JPH0240245B2 - - Google Patents

Info

Publication number
JPH0240245B2
JPH0240245B2 JP58117901A JP11790183A JPH0240245B2 JP H0240245 B2 JPH0240245 B2 JP H0240245B2 JP 58117901 A JP58117901 A JP 58117901A JP 11790183 A JP11790183 A JP 11790183A JP H0240245 B2 JPH0240245 B2 JP H0240245B2
Authority
JP
Japan
Prior art keywords
vinyl
diisocyanate
reaction
vinyl ether
polyhydroxyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58117901A
Other languages
Japanese (ja)
Other versions
JPS6011522A (en
Inventor
Junichi Kuno
Yoshitsugu Ishizuka
Juji Baba
Katsuhiko Sonoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP58117901A priority Critical patent/JPS6011522A/en
Publication of JPS6011522A publication Critical patent/JPS6011522A/en
Publication of JPH0240245B2 publication Critical patent/JPH0240245B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は改良されたポリりレタン物質の補造方
法に関するものである。 曎に詳しくはビニルモノマヌが実質的にグラフ
ト重合したポリ゚ヌテルポリオヌルを䜿甚するポ
リりレタン物質の補造方法に関するものである。 埓来、ポリりレタン物質の匷床、ゎム状匟性等
の物性を向䞊させる方法ずしお、ビニル重合䜓を
ポリ゚ヌテルポリオヌルに分散させ䜿甚する方
法、ポリ゚ヌテルポリオヌル䞭でビニル単量䜓を
重合させる方法、ポリ゚ヌテルポリオヌルにビニ
ル重合䜓を䞀郚グラフトさせる方法等が行なわれ
おいる特公昭44−8230号公報、特公昭47−
15108号公報が、これらのポリオヌルを䜿甚し
お埗られるポリりレタン物質は充分満足な物性を
瀺すたでに至぀おいない。 即ち、これら公報に蚘茉の方法で埗られるポリ
オヌルはグラフト化率が極めお䜎いか、あるいは
単なるビニル重合䜓ずポリ゚ヌテルポリオヌルの
混合物であり、保存䞭、あるいは、プレミックス
ポリオヌル、りレタン化觊媒、発泡剀、敎泡剀
等の混合物調敎時、あるいはりレタン化反応䞭
にビニル重合䜓が分離するため、埗られるポリり
レタン物質は䞍均䞀なものずなり、曎にポリりレ
タンフオヌムの補造においおはセルあれ等がおこ
る。又、充分な配慮のもずに、ビニル重合䜓が分
離しない様に操䜜しお埗られるポリりレタン物質
においおも、本質的にい぀お、ビニル重合䜓は単
なる混合物ずしお含たれおいるにすぎず、物性の
向䞊はあたり期埅出来ない。 この欠点を改良する方法ずしお、ポリ゚ヌテル
ポリオヌルを䞍飜和二塩基酞ず反応させお埗られ
る䞍飜和゚ステルポリオヌルずビニル単量䜓を反
応させるこずでビニル重合䜓のグラフト化率を向
䞊させたポリヒドロキシル化合物を埗る方法もあ
るが特公昭51−40914号公報、特公昭51−40915
号公報、ビニル単量䜓の重合反応の際に増粘、
ゲル化が起こり、目的物を埗るこずは困難であ
る。 増粘、ゲル化をさけるために䞍飜和酞の䜿甚量
を䞋げるずグラフト化率が䞋り生成物は䞍均䞀な
ものずなる。又、倚量の飜和酞あるいはビニル単
量䜓ず共重合性の䜎い䞍飜和酞を䜵甚しお埗た゚
ステルを䜿甚する方法もあるが本質的には䞍飜和
酞の䜿甚量を䞋げるこずになり均䞀で䜎粘床のポ
リヒドロキシル化合物を埗るこずは困難である。 曎に、このようにポリオヌルずゞカルボン酞の
反応では分子内゚ステルの生成により、官胜基数
を䞋げるこずになる。特に軟質りレタンフオヌム
甚に倚甚されおいる官胜性のポリ゚ヌテルずゞ
カルボン酞から生成する分子内ゞ゚ステルは官
胜性ずなり、ポリむ゜シアネヌトずの反応時には
ポリマヌ化の停止剀ずなる。 埓来法で埗られるポリヒドロキシル化合物で
は、官胜あるいは䜎官胜性基のヒドロキシル化
合物の混入は避けられず、これを䜿甚したポリり
レタン物質の物性は満足できるものではない。 本発明の目的は、このような埓来法が有する欠
点を解決したポリりレタン物質の補造方法を提䟛
するこずにある。曎に詳しくは本発明の目的は特
に匷床、ゎム匟性等の物性においお、特に優れた
ポリりレタン物質を提䟛するこずにある。 本発明の構成の芁件は、ポリむ゜シアネヌトず
ポリヒドロキシル化合物を䞻な反応成分ずしお、
ポリりレタン物質を補造するに際しお、ポリヒド
ロキシル化合物の少なくずも䞀成分ずしお、ポリ
゚ヌテルポリオヌルずむタコン酞を170〜230℃で
凊理しお゚ステル化ず同時に熱重合、異性化、付
加反応を行な぀お埗られるポリ゚ステルにラゞカ
ル重合可胜なビニル単量䜓をグラフト重合させお
埗られるポリヒドロキシル化合物を甚いるこずに
ある。 本発明で甚いるポリヒドロキシル化合物を埗る
のに甚いられるポリ゚ヌテルポリオヌルずしお
は、埓来公知のポリ゚ヌテルポリオヌル矀より適
宜遞択するこずが出来るが、代衚的な矀の化合
物の䟋は掻性氎玠原子を有する化合物ずアルキレ
ンオキサむドずを反応せしめお埗られる劂き䞀般
匏 〔R1Oo1〕f1 (1) ここには掻性氎玠原子含有化合物残基、
R1はアルキレン基、n1はオキシアルキレン基の
重合数を瀺す数でかかるポリ゚ヌテルポリオヌル
の氎酞基䟡が100〜25mgKOHずなるような数
であるのが奜たしく、又n1は各鎖毎に異぀おい
おもよい。f1は又は以䞊の数での官胜基数
ず同じ倀で、奜たしくは平均〜の数であるが
特に〜の数であるのが奜たしい。で瀺され
る劂き化合物或はその混合物である。 䞊蚘䞀般匏䞭に察応する化合物の䟋は、アル
コヌル、アルカンゞオヌル䟋゚チレングリコ
ヌル、プロプレングリコヌル、アルカントリオ
ヌル䟋グリセリン、トリメチロヌルプロパ
ン、ヘキサントリオヌル、アルカンポリオヌル
䟋、ペンタ゚リスリトヌル、キシリトヌル、゜
ルビトヌル、脂環匏倚䟡アルコヌル䟋むノ
シトヌル、−ビス−−ヒドロキシルシ
クロヘキシヌルプロパン、単糖類或はその誘
導䜓䟋メチルグリコシヌド、芳銙族倚䟡ア
ルコヌル䟋トリメチロヌルベンれン、倚䟡
プノヌル䟋プノヌルホルマリン初期瞮合
物が挙げられる。 又、䞊蚘䞀般匏R1Oo1は䟋えば で瀺されるポリオキシプロピレン鎖、−CH2−
CH2−CH2−CH2−−oで瀺されるポリオキシ
ブチレン鎖或はブチレンオキサむドの重合によ぀
お埗られる劂きポリオキシブチレン鎖、゚チレン
オキサむドずプロピレンオキサむドの共重合乃至
ブロツク重合によ぀お埗られるポリオキシアルキ
レン鎖等である。 むタコン酞゚ステルの熱重合、異性化、付加反
応はJ.Polymer.Sci.Part 1117〜11371969
で報告されおいるように、既に知られおおり、埓
来法でぱステル化以倖の反応の進行を避けるた
め比范的䜎枩䟋えば150℃以䞋で行な぀おいた。 本発明の特城は、あえお170〜230℃で凊理しお
埗た゚ステル、即ち゚ステル化ず同時に熱重合、
異性化、付加反応を進行せしめお埗たポリ゚ステ
ルを䜿甚する点にある。 曎に詳しくは、゚ステル化ず同時に゚ステル化
以倖の反応を進行させるこずにより、倚官胜化さ
れ、又むタコン酞残基である䞍飜和結合に察する
ポリ゚ヌテル鎖の倧きなポリ゚ステルを埗るこず
にあり、このポリ゚ステルを䜿甚するこずにあ
る。 即ち、゚ステルの倚官胜化はポリりレタンの架
橋密床を䞊げるこずに寄䞎し、又䞍飜和結合に察
するポリ゚ヌテル鎖の倧きなポリ゚ステルの䜿甚
により次工皋であるビニル単量䜓のグラフト重合
時のゲル化、高粘床化を避けるずずもに、他のポ
リヒドロキシル化合物であるポリ゚ヌテルポリオ
ヌルずの芪和性を増し、より均質な、より安定な
グラフト重合䜓であるポリヒドロキシル化合物を
埗るこずができ、これを䜿甚したポリりレタン物
質の物性は極めお高いものずなる。 本発明のポリヒドロキシル化合物を埗るに際し
おの第段階であるポリ゚ヌテルポリオヌルずむ
タコン酞の反応は170℃〜230℃で行なう。170℃
より䜎い枩床では先に述べた゚ステルの倉性反応
が進行しない。又230℃より高い枩床ではポリ゚
ヌテルポリオヌルの劣化が進み良奜な結果が埗ら
れない。むタコン酞ずポリ゚ヌテルポリオヌルの
仕蟌比率は、任意の割合で良いが、反応槜の効
率、生成物の粘床等を考慮するず0.1〜0.9モル
モルが奜たしい。 觊媒は䞀般に䜿甚されおいるもので良く、䟋え
ば硫酞、パラトル゚ンスルホン酞、塩化スズ、テ
トラむ゜プロピルチタネヌト等が挙げられる。 第段階であるビニル単量䜓の重合は通垞ポリ
゚ヌテルポリオヌル䞭で行ない、この際䜿甚する
䞊蚘の特性゚ステルの䜿甚量はポリ゚ヌテルポリ
オヌル95〜郚に察し〜100郚が良い。 本発明の方法によりグラフト共重合されるビニ
ル単量䜓ずしおは、メチルビニル゚ヌテル、む゜
プロピルビニル゚ヌテル、゚チルビニル゚ヌテ
ル、む゜ブチルビニル゚ヌテル、−ブチルビニ
ル゚ヌテル、−クロル゚チルビニル゚ヌテル、
−゚チルヘキシルビニル゚ヌテル、−メトキ
シ゚チルビニル゚ヌテル、−ヘキシルビニル゚
ヌテル、−オクチルビニル゚ヌテル、−メチ
ル−−ゞメチルプロピルビニル゚ヌテル、
−゚チルブチルビニル゚ヌテル、−ゞメ
チルブチルビニル゚ヌテル、ゞむ゜プロピルメチ
ルビニル゚ヌテル、−メチルヘプチルビニル゚
ヌテル、−ノニルビニル゚ヌテル、−デシル
ビニル゚ヌテル、−メチル−−゚チルオクチ
ルビニル゚ヌテル、−テトラデシルビニル゚ヌ
テル、−ヘキサデシルビニル゚ヌテル、−オ
クタデシルビニル゚ヌテル、オレむルビニル゚ヌ
テルの劂きビニル゚ヌテル類酢酞ビニル、モノ
クロル酢酞ビニル、ゞクロル酢酞ビニル、メトキ
シ酢酞ビニル、チオ酢酞ビニル、プニル酢酞ビ
ニル、酢酞む゜プロピオビニル、酢酞α−シアノ
ビニル、ギ酞ビニル、クロルギ酞ビニル、プロピ
オン酞ビニル、酪酞ビニル、トリメチル酢酞ビニ
ル、α−゚チルカプロン酞ビニル、ラりリン酞ビ
ニル、ステアリン酞ビニル、アクリル酞ビニル、
クロトン酞ビニル、オレむン酞ビニル、シクロヘ
キシルカルボン酞ビニル、安息銙酞ビニル、テレ
フタル酞ゞビニルの劂きビニル゚ステル類アク
リル酞、アクリル酞゚チル、アクリル酞−プロ
ピル、アクリル酞む゜プロピル、アクリル酞−
ブチル、アクリル酞む゜ブチル、アクリル酞tert
−ブチル、α−クロルアクリル酞゚ステルの劂き
アクリル酞又はその゚ステル類メタクリル酞、
メタクリル酞メチル、メタクリル酞゚チル、メタ
クリル酞−プロピル、メタクリル酞む゜プロピ
ル、メタクリル酞−ブチル、メタクリル酞む゜
ブチル、メタクリル酞tert−ブチルの劂きメタク
リル酞又はその゚ステル類スチレン、メチルス
チレン、ゞメチルスチレン、゚チルスチレン、メ
トキシスチレン、ゞビニルベンれン、α−メチル
スチレン、む゜プロペニルトル゚ン、−アセチ
ル−α−メチルスチレン、β−メチルスチレン、
クロルスチレン、−ゞクロルスチレン、α
−クロルスチレンの劂きスチレン誘導䜓アクリ
ロニトリル、メタクリロニトリル、アクリルアミ
ド、メタクリルアミド又はそれらの眮換䜓が挙げ
られる。 ビニル単量䜓は䞊蚘ポリ゚ステル及び存圚する
堎はポリ゚ヌテルポリオヌルに察しお任意の割合
で甚い埗るが良奜なポリりレタンフオヌムを埗よ
うずする堎合は、なるべく〜40重量、特に奜
たしくは〜30重量の割合でビニル単量䜓を甚
いるのがよい。グラフト化反応は埓来公知の方法
で行なえばよく、適圓な觊媒を甚いるこずも出来
る。 又、堎合によ぀おは反応䞭又は反応埌にポリ゚
ヌテルポリオヌル等を加えおもよい。 呚知の劂くポリりレタン物質ずは、ポリむ゜シ
アネヌト或はポリむ゜シアネヌトの劂く反応する
物質ずポリヒドロキシル化合物或はこれずその他
の反応性物質ずを反応原料ずしお、これ等を目的
に応じ適宜の方法で反応せしめお埗られる劂きり
レタン瞮合を倚数含むポリマヌを意味し、䟋えば
ポリりレタンフオヌムの混合ポリむ゜シアネヌト
ずポリヒドロキシル化合物ずを発泡剀及び適圓な
助剀の存圚䞋に段階で反応せしめるワンシペツ
ト法によ぀お、或は過剰量のポリむ゜シアネヌト
ずポリヒドロキシル化合物ずを反応せしめお埗ら
れるプレポリマヌず氎ずを適圓な助剀の存圚䞋に
反応せしめるトヌタルプレポリマヌ法によ぀お、
或は過剰量のポリむ゜シアネヌトずポリヒドロキ
シル化合物ずを反応せしめお埗られるプレポリマ
ヌず远加量のポリヒドロキシル化合物ずを発泡剀
及びその他の適圓な助剀の存圚䞋に反応せしめる
セミプレポリマヌ法等によ぀お埗られる。ここに
発泡剀ずしおは氎の劂き反応性の発泡剀も含たれ
るが、埗られるフオヌムの物性、特にもろさの点
を考慮するず䜎沞点ハロゲン化炭化氎玠の劂き非
反応象の発泡剀の方が奜たしい。その他の助剀ず
しおは觊媒、発泡調節剀泡安定剀、着色剀、
充填剀、難燃剀等が甚いられる。 ここにポリむ゜シアネヌトずしお奜たしいも
は、䞀般匏 ここに〇はベンれン環或はナフタレン環、−
NCOは栞眮換のむ゜シアネヌト基、は栞眮換
のハロゲン原子或は炭玠数以䞋のアルキル或は
アルコキシ基、n′は又はで瀺されるゞ
む゜シアネヌト䟋えば−トルむレンゞむ
゜シアネヌト、−トルむレンゞむ゜シアネ
ヌト、−ナフチレンゞむ゜シアネヌト、
−ナフチレンゞむ゜シアネヌト、−
プニレンゞむ゜シアネヌト、−プニレ
ンゞむ゜シアネヌト、−む゜プロピルベンゟヌ
ル−−ゞむ゜シアネヌト䞀般匏 ここに〇はベンれン環或はナフタレン環、−
CH2nNCOは栞眮換のアルキレンむ゜シアネヌ
ト基、は栞眮換のハロゲン原子或は炭玠数以
䞋のアルキル或はアルコキシル基、は又は
、n′は又はで瀺されるゞむ゜シアネ
ヌト䟋ωω′−ゞむ゜シアネヌト−
−ゞメチルベンゟヌル、ωω′−ゞむ゜シアネ
ヌト−−ゞメチルベンゟヌル䞀般匏 ここにA′は−CH2−
This invention relates to an improved method of making polyurethane materials. More specifically, the present invention relates to a method for producing a polyurethane material using a polyether polyol substantially graft-polymerized with a vinyl monomer. Conventionally, methods for improving physical properties such as strength and rubber-like elasticity of polyurethane materials include methods of dispersing vinyl polymers in polyether polyols, methods of polymerizing vinyl monomers in polyether polyols, and methods of using polyether polyols. There have been methods such as partially grafting a vinyl polymer onto
15108), but polyurethane materials obtained using these polyols have not yet shown sufficiently satisfactory physical properties. In other words, the polyols obtained by the methods described in these publications have extremely low grafting rates, or are simply a mixture of vinyl polymer and polyether polyol, and may be used during storage or in a premix (polyol, urethanization catalyst, foaming catalyst, etc.). Since the vinyl polymer separates during the preparation (mixture of foam stabilizer, etc.) or during the urethanization reaction, the resulting polyurethane material becomes non-uniform, and furthermore, cell roughness occurs during the production of polyurethane foam. In addition, even in polyurethane materials obtained by careful manipulation so that the vinyl polymer does not separate, the vinyl polymer is essentially contained only as a mixture, and its physical properties may vary. We cannot expect much improvement. As a method to improve this drawback, polyhydroxyl, which improves the grafting rate of vinyl polymers, is produced by reacting an unsaturated ester polyol obtained by reacting a polyether polyol with an unsaturated dibasic acid and a vinyl monomer. Although there are methods to obtain compounds (Japanese Patent Publication No. 51-40914, Japanese Patent Publication No. 51-40915)
(No. Publication), thickening during the polymerization reaction of vinyl monomers,
Gelation occurs and it is difficult to obtain the desired product. If the amount of unsaturated acid used is reduced in order to avoid thickening and gelation, the grafting rate will decrease and the product will become non-uniform. There is also a method of using an ester obtained by combining a large amount of saturated acid or a vinyl monomer with an unsaturated acid with low copolymerizability, but this essentially reduces the amount of unsaturated acid used and produces a uniform result. It is difficult to obtain polyhydroxyl compounds with low viscosity. Furthermore, in the reaction between a polyol and a dicarboxylic acid, the number of functional groups is reduced due to the formation of intramolecular esters. In particular, the intramolecular diester produced from trifunctional polyether and dicarboxylic acid, which is often used for flexible urethane foams, becomes monofunctional and acts as a terminator for polymerization when reacting with polyisocyanate. In polyhydroxyl compounds obtained by conventional methods, contamination of hydroxyl compounds with monofunctional or low functional groups is unavoidable, and the physical properties of polyurethane materials using these compounds are not satisfactory. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing polyurethane materials that overcomes the drawbacks of the conventional methods. More specifically, an object of the present invention is to provide a polyurethane material that is particularly excellent in physical properties such as strength and rubber elasticity. The requirements for the structure of the present invention are that polyisocyanate and polyhydroxyl compound are the main reaction components,
Polyester obtained by treating polyether polyol and itaconic acid at 170 to 230°C and simultaneously performing esterification, thermal polymerization, isomerization, and addition reaction as at least one component of a polyhydroxyl compound when producing a polyurethane substance. The purpose of this invention is to use a polyhydroxyl compound obtained by graft polymerizing a radically polymerizable vinyl monomer. The polyether polyol used to obtain the polyhydroxyl compound used in the present invention can be appropriately selected from the conventionally known polyether polyol groups, but examples of one representative group of compounds include active hydrogen atoms. General formula as obtained by reacting a compound and alkylene oxide: A[(R 1 O) o1 H] f1 (1) (where A is a compound residue containing an active hydrogen atom,
R1 is an alkylene group, n1 is a number indicating the number of polymerized oxyalkylene groups, and is preferably a number such that the hydroxyl value of the polyether polyol is 100 to 25 mgKOH/g, and n1 is different for each chain. You can leave it on. f1 is 1 or a number of 1 or more and has the same value as the number of functional groups in A, preferably an average of 2 to 6, and particularly preferably a number of 2 to 6. ) or a mixture thereof. Examples of compounds corresponding to A in the above general formula are alcohols, alkanediols (e.g., ethylene glycol, propene glycol), alkanetriols (e.g., glycerin, trimethylolpropane, hexanetriol), alkane polyols (e.g., pentaerythritol). , xylitol, sorbitol), alicyclic polyhydric alcohols (e.g. inositol, 2,2-bis-(4-hydroxylcyclohexyl)propane), monosaccharides or their derivatives (e.g. methyl glycoseed), aromatic polyhydric alcohols Hydrolic alcohols (e.g. trimethylolbenzene) and polyhydric phenols (e.g. phenol-formalin initial condensate) can be mentioned. In addition, the above general formula K(R 1 O) o1 is, for example, A polyoxypropylene chain represented by (-CH 2 -
A polyoxybutylene chain represented by CH 2 -CH 2 -CH 2 -O-) or a polyoxybutylene chain such as that obtained by polymerization of butylene oxide, or a polyoxybutylene chain such as that obtained by copolymerization or block polymerization of ethylene oxide and propylene oxide. polyoxyalkylene chains etc. obtained by Thermal polymerization, isomerization, and addition reactions of itaconic acid esters are described in J. Polymer. Sci. Part C, 1117-1137 (1969).
As reported in , this is already known, and in the conventional method, it was carried out at a relatively low temperature, for example, 150° C. or lower, in order to avoid the progress of reactions other than esterification. The feature of the present invention is that esters obtained by processing at 170 to 230℃, that is, thermal polymerization at the same time as esterification,
The point is that polyester obtained by proceeding with isomerization and addition reactions is used. More specifically, by proceeding with a reaction other than esterification at the same time as esterification, the purpose is to obtain a polyester that is polyfunctionalized and has a large polyether chain relative to the unsaturated bond that is the itaconic acid residue. It's about using it. That is, polyfunctionalization of esters contributes to increasing the crosslinking density of polyurethane, and the use of polyesters with large polyether chains for unsaturated bonds reduces gelation and high In addition to avoiding viscosity, it is possible to obtain a polyhydroxyl compound that is a more homogeneous and more stable graft polymer by increasing the affinity with other polyhydroxyl compounds, polyether polyols, and using this polyurethane material. Its physical properties are extremely high. The reaction between polyether polyol and itaconic acid, which is the first step in obtaining the polyhydroxyl compound of the present invention, is carried out at 170°C to 230°C. 170℃
At lower temperatures, the above-mentioned ester modification reaction does not proceed. Furthermore, if the temperature is higher than 230°C, the polyether polyol will deteriorate and good results will not be obtained. The charging ratio of itaconic acid and polyether polyol may be any ratio, but considering the efficiency of the reaction tank, the viscosity of the product, etc., it is 0.1 to 0.9 mol:
1 mol is preferred. The catalyst may be one commonly used, such as sulfuric acid, para-toluenesulfonic acid, tin chloride, tetraisopropyl titanate, and the like. The second step, the polymerization of the vinyl monomer, is usually carried out in a polyether polyol, and the amount of the above-mentioned characteristic ester used at this time is preferably 5 to 100 parts per 95 to 0 parts of the polyether polyol. Vinyl monomers to be graft copolymerized by the method of the present invention include methyl vinyl ether, isopropyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, n-butyl vinyl ether, 2-chloroethyl vinyl ether,
2-ethylhexyl vinyl ether, 2-methoxyethyl vinyl ether, n-hexyl vinyl ether, n-octyl vinyl ether, 1-methyl-2,2-dimethylpropyl vinyl ether,
2-ethyl butyl vinyl ether, 1,3-dimethylbutyl vinyl ether, diisopropyl methyl vinyl ether, 1-methylheptyl vinyl ether, n-nonyl vinyl ether, n-decyl vinyl ether, 1-methyl-4-ethyloctyl vinyl ether, n-tetradecyl vinyl ether, Vinyl ethers such as n-hexadecyl vinyl ether, n-octadecyl vinyl ether, oleyl vinyl ether; vinyl acetate, monochlorovinyl acetate, dichlorovinyl acetate, methoxyvinyl acetate, vinyl thioacetate, phenyl vinyl acetate, isopropiovinyl acetate, α-cyanovinyl acetate , vinyl formate, vinyl chloroformate, vinyl propionate, vinyl butyrate, vinyl trimethyl acetate, vinyl α-ethyl caproate, vinyl laurate, vinyl stearate, vinyl acrylate,
Vinyl esters such as vinyl crotonate, vinyl oleate, vinyl cyclohexylcarboxylate, vinyl benzoate, divinyl terephthalate; acrylic acid, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-acrylate
Butyl, isobutyl acrylate, tert acrylate
- Acrylic acid or its esters such as butyl, α-chloroacrylic acid ester; methacrylic acid,
Methacrylic acid or its esters such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate; styrene, methylstyrene, dimethylstyrene, Ethylstyrene, methoxystyrene, divinylbenzene, α-methylstyrene, isopropenyltoluene, 4-acetyl-α-methylstyrene, β-methylstyrene,
Chlorstyrene, 2,5-dichlorostyrene, α
- Styrene derivatives such as chlorstyrene; examples include acrylonitrile, methacrylonitrile, acrylamide, methacrylamide or substituted products thereof. The vinyl monomer can be used in any proportion to the above polyester and polyether polyol if present, but in order to obtain a good polyurethane foam, preferably 3 to 40% by weight, particularly preferably 5 to 30% by weight. It is preferable to use vinyl monomers in proportions of % by weight. The grafting reaction may be carried out by a conventionally known method, and an appropriate catalyst may also be used. Further, depending on the case, a polyether polyol or the like may be added during or after the reaction. As is well known, a polyurethane substance is made by using polyisocyanate or a reactive substance such as polyisocyanate and a polyhydroxyl compound or this and other reactive substances as reaction raw materials and reacting them in an appropriate manner depending on the purpose. means a polymer containing a large number of urethane condensations, such as those obtained by a one-shot process in which a mixed polyisocyanate of polyurethane foam and a polyhydroxyl compound are reacted in one step in the presence of a blowing agent and a suitable auxiliary agent. is a total prepolymer method in which a prepolymer obtained by reacting an excess amount of polyisocyanate and a polyhydroxyl compound is reacted with water in the presence of a suitable auxiliary agent.
Alternatively, a semi-prepolymer method in which a prepolymer obtained by reacting an excess amount of polyisocyanate and a polyhydroxyl compound and an additional amount of the polyhydroxyl compound are reacted in the presence of a blowing agent and other suitable auxiliary agents. You can get it by twisting it. The blowing agent here includes reactive blowing agents such as water, but non-reactive blowing agents such as low-boiling point halogenated hydrocarbons are preferred in view of the physical properties of the resulting foam, especially brittleness. . Other auxiliary agents include catalysts, foaming regulators (foam stabilizers), colorants,
Fillers, flame retardants, etc. are used. Here, preferred polyisocyanates have the general formula (Here 〇 is a benzene ring or naphthalene ring, −
NCO is a nuclear-substituted isocyanate group; , 2,6-toluylene diisocyanate, 1,4-naphthylene diisocyanate,
1,5-naphthylene diisocyanate, 1,3-
Phenylene diisocyanate, 1,4-phenylene diisocyanate, 1-isopropylbenzole-2,4-diisocyanate): General formula (Here 〇 is a benzene ring or naphthalene ring, -
(CH 2 ) n NCO is a nuclear-substituted alkylene isocyanate group, X is a nuclear-substituted halogen atom or alkyl or alkoxyl group having 3 or less carbon atoms, m is 1 or 2, and n' is 0, 1 or 2). The indicated diisocyanate (e.g. ω, ω′-diisocyanate-1,2
-dimethylbenzole, ω,ω'-diisocyanate-1,3-dimethylbenzole): General formula (Here A′ is −CH 2 −,

【匏】の劂 き炭玠数以䞋のアルキレン基、〇はベンれン環
或はナフタレン環、は栞眮換のハロゲン原子或
は炭玠数粟䞋のアルキル或はアルコキシル基、
m′及びn″は倫々又はで瀺されるゞむ
゜シアネヌト䟋4′−ゞプニルメタンゞ
む゜シアネヌト、2′−ゞメチルゞプニルメ
タン−4′−ゞむ゜シアネヌト、ゞプニルゞ
メチルメタン−4′−ゞむ゜シアネヌト、
3′−ゞクロルゞプニルゞメチルメタン−
4′−ゞむ゜シアネヌト䞀般匏 ここには栞眮換のハロゲン原子或は炭玠数
以䞋のアルキル或はアルコキシル基、m″は
又は、は又はで瀺されるゞむ゜
シアネヌト䟋ビプニヌル−4′−ゞむ゜
シアネヌト、3′−ゞメチルビプニル−
4′−ゞむ゜シアネヌト、3′−ゞメトキシビフ
゚ニル−4′−ゞむ゜シアネヌトゞプニ
ルスルホン−4′−ゞむ゜シアネヌト、ベンれ
ン−−トリむ゜シアネヌト、
−トリむ゜シアネヌト、4′4″−トリプ
ニルメタントリむ゜シアネヌト、4′−ト
リむ゜シアネヌトゞプニル゚ヌテル、玄ケの
プニルむ゜シアネヌがメチレン橋で結合された
ポリむ゜シアネヌト、䞊蚘む゜シアネヌトに含た
れる芳銙環を氎添しお埗られる劂きゞむ゜シアネ
ヌト䟋、ゞシクロヘキサン−4′−ゞむ゜シ
アネヌト、ωω−ゞむ゜シアネヌト−−
ゞメチルベンれン、ωω′−ゞむ゜シアネヌト
−−ゞメチルベンれンモルのゞむ゜
シアネヌトずモルの氎の反応によ぀お埗られる
眮換尿玠基を含むゞむ゜シアネヌト䟋モル
の氎ずモルの−トルむレンゞむ゜シアネ
ヌトずの反応によ぀お埗られる尿玠ゞむ゜シアネ
ヌト芳銙族ゞむ゜シアネヌトを公知の方法で
分子重合しお埗られるりレトゞオンゞむ゜シア
ネヌト等が挙げられる。 尚脂肪族系のポリむ゜シアネヌトも同様䜿甚で
きる。 発泡剀ずしお奜たしいものずしおは䟋えばハロ
ゲン化䜎玚炭化氎玠を甚いるこずができ、その䟋
ずしおはモルフルオロトリクロルメタン、ゞフル
オロゞクロルメタン、モノフルオロゞクロルメタ
ン、ゞフルオロモノクロルメタン、、ゞフルオロ
ゞプロムメタン、テトラフルオロゞクロル゚タ
ン、、ゞフルオロプロム゚タン等が挙げられる。 又泡安定剀ずしおは埓来公知のポリゞメチルシ
ロキサン、或はポリゞメチルシロキサン鎖及びポ
リオキシ゚チレン鎖含有化合物等の所謂シリコン
オむルず呌ばれるものが挙げられる。 又䞊蚘−NCO基の反応を促進する觊媒ずしお
は䟋えば第玚アミン觊媒䟋−ゞメチルピ
ペラゞン、゚ンド゚チレンピペラゞン、−゚チ
ルモルホリン、トリ゚チレンゞアミン、錫圢觊
媒䟋ゞブチル錫ゞラりレヌト、ゞブチル錫ゞ
゚チルヘキ゜゚ヌト、スタンナスオクト゚ヌト、
スタンナスオレ゚ヌト等が挙げられる。 以䞋に実斜䟋及び比范䟋を挙げる。 尚、各䟋における「郚」は党お「重量郚」を衚
わし、又氎酞基䟡及び酞䟡の単䜍はmgKOH
である。 ポリヒドロキシル化合物の補造  ゚ステル化反応 補造䟋  フラスコに氎酞基䟡36のポリオキシ゚チレ
ン・オキシプロピレングリセロヌル4700郚、む
タコン酞65郚、パラトル゚ンスルホン酞15郚を仕
蟌み、窒玠䞋170〜180℃、垞圧で10時間、同枩
床、50mmHgで15時間反応させた。生成物の収量、
分析結果を衚−に瀺した。 補造䟋〜比范補造䟋〜 補造䟋−ず同様な方法で補造䟋−〜、比
范補造䟋−〜の生成物を埗た。結果を衚−
に瀺す。
[Formula] An alkylene group having 3 or less carbon atoms, 〇 is a benzene ring or naphthalene ring, and X is a nuclear-substituted halogen atom or an alkyl or alkoxyl group having 3 or less carbon atoms,
m' and n'' are respectively 0, 1 or 2) diisocyanate (e.g. 4,4'-diphenylmethane diisocyanate, 2,2'-dimethyldiphenylmethane-4,4'-diisocyanate, diphenyldimethyl Methane-4,4'-diisocyanate, 3,
3'-dichlorodiphenyldimethylmethane-4,
4'-Diisocyanate): General formula (Here, X is a nuclear-substituted halogen atom or an alkyl or alkoxyl group having 3 or less carbon atoms, m″ is 0
or 1, n is 0, 1 or 2) (e.g. biphenyl-2,4'-diisocyanate, 3,3'-dimethylbiphenyl-4,
4'-diisocyanate, 3,3'-dimethoxybiphenyl-4,4'-diisocyanate): diphenylsulfone-4,4'-diisocyanate, benzene-1,2,4-triisocyanate, 2,4,
6-triisocyanate, 4,4',4''-triphenylmethane triisocyanate, 2,4,4'-triisocyanate diphenyl ether, polyisocyanate in which about 3 phenyl isocyanates are linked with a methylene bridge, Diisocyanates such as those obtained by hydrogenating the aromatic ring contained in the above isocyanates (e.g., dicyclohexane-4,4'-diisocyanate, ω,ω-diisocyanate-1,2-
Dimethylbenzene, ω,ω′-diisocyanate-1,3-dimethylbenzene): Diisocyanate containing substituted urea groups obtained by reaction of 2 mol of diisocyanate and 1 mol of water (e.g. 1 mol of water and 2 mol of water) Urea diisocyanate obtained by reaction with 2,4-toluylene diisocyanate): Uretdione diisocyanate obtained by bimolecular polymerization of aromatic diisocyanate by a known method. Incidentally, aliphatic polyisocyanates can also be used. Preferred blowing agents include halogenated lower hydrocarbons, examples of which include molar trichloromethane, difluorodichloromethane, monofluorodichloromethane, difluoromonochloromethane, difluorodibromemethane, and tetrafluorodichloroethane. , difluoropromethane, and the like. Examples of the foam stabilizer include conventionally known polydimethylsiloxanes, or so-called silicone oils such as compounds containing polydimethylsiloxane chains and polyoxyethylene chains. Catalysts that promote the reaction of the -NCO group include, for example, tertiary amine catalysts (e.g., N-dimethylpiperazine, endoethylenepiperazine, N-ethylmorpholine, triethylenediamine), tin catalysts (e.g., dibutyltin dilaurate, Dibutyltin diethylhexoate, stannous octoate,
stannous oleate), etc. Examples and comparative examples are listed below. In addition, all "parts" in each example represent "parts by weight", and the units of hydroxyl value and acid value are mgKOH/g.
It is. Production of polyhydroxyl compound 1 Example of esterification reaction production 1 4700 parts of poly(oxyethylene/oxypropylene) glycerol with a hydroxyl value of 36, 65 parts of itaconic acid, and 15 parts of paratoluenesulfonic acid were placed in a flask and heated at 170 to 180°C under nitrogen. The reaction was carried out at normal pressure for 10 hours and at the same temperature and 50 mmHg for 15 hours. product yield,
The analysis results are shown in Table-1. Production Examples 2 to 5, Comparative Production Examples 1 to 4 Products of Production Examples 2 to 5 and Comparative Production Examples 1 to 4 were obtained in the same manner as Production Example 1. Table 1 shows the results.
Shown below.

【衚】【table】

【衚】  ビニル単量䜓重合反応 補造䟋 補造䟋−で埗た゚ステル30郚、氎酞基䟡35の
ポリオキシ゚チレン・オキシプロピレングリ
セロヌル50郚、スチレン20郚、過酞化ベンゟむル
0.5郚をフラスコに仕蟌み、80〜120℃で時間反
応させ、次いで100〜120℃、10mmHg以䞋で時
間脱気を行な぀た。埗られた生成物は均䞀な癜色
乳濁物であった。分析結果を衚−に瀺す。 補造䟋〜、比范補造䟋〜 補造䟋−ず同様な方法で補造䟋−〜
、比范補造䟋−〜の生成物を埗た。結果を
衚−に瀺す。 補造䟋 フラスコに氎酞基䟡35のポリオキシ゚チレ
ン・オキシプロピレングリセロヌル50郚、過酞
化ラりロむル1.0郚を仕蟌み、補造䟋−で埗た
゚ステル30郚、スチレン20郚を時間で滎䞋、反
応させた。反応枩床は70〜110℃に保぀た。次い
で100〜110℃で脱気を行ない均䞀な癜色乳濁物を
埗た。 このものの分析結果衚を衚−に瀺す。
[Table] 2 Vinyl monomer polymerization reaction production example 30 parts of the ester obtained in Production Example-1, 50 parts of poly(oxyethylene/oxypropylene) glycerol with a hydroxyl value of 35, 20 parts of styrene, benzoyl peroxide
0.5 part was charged into a flask and reacted at 80-120°C for 5 hours, followed by degassing at 100-120°C and below 10 mmHg for 1 hour. The resulting product was a homogeneous white emulsion. The analysis results are shown in Table-2. Manufacturing example~, Comparative manufacturing example~ Manufacturing example~, using the same method as Manufacturing example~,
, Comparative Preparation Example - The products of ~ were obtained. The results are shown in Table-2. Production example 50 parts of poly(oxyethylene/oxypropylene) glycerol with a hydroxyl value of 35 and 1.0 part of lauroyl peroxide were placed in a flask, and 30 parts of the ester obtained in Production Example-2 and 20 parts of styrene were added dropwise over 5 hours to react. Ta. The reaction temperature was kept at 70-110°C. Next, deaeration was performed at 100 to 110°C to obtain a uniform white emulsion. The analysis results of this product are shown in Table-2.

【衚】【table】

【衚】 ポリりレタン物質の補造 実斜䟋〜比范䟋〜 補造䟋−〜及び比范補造䟋−によ぀
お補造したポリヒドロキシル化合物及び他のポリ
ヒドロキシル化合物、発泡剀、敎泡剀、觊媒を容
噚にずり、かきたぜ混合しおこれを成分ずし、
む゜シアネヌト基を含有する化合物を成分ずし
た。 成分ず成分を急速に混合し、モヌルドに仕
蟌み反応、泡化させ、発泡䜓を補造した。結果を
衚−に瀺す。
[Table] Production Examples 1 to 8 and Comparative Examples 1 to 2 of Polyurethane Materials Polyhydroxyl compounds and other polyhydroxyl compounds produced by Production Examples and Comparative Production Examples, blowing agents, foam stabilizers, Place the catalyst in a container, stir and mix to make this the A component,
A compound containing an isocyanate group was used as component B. Components A and B were rapidly mixed, charged into a mold, reacted, and foamed to produce a foam. The results are shown in Table-3.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  ポリむ゜シアネヌトずポリヒドロキシル化合
物を反応䞻成分ずしおポリりレタン物質を補造す
るに際しお、ポリヒドロキシル化合物の少なくず
も䞀成分ずしお、ポリ゚ヌテルポリオヌルずむタ
コン酞を170℃〜230℃で凊理しお゚ステル化ず同
時に熱重合、異性化、付加反応を行な぀お埗られ
るポリ゚ステルにラゞカル重合可胜なビニル単量
䜓をグラフト重合させお埗られるポリヒドロキシ
ル化合物を甚いるこずを特城ずするポリりレタン
物質の補造方法。
1 When producing a polyurethane material using a polyisocyanate and a polyhydroxyl compound as the main reaction components, polyether polyol and itaconic acid are treated at 170°C to 230°C as at least one component of the polyhydroxyl compound to undergo thermal polymerization at the same time as esterification. A method for producing a polyurethane material, comprising using a polyhydroxyl compound obtained by graft polymerizing a radically polymerizable vinyl monomer to a polyester obtained by performing isomerization and addition reactions.
JP58117901A 1983-06-29 1983-06-29 Production of polyurethane material Granted JPS6011522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117901A JPS6011522A (en) 1983-06-29 1983-06-29 Production of polyurethane material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117901A JPS6011522A (en) 1983-06-29 1983-06-29 Production of polyurethane material

Publications (2)

Publication Number Publication Date
JPS6011522A JPS6011522A (en) 1985-01-21
JPH0240245B2 true JPH0240245B2 (en) 1990-09-11

Family

ID=14723003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117901A Granted JPS6011522A (en) 1983-06-29 1983-06-29 Production of polyurethane material

Country Status (1)

Country Link
JP (1) JPS6011522A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483916U (en) * 1990-11-30 1992-07-21

Also Published As

Publication number Publication date
JPS6011522A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
KR101285912B1 (en) Polymer polyols with ultra-high solids contents
JP2019515084A (en) Modified flexible foams using polymer polyols produced by DMC-catalyzed polyols
EP1884528A1 (en) Flexible polyurethane foam, process for producing the same, and automotive seat employing the flexible polyurethane foam
WO2009071510A1 (en) Polyurethane foam containing silicon
JP2012512299A (en) Polyurethane foam containing silicone
CN112996830A (en) Ethylenically unsaturated macromers prepared from residues in isocyanate preparation, related preformed stabilizers, polymer polyols, foam-forming compositions and foams
JP2018529827A (en) Highly elastic polyurethane foam made with high functionality, high equivalent weight polyols, mainly with secondary hydroxyl groups
JP3933245B2 (en) Polymer-dispersed polyol, polyurethane resin, and method for producing polyurethane foam
JP3083235B2 (en) Polymer polyol, method for producing the same, and method for producing flexible high elastic polyurethane foam
JPH0240246B2 (en)
JPH0240245B2 (en)
JP5654038B2 (en) Polyurethane foam molding with excellent dimensional stability
JPH0240247B2 (en)
JPS625172B2 (en)
JPS6011521A (en) Production of polyurethane material
JPH0987355A (en) Production of rigid polyurethane foam
JPH01161007A (en) Manufacture of polymer polyol and polyurethane
JP5151461B2 (en) Method for producing flexible polyurethane foam and use thereof
JP4182733B2 (en) Flexible polyurethane foam and method for producing the same
JP2654173B2 (en) Process for producing polymer polyols and polyurethanes
JPH0238083B2 (en) HORIHIDOROKISHIRUKAGOBUTSUNOSEIZOHOHO
JPH0240092B2 (en)
JP3938957B2 (en) Method for producing polymer polyol and polyurethane foam
JP3329495B2 (en) Polymer polyol, production method thereof and use thereof
JPH0238084B2 (en)