JPH0239803B2 - SANGYOYOROBOTSUTONOKYOJIHOHO - Google Patents

SANGYOYOROBOTSUTONOKYOJIHOHO

Info

Publication number
JPH0239803B2
JPH0239803B2 JP4322183A JP4322183A JPH0239803B2 JP H0239803 B2 JPH0239803 B2 JP H0239803B2 JP 4322183 A JP4322183 A JP 4322183A JP 4322183 A JP4322183 A JP 4322183A JP H0239803 B2 JPH0239803 B2 JP H0239803B2
Authority
JP
Japan
Prior art keywords
workpiece
machine tool
light receiving
robot
receiving sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4322183A
Other languages
Japanese (ja)
Other versions
JPS59170906A (en
Inventor
Katsuhide Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP4322183A priority Critical patent/JPH0239803B2/en
Publication of JPS59170906A publication Critical patent/JPS59170906A/en
Publication of JPH0239803B2 publication Critical patent/JPH0239803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45083Manipulators, robot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49113Align elements like hole and drill, centering tool, probe, workpiece

Description

【発明の詳細な説明】 この発明は、工作機械にワーク供給サービスを
行なうプレイ・バツク式産業用ロボツト(以下、
ロボツトと略称する)の教示方法に関する。
[Detailed Description of the Invention] The present invention provides a playback type industrial robot (hereinafter referred to as
(abbreviated as “robot”)).

ロボツトを用いて工作機械にワーク供給サービ
スする場合には、いわゆるワーク突当て作業が含
まれ当該ワークを工作機械の指定する位置に正確
に供与しなければならない。例えば平板状ワーク
をベンダ工作機械に供給する場合には、ワークを
水平に保持し、かつ、工作機械の加工面に対しワ
ーク前端面の平行を保ちながら終端点を定める工
作機械のリミツトゲージに前記ワーク前端部を正
確に当てなければならない。第1図に突当て作業
の状況を平面図で示している。図に示されるよう
にロボツト1の据付け中心点Rを工作機械3の加
工線3aの中心(金型中心)と直交する水平軸線
X(直交水平線)上に置くことは難しく多少のズ
レがあるのが普通である。このため、ワーク5を
突当て作業開始点Aから終端点Bまで前進させる
と当該ワークの前端面が水平面上で角度的に変位
し(以下、ワークの角度変位と呼ぶ)工作機械の
加工面に対し平行がとれなくなつてしまうという
問題がある。移動後のワーク及びロボツトアーム
の位置は破線で示している。ワーク前進時にはア
ーム7を伸ばし当該アームの先端にある軸9をX
軸上に一致させるため、アーム7とX軸とのなす
角度がθ1からθ2に変化する結果である。
When a robot is used to supply a workpiece to a machine tool, a so-called workpiece abutting operation is involved, and the workpiece must be accurately delivered to a specified position on the machine tool. For example, when supplying a flat workpiece to a bender machine tool, hold the workpiece horizontally and place the workpiece on the limit gauge of the machine tool to determine the end point while keeping the front end of the workpiece parallel to the machining surface of the machine tool. The front end must be applied accurately. FIG. 1 shows the situation of the butting work in a plan view. As shown in the figure, it is difficult to place the installation center point R of the robot 1 on the horizontal axis X (orthogonal horizontal line) that is orthogonal to the center of the machining line 3a of the machine tool 3 (mold center), and there may be some deviation. is normal. Therefore, when the workpiece 5 is advanced from the start point A of the butting operation to the end point B, the front end surface of the workpiece is angularly displaced on the horizontal plane (hereinafter referred to as the angular displacement of the workpiece), and the front end surface of the workpiece is angularly displaced on the machine tool's machining surface. However, there is a problem that parallelism cannot be maintained. The positions of the workpiece and robot arm after movement are indicated by broken lines. When moving the workpiece forward, extend the arm 7 and move the shaft 9 at the tip of the arm to
This is the result of changing the angle between the arm 7 and the X-axis from θ 1 to θ 2 in order to align them on the axis.

従つて、従来のワーク突当て作業の教示におい
ては(重量のある)ワークの手作業による水平保
持、各位置の教示に加えて、ワークの角度変位を
考慮しなければならずロボツト教示作業は極めて
煩しいものであり、多数の時間と労力を要し、製
品精度にも悪影響を及ぼすという問題があつた。
Therefore, in the conventional teaching of workpiece butting work, in addition to manually holding the (heavy) workpiece horizontally and teaching each position, the angular displacement of the workpiece must be considered, making robot teaching work extremely difficult. There were problems in that it was troublesome, required a lot of time and effort, and had a negative effect on product accuracy.

この発明は上記問題を解消し、ワーク突当て作
業におけるロボツト教示作業において、ワークの
角度変位に関して考慮する煩しさを解除し、教示
時間を短縮し、労力を少なくし、ひいては製品精
度を向上させることを目的とする。
The present invention solves the above problems, eliminates the trouble of considering the angular displacement of a workpiece in the robot teaching work in the workpiece abutment work, shortens the teaching time, reduces labor, and improves product accuracy. With the goal.

上記目的を達成するためにこの発明に係る産業
用ロボツトの教示方法の特徴とするところは、工
作機械にワーク供給サービスを行なう作業用ロボ
ツトの教示方法において、前記工作機械の加工線
の直交水平線と平行して前方に光学ビームを発生
する発光器を前記工作機械の固定位置に設け、ロ
ボツトアーム先端に当該アームと直交する回転軸
を介して水平面内で旋回自在のハンド部を設け、
該ロボツトハンド部にワーク突当て作業開始点で
前記光学ビームを受ける中心受光センサを設ける
と共に当該受光センサの左及び右にも受光センサ
を設け、前記ワークを前記工作機械に向つて微量
づつ前進させ、各前進位置で前記各受光センサの
オンオフ判断を行ない、前記左若しくは右の受光
センサがオンの場合には前記回転軸の回転により
前記ワークを左若しくは右に修正移動して中心セ
ンサをオンさせ、当該中心センサオンの位置で前
記回転軸の回転角を教示ポイントとして記憶し、
前記前進及び修正移動並びに教示ポイントの記憶
を繰り返しながら突当て作業終端点まで前進し前
記教示ポイントを得ることにある。
In order to achieve the above object, the teaching method for an industrial robot according to the present invention is characterized in that, in the teaching method for a working robot that provides a workpiece supply service to a machine tool, a method for teaching a work robot that provides a workpiece supply service to a machine tool includes the following: A light emitting device that generates parallel optical beams forward is provided at a fixed position on the machine tool, and a hand portion that is rotatable in a horizontal plane via a rotation axis perpendicular to the arm is provided at the tip of the robot arm,
A central light-receiving sensor is provided on the robot hand portion to receive the optical beam at a starting point of the workpiece abutment work, and light-receiving sensors are also provided to the left and right of the light-receiving sensor, and the workpiece is advanced a small amount at a time toward the machine tool. , determine whether each of the light receiving sensors is on or off at each forward position, and if the left or right light receiving sensor is on, the workpiece is corrected to the left or right by rotation of the rotating shaft and the center sensor is turned on. , memorize the rotation angle of the rotation axis as a teaching point at the position where the center sensor is turned on;
The object is to move forward to the end point of the abutting operation while repeating the forward movement, correction movement, and memorization of the teaching point to obtain the teaching point.

従つて、この教示方法によればワークの角度変
位に関しては自動的に最適の教示ポイントを得る
ことができ、作業時間の短縮、労力の軽減、又、
製品精度の向上を図ることができる。
Therefore, according to this teaching method, it is possible to automatically obtain the optimal teaching point regarding the angular displacement of the workpiece, shortening the working time and labor, and
Product accuracy can be improved.

以下、実施例を掲げ説明する。 Examples will be described below.

第2図はロボツト1でベンダ3にワーク供給サ
ービスする例を示す正面図である。ロボツトは図
示するロボツトに限定されるものではなく、アー
ム先端が3次元中を移動できる直交座標型、円筒
座標型、極座標型、多関節型いずれであつても良
い。
FIG. 2 is a front view showing an example in which the robot 1 provides a work supply service to the vendor 3. The robot is not limited to the robot shown in the drawings, but may be any of the rectangular coordinate type, cylindrical coordinate type, polar coordinate type, and multi-joint type, in which the tip of the arm can move in three dimensions.

ロボツト1は旋回軸9と上下に及び伸縮自在の
アーム7とハンド11を有し、ハンドにはワーク
を把持するフインガ13が設けられている。ハン
ド11はアーム7に対し水平面内で揺動できるよ
うアーム7に対し直交する回転軸15を介して設
けられる。ワーク5をフインガ13で把持し工作
機械3に突当て作業をする状況を示している。ロ
ボツト制御装置17はCPU19を有し、メモリ
ROM、RAMの内容に従いパルス補間部21、
パルス分配部23を通じて各増幅器25から各サ
ーボモータMにパルスを送り上記各軸を作動させ
ている。各軸の動作結果はパルス信号で分配部2
3に帰されフイードバツク制御される。
The robot 1 has a rotating shaft 9, an arm 7 that extends upward and downward, and a hand 11, and the hand is provided with a finger 13 for gripping a workpiece. The hand 11 is provided via a rotating shaft 15 perpendicular to the arm 7 so as to be able to swing relative to the arm 7 in a horizontal plane. This shows a situation in which a workpiece 5 is gripped by fingers 13 and pressed against a machine tool 3. The robot control device 17 has a CPU 19 and a memory
Pulse interpolation unit 21 according to the contents of ROM and RAM;
Pulses are sent from each amplifier 25 to each servo motor M through the pulse distribution section 23 to operate each of the axes. The operation results of each axis are sent to the distribution unit 2 using pulse signals.
3 and is subjected to feedback control.

工作機械3は制御装置27で制御され、ワーク
5の終端位置を決定するリミツトゲージ29の位
置決めモータM1、ベンダ上型を移動させる折曲
げモータM2を制御している。ロボツトの制御装
置と工作機械の制御装置とはインタフエイスDI、
DOを介して連絡される。
The machine tool 3 is controlled by a control device 27, which controls a positioning motor M 1 of a limit gauge 29 that determines the end position of the workpiece 5 and a bending motor M 2 that moves the bender upper die. Robot control devices and machine tool control devices are interface DI,
Contacted via DO.

工作機械の加工線の直交水平線と平行して前方
に半導体レーザ、発光ダイオード等光学ビームを
投光する発光器31を工作機械の固定位置、即
ち、工作機械自体、金型等に取り付ける。本例で
は金型33に取り付けた例を示している。この他
工作機械の後方に取り付け、工作機械の間隙を通
過させて光学ビームを前方に投光することも可能
であるけれども工作機械自身に設けたことと作
用、効果において何ら変らない。又、工作機械に
対しワーク突当て作業を開始する点Aでロボツト
ハンド11(フインガ13)に前記光学ビームを
受ける中心受光センサSOを設けると共に、当該中
心受光センサの左及び右にも受光センサSL,SR
設ける。光軸35は必ずしも金型若しくはワーク
の中心を結ぶものでなくとも良く、従来技術で説
明したX軸に平行なものであれば良い。この光軸
の原点である発光器と対峙して受光センサを設け
る。受光センサは例えばフオトダイオード、フオ
トトランジスタ、発光ダイオード、シリコン半導
体素子等で光学ビームの光源、応答時間条件等に
合わせて選定する。
A light emitter 31, such as a semiconductor laser or a light emitting diode, which emits an optical beam forward in parallel with a horizontal line perpendicular to the processing line of the machine tool is attached to a fixed position of the machine tool, that is, to the machine tool itself, a mold, or the like. This example shows an example in which it is attached to a mold 33. Alternatively, it is possible to attach it to the rear of the machine tool and project the optical beam forward by passing through the gap in the machine tool, but the function and effect are no different from those provided in the machine tool itself. In addition, a center light receiving sensor S O that receives the optical beam is provided on the robot hand 11 (finger 13) at point A where the work of abutting the workpiece against the machine tool starts, and light receiving sensors are also installed to the left and right of the center light receiving sensor. Provide S L and S R. The optical axis 35 does not necessarily need to connect the centers of the mold or the workpiece, and may be parallel to the X axis described in the prior art. A light receiving sensor is provided facing the light emitter, which is the origin of this optical axis. The light receiving sensor is, for example, a photodiode, a phototransistor, a light emitting diode, a silicon semiconductor element, etc., and is selected depending on the light source of the optical beam, response time conditions, etc.

第3図は第2図にロボツトフインガ13部分の
拡大図であり第4図は工作機械側から見た第3図
の右側面図である。ワーク5を把持するフインガ
13の下方に光学ビームの光軸35に対向して中
心受光センサSOとその左右(第4図)にSL,SR
設けている。受光センサSOとSL,SRとの間は第4
図で示すように左右方向に間隙なく設けなければ
ならない。受光センサSOの幅は精度に影響するの
で小さくしなければならないがSL,SRは左右方向
に長くとも良い。各受光センサからの感知信号は
ロボツト制御装置に送られる。本例ではロボツト
フインガに受光センサを設けたけれども突当て作
業に当つてワーク15に固定した部材であればハ
ンド部に設けてもよい。上記したように突当て作
業開始点で中心受光センサが光学ビームを受けオ
ンすることが条件である。
3 is an enlarged view of the robot finger 13 portion of FIG. 2, and FIG. 4 is a right side view of FIG. 3 as seen from the machine tool side. Below the finger 13 that grips the workpiece 5, a central light receiving sensor S0 is provided facing the optical axis 35 of the optical beam, and S L and S R are provided on the left and right sides (FIG. 4) of the central light receiving sensor S0. Between the light receiving sensor S O and S L , S R is the fourth
They must be installed without any gaps in the left and right direction as shown in the figure. The width of the light-receiving sensor S O affects accuracy and must be made small, but S L and S R may be long in the left-right direction. Sensing signals from each light receiving sensor are sent to the robot control device. Although the light receiving sensor is provided on the robot finger in this example, it may be provided on the hand portion as long as it is a member fixed to the workpiece 15 during the abutting operation. As described above, the condition is that the center light receiving sensor receives the optical beam and turns on at the start point of the abutting operation.

第5図は受光センサからの信号処理法について
示す説明図である。各受光センサSO,SL,SRから
の受光信号は増幅器AL,AO,ARを通じ一定値以
上の電圧信号でコンパレータCL,CO,CRから出
力し、レベル変換器LL,LO,LRにより所望の電
圧若しくは電流形式に変換されロボツト制御装置
17のインタフエイスDIに入力される。光学ビ
ーム発生器31には突当て教示作業を行なう間電
流が流され光学ビームを発生する。本例では制御
装置17のインタフエイスDOからレベル変換器
L、増幅器Aを経て発光させている。
FIG. 5 is an explanatory diagram showing a method of processing signals from a light receiving sensor. The light receiving signals from each light receiving sensor S O , S L , S R pass through amplifiers A L , A O , AR and are outputted from comparators C L , C O , CR as voltage signals of a certain value or higher, and then are outputted from comparators C L , C O , CR to a level converter L. It is converted into a desired voltage or current format by L , L O and L R and input to the interface DI of the robot control device 17. A current is applied to the optical beam generator 31 during the abutment teaching operation to generate an optical beam. In this example, light is emitted from the interface DO of the control device 17 via the level converter L and amplifier A.

第6図は制御用フローチヤートを示す。第7図
はロボツトフインガに設けた受光センサを工作機
械側から見た説明図である。図面中の記号αは回
転軸15(第2図参照)の回転を示す。
FIG. 6 shows a control flowchart. FIG. 7 is an explanatory diagram of the light receiving sensor provided on the robot finger, viewed from the machine tool side. The symbol α in the drawings indicates the rotation of the rotating shaft 15 (see FIG. 2).

突当て作業開始点Aと終端点B及びワーク水平
とは既に別の教示により与えられているものとす
る。
It is assumed that the abutting work start point A, the end point B, and the workpiece horizontality have already been given by other teachings.

ステツプ101でワーク先端はA点にある。A点
からワークを△lmm例えば2mm前進させる(ステ
ツプ102、103)この前進位置で各受光センサのオ
ンオフを判断する(ステツプ104)。この判断で中
心受光センサSOがオンしている場合にはワークが
工作機械の加工面に対し平行であることを示して
いるのでこの時の回転軸15の角度を位置情報と
合わせてロボツトメモリに記憶し(ステツプ105)
ステツプ106に移る。ステツプ104で左側の受光セ
ンサSLのオンが判断された場合にはステツプ108
に移り工作機械から見てSOがこの位置に来るまで
回転軸15を回転させる(ステツプ108、109)。
ステツプ108における+α回転はこのように回転
軸15を回転させることを意味する。ステツプ
109により受光センサSOのオンが確認されれば、
ステツプ105に移りこの時の回転軸の角度をロボ
ツトメモリに記憶す。ステツプ104で受光センサ
SRが確認された時にはSLオンの場合とは逆に回転
軸15を−α回転させる(ステツプ110、111)。
再びステツプ111により中心センサSOがオンされ
たならばステツプ105に移りこの時の回転軸の角
度が記憶される。ステツプ106では終端点Bに到
達したか否かが判断され、終端点Bに到達するま
で、上記△lmm前進、受光センサオン判断、+若
しくは−α回転、メモリえの記憶を繰り返す。△
lmm前進した毎にワークと工作機械とが平行とな
る回転軸の角度がメモリに記憶され、ステツプ
106のB点確認によりステツプ107で終了する。
At step 101, the tip of the workpiece is at point A. The workpiece is advanced by Δlmm, for example 2 mm, from point A (steps 102 and 103). At this advanced position, it is determined whether each light receiving sensor is on or off (step 104). If the central light receiving sensor S O is on in this judgment, it indicates that the workpiece is parallel to the machining surface of the machine tool, so the angle of the rotation axis 15 at this time is stored in the robot memory along with the position information. (Step 105)
Proceed to step 106. If it is determined in step 104 that the left light receiving sensor S L is on, the process proceeds to step 108.
Then, the rotary shaft 15 is rotated until the SO is at this position as seen from the machine tool (steps 108 and 109).
+α rotation in step 108 means rotating the rotating shaft 15 in this manner. step
109 confirms that the light receiving sensor S O is on,
Proceeding to step 105, the angle of the rotation axis at this time is stored in the robot memory. In step 104, the light receiving sensor
When S R is confirmed, the rotating shaft 15 is rotated -α, contrary to the case where S L is on (steps 110 and 111).
If the center sensor SO is turned on again in step 111, the process moves to step 105, and the angle of the rotation axis at this time is stored. In step 106, it is determined whether or not the terminal point B has been reached, and until the terminal point B is reached, the above-mentioned advance by Δlmm, light receiving sensor ON determination, + or -α rotation, and memory storage are repeated. △
Every time the workpiece moves forward by lmm, the angle of the rotation axis at which the workpiece and machine tool become parallel is stored in memory, and the step
After confirming point B in step 106, the process ends in step 107.

角度値は各前進位置の座標値と合わせて記憶さ
れているので記憶再生にあたつては各位置の記憶
再生により前進し、当該前進に合わせて回転軸の
角度を合わせて行くことができる。
Since the angle values are stored together with the coordinate values of each forward position, when storing and reproducing each position, it is possible to move forward by storing and reproducing each position, and to adjust the angle of the rotating shaft in accordance with the forward movement.

第6図フローチヤートに基づきロボツト教示を
行なえばワークの角度変位による煩瑣から開放さ
れ、突当て作業に係る教示が容易となる。又、ロ
ボツトの位置交換、ワークの種別の変換、工作機
械の交換などあらゆる作業に即座に対処できる。
If the robot is taught based on the flowchart of FIG. 6, it will be freed from complications caused by angular displacement of the workpiece, and teaching related to the abutment work will be facilitated. In addition, all kinds of work such as changing robot positions, converting workpiece types, and replacing machine tools can be handled immediately.

よつて、工作機械の加工面から垂直に発射され
る光学ビームにより加工面とワーク前端部との平
行を保ち平行度を記憶再生するこの発明産業用ロ
ボツトの教示方法によれば、ワークと工作機械と
の平行度を容易にかつ正確に定めることができ、
教示時間の短縮、労力の節減を図ることができ、
作業内容の変更に対しても即座に対処することが
でき、製品精度を向上させることができる。
Therefore, according to the teaching method of the industrial robot of the present invention, which maintains parallelism between the machined surface and the front end of the workpiece using an optical beam emitted perpendicularly from the machined surface of the machine tool, and memorizes and reproduces the parallelism, the workpiece and the machine tool It is possible to easily and accurately determine the parallelism with
It is possible to shorten teaching time and save labor.
Changes in work content can be dealt with immediately, and product accuracy can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はロボツトと工作機械との位置関係を示
す概略平面図、第2図はロボツトと工作機械の概
略正面図、第3図はロボツトフインガの拡大正面
図、第4図は工作機械側から見たロボツトフイン
ガの拡大側面図、第5図はロボツト制御装置と受
光センサとの関連説明図、第6図は制御用フロー
チヤート、第7図は第4図の受光センサを模形的
に示す説明図。 1……ロボツト、3……工作機械、5……ワー
ク、15……回転軸、31……発光器、SO,SL
SR……受光センサ。
Figure 1 is a schematic plan view showing the positional relationship between the robot and machine tool, Figure 2 is a schematic front view of the robot and machine tool, Figure 3 is an enlarged front view of the robot finger, and Figure 4 is a view from the machine tool side. FIG. 5 is an explanatory diagram of the relationship between the robot control device and the light receiving sensor, FIG. 6 is a control flowchart, and FIG. 7 is an explanatory diagram schematically showing the light receiving sensor of FIG. 4. . 1...Robot, 3...Machine tool, 5...Workpiece, 15...Rotating axis, 31...Light emitter, S O , S L ,
S R ...Light receiving sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 工作機械にワーク供給サービスを行なう産業
用ロボツトの教示方法において、前記工作機械の
加工線の直交水平線と平行して前方に光学ビーム
を投光する発光器を当該工作機械の固定位置に設
け、ロボツトアーム先端に当該アームと直交する
回転軸を介して水平面内で旋回自在のハンド部を
設け、該ロボツトハンド部にワーク突当て作業開
始点で前記光学ビームを受ける中心受光センサを
設けると共に当該中心受光センサの左及び右にも
受光センサを設け、前記ワークを前記工作機械に
向つて微量づつ前進させ、各前進位置で前記各受
光センサのオンオフ判断を行ない、前記左若しく
は右の受光センサがオンの場合には、前記回転軸
の回転により前記ワークを左若しくは右に修正移
動して中心センサをオンさせ、当該中心センサオ
ンの位置で前記回転軸の回転角を教示ポイントと
して記憶し、前記前進及び修正移動並びに教示ポ
イントの記憶を繰り返しながら突当て作業終端点
まで前進し前記教示ポイントを得ることを特徴と
する産業用ロボツトの教示方法。
1. A teaching method for an industrial robot that provides a workpiece supply service to a machine tool, comprising: providing a light emitting device at a fixed position on the machine tool that projects an optical beam forward in parallel with a horizontal line perpendicular to the processing line of the machine tool; A hand section is provided at the tip of the robot arm that can freely rotate in a horizontal plane via a rotation axis perpendicular to the arm, and a center light receiving sensor is provided on the robot hand section to receive the optical beam at the starting point of the workpiece abutting operation. Light receiving sensors are also provided to the left and right of the light receiving sensor, and the workpiece is advanced a small amount toward the machine tool, and each of the light receiving sensors is judged to be on or off at each forward position, and the left or right light receiving sensor is turned on. In this case, the workpiece is corrected to the left or right by rotation of the rotary shaft, the center sensor is turned on, the rotation angle of the rotary shaft is stored as a teaching point at the position where the center sensor is turned on, and the forward movement and A teaching method for an industrial robot, characterized in that the robot moves forward to the end point of an abutting operation while repeating corrective movement and memorizing the teaching point to obtain the teaching point.
JP4322183A 1983-03-17 1983-03-17 SANGYOYOROBOTSUTONOKYOJIHOHO Expired - Lifetime JPH0239803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4322183A JPH0239803B2 (en) 1983-03-17 1983-03-17 SANGYOYOROBOTSUTONOKYOJIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4322183A JPH0239803B2 (en) 1983-03-17 1983-03-17 SANGYOYOROBOTSUTONOKYOJIHOHO

Publications (2)

Publication Number Publication Date
JPS59170906A JPS59170906A (en) 1984-09-27
JPH0239803B2 true JPH0239803B2 (en) 1990-09-07

Family

ID=12657855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4322183A Expired - Lifetime JPH0239803B2 (en) 1983-03-17 1983-03-17 SANGYOYOROBOTSUTONOKYOJIHOHO

Country Status (1)

Country Link
JP (1) JPH0239803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123889U (en) * 1986-01-29 1987-08-06

Also Published As

Publication number Publication date
JPS59170906A (en) 1984-09-27

Similar Documents

Publication Publication Date Title
US6452134B2 (en) Method for correcting teaching points for welding robot and welding robot system employing the same
JPS6388612A (en) Foreknowledge pursuing/control type robot
CN111452047B (en) Correction method for robot tool deviation, robot control device and system
JPH1133960A (en) Method for controlling robot
JP2787891B2 (en) Automatic teaching device for laser robot
CN110154043B (en) Robot system for learning control based on machining result and control method thereof
US11141855B2 (en) Robot system, method of controlling robot arm, recording medium, and method of manufacturing an article
CN112091963A (en) Robot control device and robot control system
JP2001038662A (en) Working robot calibrating method
JPH0239803B2 (en) SANGYOYOROBOTSUTONOKYOJIHOHO
JP2771458B2 (en) Industrial robot deflection correction method
JP2919754B2 (en) Backlash measurement and correction device for spherical or circular surface machining
JP2002144034A (en) Device for checking reference position in working tool with robot
JPH0446717B2 (en)
WO2022186054A1 (en) Teaching point generation device that generates teaching points on basis of output of sensor, and teaching point generation method
JPS60257982A (en) Robot control device with automatic correcting function of face perpendicularity of welding gun
JPH1190778A (en) Control method of automatic woking machine with cutting function for wide flange shape steel
JPS6039207A (en) Automatic teaching method of industrial robot
JP2753309B2 (en) Industrial robot with processing start point detection function
JPH05345260A (en) Ridge line shape tracking method
JPH0732281A (en) Robot control device
JP3068405B2 (en) Origin adjustment jig and origin adjustment method for SCARA robot
JPS61253506A (en) Method for correcting teaching point of industrial robot
JPH0592378A (en) Industrial robot
JPH10244368A (en) Method and device for detecting groove in automatic welding machine