JPH0240185B2 - - Google Patents

Info

Publication number
JPH0240185B2
JPH0240185B2 JP57190230A JP19023082A JPH0240185B2 JP H0240185 B2 JPH0240185 B2 JP H0240185B2 JP 57190230 A JP57190230 A JP 57190230A JP 19023082 A JP19023082 A JP 19023082A JP H0240185 B2 JPH0240185 B2 JP H0240185B2
Authority
JP
Japan
Prior art keywords
hydrogen
electrolyte
lead
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57190230A
Other languages
Japanese (ja)
Other versions
JPS5979150A (en
Inventor
Juko Fujita
Hisashi Kudo
Ikuo Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP57190230A priority Critical patent/JPS5979150A/en
Publication of JPS5979150A publication Critical patent/JPS5979150A/en
Publication of JPH0240185B2 publication Critical patent/JPH0240185B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 本発明は新規なガルバニ電池式水素センサに関
するものであり、その特徴とするところは、炭酸
ガスの影響を受けず、水素に対する選択性がすぐ
れ全範囲の水素濃度が測定でき負極からの酸素発
生が起らない水素センサを提供せんとするにあ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel galvanic cell type hydrogen sensor, which is characterized by being unaffected by carbon dioxide gas, having excellent selectivity for hydrogen, and measuring hydrogen concentration over the entire range. The object of the present invention is to provide a hydrogen sensor that does not generate oxygen from the negative electrode.

従来、水素センサには、熱伝導式、接触燃焼
式、半導体式および粘度式の4方式がある。
Conventionally, there are four types of hydrogen sensors: thermal conduction type, catalytic combustion type, semiconductor type, and viscosity type.

これらの方式において、一般に接触燃焼式以外
の方式はガスの選択性のないという欠点がある。
また接触燃焼式には高濃度の水素濃度が測定でき
ないという難点がある。これに対しガルバニ電池
式水素センサは水素に対する選択性があるととも
に広範囲の水素濃度に対して充分高感度である可
能性がある。このような可能性にもかゝわらず、
これまでガルバニ電池式水素センサは実用に供さ
れていない。
Among these methods, methods other than the catalytic combustion method generally have the disadvantage of lack of gas selectivity.
The catalytic combustion method also has the disadvantage that high hydrogen concentrations cannot be measured. On the other hand, a galvanic cell type hydrogen sensor has selectivity to hydrogen and may be sufficiently sensitive to a wide range of hydrogen concentrations. Despite this possibility,
Until now, galvanic cell type hydrogen sensors have not been put into practical use.

従来、銀、金、白金などの金属電極を正極に
し、鉛電極を負極にし、電解液としてカセイカリ
の水溶液を用い金属電極をFEP(四フツ化エチレ
ン−六フツ化エチレンコポリマ)膜などの酸素の
透過を制限するための隔膜で被覆した酸素−鉛電
池を酸素の拡散律速下で作動するように抵抗を介
して放電させたとき、酸素濃度とこの電池に流れ
る電流との間にみられる直線関係を利用したガル
バニ電池式酸素センサが広く実用に供されてい
る。この酸素センサにおいては次のような反応が
起つている。
Conventionally, metal electrodes such as silver, gold, and platinum were used as positive electrodes, and lead electrodes were used as negative electrodes, and an aqueous solution of caustic potash was used as the electrolyte. Linear relationship between oxygen concentration and current flowing through an oxygen-lead battery covered with a diaphragm to limit permeation when discharged through a resistor so as to operate under oxygen diffusion control Galvanic cell-type oxygen sensors that utilize galvanic cells are in widespread use. The following reaction occurs in this oxygen sensor.

正極:O2+2H2O+4e-→4OH- …(1) 負極:2Pb+4OH-→2PbO+2H2O+4e- …(2) 全反応:O2+2Pb→2PbO …(3) (2)式で生成するPbO電解液としてのカセイカリ
水溶液中に溶解し、負極の鉛電極表面は絶えず更
新される。そのためにかなり長期にわたつて鉛電
極の電位が安定する。これがこのカルバニ電池式
酸素センサが酸素センサたりえている理由のひと
つである。
Positive electrode: O 2 +2H 2 O+4e - →4OH - ...(1) Negative electrode: 2Pb+4OH - →2PbO+2H 2 O+4e - ...(2) Total reaction: O 2 +2Pb→2PbO ...(3) PbO electrolyte generated by equation (2) As the caustic potash is dissolved in the aqueous solution, the lead electrode surface of the negative electrode is constantly renewed. Therefore, the potential of the lead electrode is stabilized for a fairly long period of time. This is one of the reasons why this carbani cell type oxygen sensor is so suitable as an oxygen sensor.

一方、酸素濃度が非常に低いときには、正極の
電位は鉛電極のそれにほゞ等しくなるわけだが、
もし鉛電極の電位が水素の平衡電位よりも卑にな
ると正極から水素が発生するおそれがある。
On the other hand, when the oxygen concentration is very low, the potential of the positive electrode is approximately equal to that of the lead electrode.
If the potential of the lead electrode becomes more base than the equilibrium potential of hydrogen, hydrogen may be generated from the positive electrode.

水素の平衡電位EH(25℃)は次式にみられるよ
うに、電解液のPHに依存する。
The equilibrium potential of hydrogen E H (25°C) depends on the pH of the electrolyte, as shown in the following equation.

EH=−0.2412−0.05916PH(対飽和カロメル電
極) …(4) たとえば電解液として4モル/のカセイカリ
水溶液を用いた場合には、PHは14.6となり、EH
−1.1049Vとなる。これに対し鉛電極の平衡電位
は−0.945Vとなり、水素の平衡電位よりも貴に
なるので、正極から水素が発生することはない。
E H =-0.2412-0.05916 PH (vs. saturated calomel electrode)...(4) For example, when a 4 mol/potassium aqueous solution is used as the electrolyte, the PH will be 14.6 and the E H will be -1.1049V. On the other hand, the equilibrium potential of the lead electrode is -0.945V, which is nobler than the equilibrium potential of hydrogen, so hydrogen is not generated from the positive electrode.

このように正極からの水素発生が起らないとい
うことも上述の電池系が酸素センサとして使える
大きな理由のひとつである。
The fact that hydrogen is not generated from the positive electrode is one of the major reasons why the above-mentioned battery system can be used as an oxygen sensor.

このようなカルバニ電池式酸素センサの考え方
を水素センサに導入するとすれば、正極として
は、金属酸化物を用い負極としては白金族金属の
ような水素のイオン化を容易に起し得る金属を用
い、金属酸化物−水素電池を構成すればよい。
If we were to introduce the concept of the carbani cell type oxygen sensor into a hydrogen sensor, we would use a metal oxide as the positive electrode and a metal that can easily cause hydrogen ionization, such as a platinum group metal, as the negative electrode. A metal oxide-hydrogen battery may be constructed.

金属酸化物としては、二酸化鉛(PbO2)、オキ
シ水酸化ニツケル(NiOOH)あるいは酸化銀
(Ag2O)などが考えられる。問題なのは、これ
らの金属酸化物が電解液に対して安定であり、か
つその電解還元反応生成物が電解液に溶けるよう
な金属酸化物と電解液との組合わせが必須だとい
うことである。たとえば電解液としてアルカリ水
溶液を用いた場合には、二酸化鉛は溶けてしまう
し、オキシ水酸化ニツケルあるいは酸化銀の電解
還元生成物である水酸化ニツケル(Ni(OH)2
あるいは銀(Ag)は溶けない。したがつてアル
カリ水溶液は使用できない。また、電解液として
硫酸を用いた場合には二酸化鉛は電解液に対する
溶解度の小さい硫酸鉛(PbSO4)になるし、オキ
シ水酸化ニツケルあるいは酸化銀は溶けてしまう
という難点がある。
Possible metal oxides include lead dioxide (PbO 2 ), nickel oxyhydroxide (NiOOH), and silver oxide (Ag 2 O). The problem is that these metal oxides are stable in the electrolyte, and the combination of metal oxide and electrolyte must be such that the electrolytic reduction reaction product is soluble in the electrolyte. For example, if an alkaline aqueous solution is used as the electrolyte, lead dioxide will dissolve, and nickel oxyhydroxide or nickel hydroxide (Ni(OH) 2 ), which is an electrolytic reduction product of silver oxide, will dissolve.
Or silver (Ag) doesn't melt. Therefore, alkaline aqueous solutions cannot be used. Furthermore, when sulfuric acid is used as the electrolyte, lead dioxide becomes lead sulfate (PbSO 4 ), which has low solubility in the electrolyte, and nickel oxyhydroxide or silver oxide dissolves.

このように従来、適当な正極活物質を電解液と
の組合せが見いだされていないために、ガルバニ
電池式水素センサは成功しなかつた。
As described above, galvanic cell hydrogen sensors have not been successful because no suitable combination of positive electrode active material and electrolyte has been found.

本発明は新しい正極活物質と電解液との組合わ
せにより、従来不可能とされていたガルバニ電池
式水素センサを可能にするものである。
The present invention enables a galvanic cell type hydrogen sensor, which was previously considered impossible, by combining a new positive electrode active material and an electrolyte.

すなわち本発明は、正極活物質として、二酸化
鉛、特にβ型二酸化鉛を用い、電解液として酢酸
の如き有機酸の水溶液に鉛化合物を添加したもの
を用いる点に特長がある。
That is, the present invention is characterized in that lead dioxide, particularly β-type lead dioxide, is used as the positive electrode active material, and an electrolyte prepared by adding a lead compound to an aqueous solution of an organic acid such as acetic acid is used as the electrolyte.

本発明にかゝるガルバニ電池式水素センサでは
次の反応が起る。
In the galvanic cell type hydrogen sensor according to the present invention, the following reaction occurs.

正極:PbO2+2H++2e-→PbO+H2O …(5) 負極:H2→2H++2e- …(6) 全反応:PbO2+H2→PbO+H2O …(7) 二酸化鉛(PbO2)には、α型とβ型とがある
が、α型の場合には酢酸などの有機酸に溶ける
が、β型の場合には溶けない。また(5)式での反応
生成物であるPbOは酢酸に溶け、正極表面には絶
えず二酸化鉛が露出しているために電位が安定す
る。
Positive electrode: PbO 2 +2H + +2e - →PbO+H 2 O …(5) Negative electrode: H 2 →2H + +2e …(6) Total reaction: PbO 2 +H 2 →PbO+H 2 O …(7) Lead dioxide (PbO 2 ) There are two types, α-type and β-type. The α-type is soluble in organic acids such as acetic acid, but the β-type is not. Furthermore, PbO, the reaction product in equation (5), dissolves in acetic acid, and the potential is stabilized because lead dioxide is constantly exposed on the positive electrode surface.

一方、酸素センサの場合には正極からの水素発
生を回避する必要があつたのに対し、水素センサ
の場合には負極から酸素発生を阻止する必要があ
る。
On the other hand, in the case of an oxygen sensor, it is necessary to avoid hydrogen generation from the positive electrode, whereas in the case of a hydrogen sensor, it is necessary to prevent oxygen generation from the negative electrode.

今、電解液として5モル/の酢酸水溶液を用
いた場合には、PHは1.9となり、そのときの酸素
の平衡電位は0.874V(25℃,対飽和カロメル電
極)となる。ところが二酸化鉛電極の平衡電位
は、1.236V(25℃,対飽和カロメル電極)とな
り、このまゝだと酸素の平衡電位より貴になるた
め、負極から酸素が発生してしまう。しかし一般
に金属の酸素発生過電圧は0.25〜0.45Vであり、
この点を考慮すると、負極の酸素発生電位は
1.1V〜1.3V(対飽和カロメル電極)となり、わず
かに可能性は残るが酸素の発生は起りにくい。
Now, if a 5 mol/aqueous acetic acid solution is used as the electrolyte, the pH will be 1.9, and the equilibrium potential of oxygen at that time will be 0.874V (25°C, vs. saturated calomel electrode). However, the equilibrium potential of the lead dioxide electrode is 1.236V (25°C, vs. saturated calomel electrode), and if left as is, it will become nobler than the equilibrium potential of oxygen, and oxygen will be generated from the negative electrode. However, in general, the oxygen generation overvoltage of metals is 0.25 to 0.45V,
Considering this point, the oxygen evolution potential of the negative electrode is
The voltage will be 1.1V to 1.3V (vs. saturated calomel electrode), and although there is a slight possibility that oxygen will not be generated.

このわずかに残された酸素発生の可能性は本発
明の鉛化合物の電解液への添加(Pb++の添加)
によつてほとんどなくなる。
This slight remaining possibility of oxygen generation is due to the addition of the lead compound of the present invention to the electrolyte (addition of Pb ++ ).
It almost disappears due to

つまり、二酸化鉛電極の平衡電位は鉛イオン
(Pb++)の添加によつて約200mV卑になる。
In other words, the equilibrium potential of the lead dioxide electrode becomes approximately 200 mV base due to the addition of lead ions (Pb ++ ).

一方、本発明では、酸性電解液が用いられてい
るので、検知ガス中の炭酸ガスの影響がないとい
う点も大きな特長がある。
On the other hand, in the present invention, since an acidic electrolyte is used, another great feature is that there is no influence of carbon dioxide gas in the detection gas.

本発明に用いられる有機酸としては、酢酸、プ
ロピオン酸およびn−酪酸などが有効であり、こ
れらの有機酸は単独で用いてもよいし、混合して
用いてもよい。また電解液に添加すべき鉛化合物
としては、PbO、鉛の有機酸塩あるいは鉛の無機
酸塩のいずれを用いてもよい。さらに一般に有機
酸の水溶液の電導度はあまり高くないので、電導
度を高めるために、有機酸のアルカリ金属塩ある
いはアンモニウム塩を添加することも効果的な場
合がある。
Effective organic acids used in the present invention include acetic acid, propionic acid, and n-butyric acid, and these organic acids may be used alone or in combination. Further, as the lead compound to be added to the electrolytic solution, any of PbO, an organic acid salt of lead, or an inorganic acid salt of lead may be used. Furthermore, since the electrical conductivity of an aqueous solution of an organic acid is generally not very high, it may be effective to add an alkali metal salt or ammonium salt of an organic acid to increase the electrical conductivity.

以下、本発明の一実施例につき詳述する。 Hereinafter, one embodiment of the present invention will be described in detail.

第1図は、本発明の一実施例にかかるガルバニ
電池式水素センサの断面構造を示す。図におい
て、1は負極となる直径5mmの白金板、2は正極
となるβ型二酸化鉛電極、3は電解液となる5モ
ル/の酢酸水溶液と0.1モル/の酸化鉛の混
合水溶液、4は四弗化エチレン−エチレンコポリ
マからなる厚さ20μの隔膜、5は前記隔膜をポリ
塩化ビニル樹脂製のホルダ6に固定するためのO
−リング、7は負極1と正極2との間に接続され
た抵抗である。
FIG. 1 shows a cross-sectional structure of a galvanic cell type hydrogen sensor according to an embodiment of the present invention. In the figure, 1 is a platinum plate with a diameter of 5 mm that serves as a negative electrode, 2 is a β-type lead dioxide electrode that is a positive electrode, 3 is a mixed aqueous solution of 5 mol/aqueous acetic acid and 0.1 mol/lead oxide as an electrolyte, and 4 is an electrolyte. A 20μ thick diaphragm made of tetrafluoroethylene-ethylene copolymer, 5 is an O for fixing the diaphragm to a holder 6 made of polyvinyl chloride resin.
-Ring 7 is a resistor connected between the negative electrode 1 and the positive electrode 2.

β型の二酸化鉛電極は、陽極にチタンのエキス
パンデドメタルに白金メツキを施したものを用
い、陰極に鉛電極を用い硝酸酸性にした硝酸塩の
水溶液を電解浴にし、陽極にβ−二酸化鉛を電析
させて製作した。
The β-type lead dioxide electrode uses an expanded titanium metal plated with platinum for the anode, a lead electrode for the cathode, an aqueous solution of nitrate made acidic with nitric acid as the electrolytic bath, and β-lead dioxide for the anode. was produced by electrodeposition.

上述の如き、水素センサにおいて、検知気体中
の水素隔膜4を透過して、負極1の表面に達する
と、前述の(5)〜(7)式にしたがう反応が起り透過し
てきた水素の量に対応する電流が負極1と正極2
との間に流れる。それ故、抵抗7の両端の電圧を
測定することにより、水素の透過量、換言すれば
水素濃度を知ることができる。
In the hydrogen sensor as described above, when hydrogen in the detection gas passes through the membrane 4 and reaches the surface of the negative electrode 1, a reaction according to the above-mentioned equations (5) to (7) occurs, and the amount of hydrogen that has passed through is The corresponding current is negative electrode 1 and positive electrode 2
flows between. Therefore, by measuring the voltage across the resistor 7, the amount of hydrogen permeation, in other words, the hydrogen concentration can be determined.

かくして得られたガルバニ電池式水素センサの
水素濃度−出力電圧特性は第2図に示すようにな
つた。すなわち広範囲の水素濃度について、すぐ
れた直線性があることがわかる。
The hydrogen concentration-output voltage characteristic of the galvanic cell type hydrogen sensor thus obtained was as shown in FIG. In other words, it can be seen that there is excellent linearity over a wide range of hydrogen concentrations.

また、検知気体として一酸化炭素を10%含む気
体の場合にも、第2図に示す特性に変化がみられ
なかつた。つまりこの水素センサは水素に対して
のみ動作することがわかる。
Further, even when a gas containing 10% carbon monoxide was used as the detection gas, no change was observed in the characteristics shown in FIG. 2. In other words, it can be seen that this hydrogen sensor operates only for hydrogen.

以上詳述せる如く、本発明は広範囲の水素濃度
を測定することが可能であり、しかも水素に対す
る選択性のすぐれたガルバニ電池式水素センサを
提供するもので、その工業的価値極めて大であ
る。
As detailed above, the present invention provides a galvanic cell type hydrogen sensor that is capable of measuring a wide range of hydrogen concentrations and has excellent selectivity for hydrogen, and has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例にかゝるガルバニ
電池式水素センサの断面構造略図を示し、第2図
は、ガルバニ電池式水素センサの水素濃度−出力
電圧特性を示す。 1……負極、2……正極、3……電解液、4…
…隔膜、5……O−リング、6…ホルダ、7……
抵抗。
FIG. 1 shows a schematic cross-sectional structure of a galvanic cell type hydrogen sensor according to an embodiment of the present invention, and FIG. 2 shows hydrogen concentration-output voltage characteristics of the galvanic cell type hydrogen sensor. 1... Negative electrode, 2... Positive electrode, 3... Electrolyte, 4...
...Diaphragm, 5...O-ring, 6...Holder, 7...
resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 水素のイオン化に有効な金属からなる負極
と、前記負極の片面を覆うように装着された水素
透過性隔膜と、正極と電解液とから構成される電
気化学素子に於て、上記正極としてベータ型二酸
化鉛電極を、電解液として酢酸などの有機酸と酸
化鉛などの鉛化合物との混合水溶液を用いてなる
ことを特徴とするガルバニ電池式水素センサ。
1. In an electrochemical element consisting of a negative electrode made of a metal effective in ionizing hydrogen, a hydrogen-permeable diaphragm attached to cover one side of the negative electrode, a positive electrode, and an electrolyte, beta as the positive electrode is used. A galvanic cell-type hydrogen sensor characterized by using a lead dioxide type electrode as an electrolyte using a mixed aqueous solution of an organic acid such as acetic acid and a lead compound such as lead oxide.
JP57190230A 1982-10-28 1982-10-28 Galvanic cell type hydrogen sensor Granted JPS5979150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57190230A JPS5979150A (en) 1982-10-28 1982-10-28 Galvanic cell type hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190230A JPS5979150A (en) 1982-10-28 1982-10-28 Galvanic cell type hydrogen sensor

Publications (2)

Publication Number Publication Date
JPS5979150A JPS5979150A (en) 1984-05-08
JPH0240185B2 true JPH0240185B2 (en) 1990-09-10

Family

ID=16254648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190230A Granted JPS5979150A (en) 1982-10-28 1982-10-28 Galvanic cell type hydrogen sensor

Country Status (1)

Country Link
JP (1) JPS5979150A (en)

Also Published As

Publication number Publication date
JPS5979150A (en) 1984-05-08

Similar Documents

Publication Publication Date Title
Pletcher et al. The reduction of nitrate at a copper cathode in aqueous acid
US4495051A (en) Galvanic cell type oxygen sensor
EP2219024A1 (en) Electrochemical oxygen sensor
CN104094106A (en) Lead-free electrochemical galvanic oxygen sensor
ES8705532A1 (en) Method for preparing an electrode and use thereof in electrochemical processes.
JP2521546B2 (en) Reference electrodes and electrode pairs for detecting acidity and basicity of oil
US6423209B1 (en) Acid gas measuring sensors and method of using same
French et al. Lifetime of activated platinum surface
Ong et al. Electrocatalytic role of stabilized zirconia on the anodic current—over-potential behavior in hydrocarbon fuel cells
JPH0239740B2 (en)
JPH0240185B2 (en)
US20200240948A1 (en) Lead-free galvanic oxygen sensor
JPH05144431A (en) Zinc negative electrode active material
JPH032259B2 (en)
JPH032258B2 (en)
JP6512867B2 (en) Unleaded galvanic oxygen sensor
JP2532334B2 (en) Galvanic battery gas sensor
JP3650919B2 (en) Electrochemical sensor
JPH032260B2 (en)
JPS6091253A (en) Galvanic battery type oxygen densitometer
US3746940A (en) A non-aqueous cadmium coulometer
SU954527A1 (en) Electrolyte for platinum plating of titanium
JPS60100043A (en) Polarograph type oxygen densitometer
Konnik Electrochemical oxidation of carbon monoxide in aqueous solutions
JPH0529024A (en) Hydrogen ion detecting element and lead acid battery provided with the same