 (en) Device for measuring production rate of oil wells
JP3242662U (en) Slurry density measuring device for positive pressure absorption tower and desulfurization absorption tower
CN219935068U (en) Measurement and control device for CO2 liquid tank
CN218937511U (en) Liquid level measuring device
CN220272039U (en) Device for obtaining water storage coefficient of aquifer in underground drainage simulating process
CN209690136U (en) A kind of test block impermeability test instrument
CN211546451U (en) Water seal automatic water replenishing device for methane dehydration system
CN113686411B (en) Experiment system for researching liquid level change rule of compound movement condition voltage stabilizer
CN107870143A (en) A kind of field simply automatic double-ring infiltration tester and method
Berg Air entrainment and supersaturation of dissolved air in a shaft under atmospherical and reduced pressure conditions
RU202840U1 (en) Device for preventing oil from entering the process tank to the treatment plant
CN220338035U (en) Culvert water level monitoring facilities