JPH0239582B2 - - Google Patents

Info

Publication number
JPH0239582B2
JPH0239582B2 JP60194763A JP19476385A JPH0239582B2 JP H0239582 B2 JPH0239582 B2 JP H0239582B2 JP 60194763 A JP60194763 A JP 60194763A JP 19476385 A JP19476385 A JP 19476385A JP H0239582 B2 JPH0239582 B2 JP H0239582B2
Authority
JP
Japan
Prior art keywords
steel
steels
less
wear resistance
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60194763A
Other languages
Japanese (ja)
Other versions
JPS6256555A (en
Inventor
Masaaki Kotakane
Keiichi Hayashida
Yukitaka Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koshuha Steel Co Ltd
Original Assignee
Nippon Koshuha Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koshuha Steel Co Ltd filed Critical Nippon Koshuha Steel Co Ltd
Priority to JP19476385A priority Critical patent/JPS6256555A/en
Publication of JPS6256555A publication Critical patent/JPS6256555A/en
Publication of JPH0239582B2 publication Critical patent/JPH0239582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は合金工具鋼に関し、さらに詳しくは高
硬度、耐摩耗性と耐食性、高靭性が同時に要求さ
れる用途に適する合金工具鋼に関するものであ
る。特にプラスチツク射出成形機のスクリユー、
逆流防止弁、金型やトマトケチヤツプ、スポーツ
ドリンク等の食品製造其他の腐食環境中で使用さ
れる刃物、ロール等の用途に最適な耐摩耗性、耐
食性及び靭性にすぐれた合金工具鋼である。 <従来の技術> プラスチツク射出成形機のスクリユー、逆流防
止弁等は耐摩耗性の優れた材料が必要とされてい
たが、近年のプラスチツク材質の進歩と多様化に
伴い、さらに一層の耐摩耗性と併せて耐食性が要
求されるようになつてきた。具体的には、エポキ
シ樹脂、ポリアセタール樹脂、ABS樹脂、ポリ
カーボネートふつ素樹脂等のプラスチツク材の射
出成形はかなりの高温条件下で行なわれる為、一
部原料の熱分解は回避しきれず多少の腐食性ガス
が生成されることは当然視されている向きもあ
る。特に難燃化を期してハロゲン含有化合物を配
合した場合には大量の腐食性ガスが発生する。そ
の後、スクリユー等の工具は常時腐食環境に曝さ
れることとなり、これら工具には高レベルの耐食
性が必要とされる。しかし、成形時に負荷される
圧力は相当高く、且つ強度向上等の為に配合され
ることの多い無機質充填材は非常に高硬度である
為、スクリユー等工具には高レベルの耐摩耗性も
要求される。 従来、この種の耐食耐摩耗用としては高C―高
Cr鋼であるJIS SUS440C、高C―高CrMoV鋼の
JIS SKD11あるいはこれにCoを添加したAISI
D5が用いられているが、プラスチツクから発生
する種々のガス雰囲気中での腐食摩耗には十分で
はなかつた。 これらガスの成分はH2S,Cl2,HCl,SO2
HF,NO2などであり、この種の用途の鋼は酸化
性及び還元性の種々の酸に対する耐食性が必要と
考えられる。また、これら従来鋼は靭性も不足し
ており、スクリユー折損事故などが発生してい
た。さらに、腐食環境中で使用されるロール、刃
物においては、これら酸に対する耐食性及び高硬
度、耐摩耗性に加えて靭性も要求され、射出成形
機のスクリユー同様、前記従来鋼では不十分であ
つた。 <発明が解決しようとする問題点> 本発明は上述した事情に鑑みてなされたもので
あり、その目的は前述の如き苛酷な使用条件にも
十分適合し得る耐摩耗性、耐食及び靭性にすぐれ
た合金工具鋼を提供しようとするものである。 <問題点を解決するための手段> 上記問題点を解決するため本発明の第1の発明
の合金工具鋼は重量比率において、 C:0.8〜1.25% Si:0.8%以下 Mn:0.8%以下 Cr:6.0〜10.0% Mo:0.5〜3.0% V:0.5〜4.0% Co:1.0〜4.0% Cu:2%以下 を含み残部がFe及び不純物からなるように構成
し、第2の発明の合金工具鋼は上記成分にN:2
%以下を加えるようにしたものである。 本発明の合金工具鋼は従来の合金工具鋼に比較
し、Cu,Coの複合添加、必要によりNiの添加
により耐酸性を向上し、従来の合金工具鋼に比
較して、C,Cr量を減少させ、1次炭化物の微
細化による靭性の向上を計り、従来の合金工具
鋼に比較してVの増量によりVC炭化物の比率を
増加させることにより耐摩耗性を向上させたもの
である。 その特徴とするところは、焼入後、焼戻し処理
にて十分な硬さを有するマルテンサイト組織を形
成し、適当量の硬い未溶解炭化物を分散させるこ
とによつて耐摩耗性と靭性を高度にバランスさ
せ、なおかつ、基地中に固溶したCu,Cr,Co,
Ni,Moによりすぐれた耐食性も兼備しているも
のである。 <作 用> 以下本発明における合金成分を定めた理由を述
べる。 C;0.8〜1.25wt% Cは一般に工具合金鋼の諸性質を大きく決定す
る基本的役割を果す元素である。本発明鋼の場
合、Cr,Mo,Vと複合炭化物を形成して耐摩耗
性に寄与し、又、基地中に固溶して高硬度を得る
元素である。硬さ、耐摩耗性、耐食性、靭性との
兼ね合いでC量を決めるものであるが、下限は耐
摩耗用工具鋼として十分な硬さ、耐摩耗性の得ら
れる0.8%とした。C量が多過ぎると巨大炭化物
を生成し、靭性の低下をまねくとともに、基地中
のCr,Moを多量に消費して耐食性を劣化させ
る。よつて上限を1.25%とした。 Si:0.8wt%以下 Siは製鋼過程における脱酸剤として添加され
る。多過ぎると被削性、研削性が悪くなるので、
上限を0.8%とする。 Mn:0.8wt%以下。 Mnも同様に脱酸剤として添加される。多過ぎる
と残留オーステナイトを多量に形成し、硬さ低下
の原因となるので、上限を0.8%とする。 Cr:6.0〜10.0wt% Crは前述の如く、基地に固溶して耐食性を増
大させるとともにC及び他元素との組み合わせ
で、複合炭化物を形成し耐摩耗性に寄与する。そ
の含有量はC量との組み合わせで決定されるが、
Cr6%未満では耐食性、耐摩耗性、焼入性が不十
分であり、下限を6%とする。又、10%を超える
と巨大炭化物が出現し、靭性劣化の原因となるの
で、10%を上限とする。 Mo:0.5〜3.0wt% Moは焼入れ後、Crと同様に基地と炭化物の両
方に存在して耐摩耗性と耐食性を付与し、また焼
戻し軟化抵抗を増大させる。0.5%未満ではこの
結果が得難く、また3%を越えるとM6C型の巨
大炭化物を増大させ靭性を害するので含有量を
0.5〜3.0%に限定する。 V:0.5〜4.0wt% Vは高硬度のMC型炭化物を形成し、著しく耐
摩耗性を増大させると同時に焼戻し軟化抵抗を与
える。この効果は0.5%未満では得難く、下限を
0.5%とするが、4%を越えると巨大炭化物を過
剰に生成し、靭性、熱間加工性、及び冷間におけ
る機械加工性を劣化させるので、上限を4.0%す
る。 Co:1.0〜4.0wt% Coは基地中に固溶して焼戻し軟化抵抗を与え
ると同時に耐食性を著しく増大する。特にCuと
の同時添加によつて塩酸に対する腐食減量を大き
く減少させる。上記効果には1.0%以上の含有が
必要であるが、4.0%以上でその効果は飽和し、
過剰に添加すると靭性と熱間加工性を劣化するの
で、上限を4.0%とする。しかして1.5〜3.5%が好
ましい。 Cu:2wt%以下 CuはCoと同様に基地中に固溶して耐食性を向
上させる。特に耐塩酸腐食性を著しく向上させる
が、2.0%を越えると熱間加工性が悪くなるので、
上限を2.0%とする。しかして0.5〜1.5%が好まし
い。 Ni:2.5wt%以下 Niは必要に応じて添加され、Co,Cuと同様に
基地中に固溶して不働態皮膜を強め、耐食性を向
上させる。多過ぎると、焼入れ後の残留オーステ
ナイトが多量に生成し、硬さ低下の原因となるの
で、上限を2.5%とする。 <実施例> 第1表に試験に供した鋼の組成を示す。表中No.
1〜No.4は本発明鋼、No.5〜No.7の比較鋼は本発
明鋼開発中に試験した試作材で従来鋼よりすぐれ
ているので参考のため記載した。No.8〜No.10は従
来鋼でNo.8はJIS SKD11、No.9はAISI D5、No.
10はJIS SUS440Cである。これら組成の鋼を第
2表にす熱処理条件で調質し、各種の腐食性の酸
に対する耐食性試験、摩耗試験及びシヤルピー衝
撃試験を実施した。その結果を第1図〜6図に示
す。
<Industrial Application Field> The present invention relates to an alloy tool steel, and more particularly to an alloy tool steel suitable for applications requiring high hardness, wear resistance, corrosion resistance, and high toughness. Especially the screw of plastic injection molding machine,
It is an alloy tool steel with excellent wear resistance, corrosion resistance, and toughness that is ideal for use in backflow prevention valves, molds, food manufacturing such as tomato ketchup, sports drinks, etc., and cutlery and rolls used in other corrosive environments. <Conventional technology> Materials with excellent wear resistance have been required for the screws, backflow prevention valves, etc. of plastic injection molding machines, but with the advancement and diversification of plastic materials in recent years, materials with even higher wear resistance have been required. Along with this, corrosion resistance has also come to be required. Specifically, injection molding of plastic materials such as epoxy resins, polyacetal resins, ABS resins, and polycarbonate fluorocarbon resins is performed under extremely high temperature conditions, so thermal decomposition of some raw materials cannot be avoided, resulting in some corrosive properties. Some people take it for granted that gas is produced. In particular, when a halogen-containing compound is added for flame retardancy, a large amount of corrosive gas is generated. Thereafter, tools such as screws are constantly exposed to a corrosive environment, and these tools are required to have a high level of corrosion resistance. However, the pressure applied during molding is quite high, and the inorganic fillers often added to improve strength are extremely hard, so tools such as screws are required to have a high level of wear resistance. be done. Conventionally, high C-high was used for this type of corrosion and wear resistance.
JIS SUS440C which is Cr steel, high C-high CrMoV steel
JIS SKD11 or AISI with Co added to it
D5 has been used, but it has not been sufficient for corrosive wear in various gas atmospheres generated from plastics. The components of these gases are H 2 S, Cl 2 , HCl, SO 2 ,
HF, NO 2, etc., and steel for this type of use is considered to need corrosion resistance against various oxidizing and reducing acids. In addition, these conventional steels lacked toughness, leading to accidents such as screw breakage. Furthermore, for rolls and cutlery used in corrosive environments, toughness is required in addition to corrosion resistance, high hardness, and wear resistance against these acids, and as with the screws of injection molding machines, the conventional steels mentioned above are insufficient. . <Problems to be Solved by the Invention> The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a material with excellent wear resistance, corrosion resistance, and toughness that can be sufficiently adapted to the above-mentioned severe usage conditions. The present invention aims to provide an alloy tool steel with a high quality. <Means for solving the problems> In order to solve the above problems, the alloy tool steel of the first invention has the following weight ratios: C: 0.8 to 1.25% Si: 0.8% or less Mn: 0.8% or less Cr : 6.0 to 10.0% Mo: 0.5 to 3.0% V: 0.5 to 4.0% Co: 1.0 to 4.0% Cu: 2% or less, with the balance consisting of Fe and impurities, and the alloy tool steel of the second invention is N:2 for the above components.
% or less is added. The alloy tool steel of the present invention has improved acid resistance compared to conventional alloy tool steels by the combined addition of Cu and Co, and if necessary Ni addition, and has a lower C and Cr content than conventional alloy tool steels. The wear resistance is improved by increasing the proportion of VC carbides by increasing the amount of V compared to conventional alloy tool steel. The feature is that after quenching, a martensitic structure with sufficient hardness is formed through tempering treatment, and by dispersing an appropriate amount of hard undissolved carbide, it achieves a high degree of wear resistance and toughness. Balanced, Cu, Cr, Co, solid solution in the base,
It also has excellent corrosion resistance due to Ni and Mo. <Function> The reason for determining the alloy components in the present invention will be described below. C; 0.8 to 1.25 wt% C is an element that generally plays a fundamental role in greatly determining various properties of tool alloy steel. In the case of the steel of the present invention, it is an element that forms a composite carbide with Cr, Mo, and V and contributes to wear resistance, and also forms a solid solution in the matrix to obtain high hardness. The C content is determined based on the balance between hardness, wear resistance, corrosion resistance, and toughness, and the lower limit was set at 0.8%, which provides sufficient hardness and wear resistance as a wear-resistant tool steel. If the amount of C is too large, giant carbides are generated, leading to a decrease in toughness, and a large amount of Cr and Mo in the matrix is consumed, leading to a decrease in corrosion resistance. Therefore, the upper limit was set at 1.25%. Si: 0.8wt% or less Si is added as a deoxidizing agent during the steelmaking process. If there is too much, machinability and grindability will deteriorate, so
The upper limit is set at 0.8%. Mn: 0.8wt% or less. Mn is also added as a deoxidizing agent. If it is too large, a large amount of retained austenite will be formed, causing a decrease in hardness, so the upper limit is set at 0.8%. Cr: 6.0 to 10.0 wt% As mentioned above, Cr is dissolved in the matrix to increase corrosion resistance, and in combination with C and other elements, forms a composite carbide and contributes to wear resistance. The content is determined by the combination with the amount of C,
If the Cr content is less than 6%, corrosion resistance, wear resistance, and hardenability are insufficient, so the lower limit is set to 6%. Moreover, if it exceeds 10%, giant carbides will appear and cause toughness deterioration, so the upper limit is set at 10%. Mo: 0.5 to 3.0wt% After quenching, Mo, like Cr, exists in both the base and carbides, imparting wear resistance and corrosion resistance, and also increases temper softening resistance. If it is less than 0.5%, it is difficult to obtain this result, and if it exceeds 3%, M 6 C type giant carbides will increase and the toughness will be impaired, so the content should be reduced.
Limited to 0.5-3.0%. V: 0.5 to 4.0 wt% V forms a highly hard MC type carbide, which significantly increases wear resistance and at the same time provides temper softening resistance. This effect is difficult to obtain below 0.5%, so the lower limit
The upper limit is set at 0.5%, but if it exceeds 4%, giant carbides are generated excessively and the toughness, hot workability, and cold machinability are deteriorated, so the upper limit is set at 4.0%. Co: 1.0 to 4.0 wt% Co dissolves in solid solution in the matrix, providing resistance to temper softening and at the same time significantly increasing corrosion resistance. In particular, when added simultaneously with Cu, the corrosion loss due to hydrochloric acid is greatly reduced. The above effect requires a content of 1.0% or more, but the effect is saturated at 4.0% or more.
If added in excess, toughness and hot workability will deteriorate, so the upper limit is set at 4.0%. Therefore, 1.5-3.5% is preferred. Cu: 2wt% or less Cu, like Co, dissolves in the matrix and improves corrosion resistance. In particular, it significantly improves hydrochloric acid corrosion resistance, but if it exceeds 2.0%, hot workability deteriorates.
The upper limit is set at 2.0%. Therefore, 0.5-1.5% is preferred. Ni: 2.5wt% or less Ni is added as necessary, and like Co and Cu, it forms a solid solution in the matrix to strengthen the passive film and improve corrosion resistance. If it is too large, a large amount of residual austenite will be generated after quenching, causing a decrease in hardness, so the upper limit is set at 2.5%. <Example> Table 1 shows the composition of the steel used in the test. No. in the table
No. 1 to No. 4 are the steels of the present invention, and comparative steels No. 5 to No. 7 are prototype materials tested during the development of the steel of the invention and are superior to conventional steels, so they are listed here for reference. No.8 to No.10 are conventional steel, No.8 is JIS SKD11, No.9 is AISI D5, No.
10 is JIS SUS440C. Steels having these compositions were tempered under the heat treatment conditions shown in Table 2, and were subjected to corrosion resistance tests against various corrosive acids, wear tests, and Charpy impact tests. The results are shown in FIGS. 1 to 6.

【表】【table】

【表】 第1図は各試験鋼No.1〜No.10の塩酸に対する腐
食減量を示す。本発明鋼のNo.1〜No.4は比較鋼及
び従来鋼のNo.5〜No.10に比較して減量が1/2以
下であり特にすぐれた耐食性を示している。 第2図は各試験鋼No.1〜No.10の硝酸に対する腐
食減量を示す。本発明鋼のNo.1〜No.4は従来鋼No.
8〜No.10の中で最も減量の少ないNo.10の
SUS440Cよりさらにすぐれている。 第3図は各試験鋼No.1〜No.10の硫酸に対する腐
食減量を示す。本発明鋼のNo.1〜No.4は比較鋼及
び従来鋼No.5〜No.10の中で最も減量の少ないNo.10
のSUS440Cとほぼ同等である。 第4図は各試験鋼No.1〜No.10の弗酸に対する腐
食減量を示す。本発明鋼のNo.1〜No.4は従来鋼No.
8〜No.10の中で最も減量の少ないNo.10の
SUS440Cよりさらにすぐれている。 第5図は本発明鋼No.1〜No.4及び従来鋼No.8〜
No.10の大越式摩耗試験結果を示す。本発明鋼のNo.
1〜No.4は従来鋼No.8〜No.10の中で最もすぐれた
耐摩耗性を有するNo.9のAISI D5に比較して各摩
擦速度で同等かそれ以上の耐摩耗性を有してい
る。 第6図は各試験鋼No.1〜No.10のシヤルピー衝撃
試結果を示す。本発明鋼は従来鋼No.8〜No.10に比
較してすぐれた靭性を有している。 第3表に本発明鋼No.1・No.2と従来使用される
鋼種であるSACM645窒化鋼、SKD11とをプラス
チツク射出成形機用スクリユーとして用いた実用
試験結果を示す。本発明鋼No.1・No.2は従来使用
された鋼種に比較して非常にすぐれた特性を有し
ていることが明らかである。
[Table] Figure 1 shows the corrosion loss of each test steel No. 1 to No. 10 in response to hydrochloric acid. Steels No. 1 to No. 4 of the present invention have a weight loss of 1/2 or less compared to comparative steels and conventional steels No. 5 to No. 10, and exhibit particularly excellent corrosion resistance. FIG. 2 shows the corrosion loss of each test steel No. 1 to No. 10 in response to nitric acid. Invention steels No. 1 to No. 4 are conventional steel Nos.
No. 10 with the least weight loss among No. 8 to No. 10
Even better than SUS440C. FIG. 3 shows the corrosion loss of each test steel No. 1 to No. 10 against sulfuric acid. Invention steels No. 1 to No. 4 are No. 10 with the smallest weight loss among comparative steels and conventional steels No. 5 to No. 10.
It is almost equivalent to SUS440C. FIG. 4 shows the corrosion loss of each test steel No. 1 to No. 10 in response to hydrofluoric acid. Invention steels No. 1 to No. 4 are conventional steel Nos.
No. 10 with the least weight loss among No. 8 to No. 10
Even better than SUS440C. Figure 5 shows inventive steel No. 1 to No. 4 and conventional steel No. 8 to No. 4.
The results of the Okoshi type wear test for No. 10 are shown. Inventive steel No.
Compared to No. 9 AISI D5, which has the best wear resistance among conventional steels No. 8 to No. 10, No. 1 to No. 4 have wear resistance equal to or higher than that at each friction speed. are doing. FIG. 6 shows the results of the Charpy impact test for each test steel No. 1 to No. 10. The steel of the present invention has superior toughness compared to conventional steels No. 8 to No. 10. Table 3 shows the results of practical tests in which steels No. 1 and No. 2 of the present invention and conventionally used steels such as SACM645 nitrided steel and SKD11 were used as screws for plastic injection molding machines. It is clear that the steels No. 1 and No. 2 of the present invention have extremely superior properties compared to conventionally used steel types.

【表】 <発明の効果> 以上詳細に説明したように、本発明の合金工具
鋼はCu・Co、必要によりNiの複合添加に加えて
CとCrのバランスにより、従来の工具鋼以上の
耐食性を有し、又CとCr,Mo,Vのバランス及
びCoの添加効果により、耐摩耗性と靭性を高度
に両立させている。
[Table] <Effects of the Invention> As explained in detail above, the alloy tool steel of the present invention has higher corrosion resistance than conventional tool steel due to the combined addition of Cu, Co, and if necessary Ni, as well as the balance of C and Cr. Furthermore, due to the balance between C, Cr, Mo, and V, and the effect of adding Co, it achieves both high wear resistance and toughness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各試験鋼の沸騰塩酸(2%)に対する
腐食減量を示すグラフ、第2図は各試験鋼の沸騰
硝酸(2%)に対する腐食減量を示すグラフ、第
3図は各試験鋼の沸騰硫酸(2%)に対する腐食
減量を示すグラフ、第4図は各試験鋼の40℃弗酸
(1%)に対する腐食減量を示すグラフ、第5図
は本発明鋼No.1〜No.4及び従来鋼No.8〜No.10の摩
耗試験結果のグラフ、第6図は各試験鋼のシヤル
ビー衝撃試験結果を示すグラフである。
Figure 1 is a graph showing the corrosion loss of each test steel in response to boiling hydrochloric acid (2%), Figure 2 is a graph showing the corrosion loss of each test steel in response to boiling nitric acid (2%), and Figure 3 is a graph showing the corrosion loss of each test steel in response to boiling nitric acid (2%). A graph showing the corrosion loss against boiling sulfuric acid (2%), Figure 4 is a graph showing the corrosion loss against hydrofluoric acid (1%) at 40°C of each test steel, and Figure 5 is a graph showing the corrosion loss against inventive steels No. 1 to No. 4. FIG. 6 is a graph showing the results of the Shalby impact test for each test steel.

Claims (1)

【特許請求の範囲】 1 重量比率において C:0.8〜1.25% Si:0.8%以下 Mn:0.8%以下 Cr:6.0〜10.0% Mo:0.5〜3.0% V:0.5〜4.0% Co:1.0〜4.0% Cu:2%以下 を含み残部がFe及び不純物からなることを特徴
とする耐摩耗性、耐食性及び靭性にすぐれた合金
工具鋼。 2 重量比率において C:0.8〜1.25% Si:0.8%以下 Mn:0.8%以下 Ni:2.5%以下 Cr:6.0〜10.0% Mo:0.5〜3.0% V:0.5〜4.0% Co:1.0〜4.0% Cu:2%以下 を含み残部がFe及び不純物からなることを特徴
とする耐摩耗性、耐食性及び靭性にすぐれた合金
工具鋼。
[Claims] 1. In weight ratio: C: 0.8 to 1.25% Si: 0.8% or less Mn: 0.8% or less Cr: 6.0 to 10.0% Mo: 0.5 to 3.0% V: 0.5 to 4.0% Co: 1.0 to 4.0% An alloy tool steel with excellent wear resistance, corrosion resistance, and toughness, containing Cu: 2% or less and the balance consisting of Fe and impurities. 2 In weight ratio C: 0.8 to 1.25% Si: 0.8% or less Mn: 0.8% or less Ni: 2.5% or less Cr: 6.0 to 10.0% Mo: 0.5 to 3.0% V: 0.5 to 4.0% Co: 1.0 to 4.0% Cu : An alloy tool steel with excellent wear resistance, corrosion resistance, and toughness, characterized by containing 2% or less and the remainder consisting of Fe and impurities.
JP19476385A 1985-09-05 1985-09-05 Alloy tool steel excellent in wear resistance, corrosion resistance and toughness Granted JPS6256555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19476385A JPS6256555A (en) 1985-09-05 1985-09-05 Alloy tool steel excellent in wear resistance, corrosion resistance and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19476385A JPS6256555A (en) 1985-09-05 1985-09-05 Alloy tool steel excellent in wear resistance, corrosion resistance and toughness

Publications (2)

Publication Number Publication Date
JPS6256555A JPS6256555A (en) 1987-03-12
JPH0239582B2 true JPH0239582B2 (en) 1990-09-06

Family

ID=16329830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19476385A Granted JPS6256555A (en) 1985-09-05 1985-09-05 Alloy tool steel excellent in wear resistance, corrosion resistance and toughness

Country Status (1)

Country Link
JP (1) JPS6256555A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254896A (en) * 2002-05-01 2007-10-04 Sanyo Special Steel Co Ltd Steel for plastic molding having excellent corrosion resistance and wear resistance and molded part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114719A (en) * 1977-03-18 1978-10-06 Hitachi Metals Ltd Steel for stainless razor blade with high heatttreated hardness
JPS54115616A (en) * 1978-02-28 1979-09-08 Hitachi Metals Ltd Corrosion and abrasion resistant alloy steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114719A (en) * 1977-03-18 1978-10-06 Hitachi Metals Ltd Steel for stainless razor blade with high heatttreated hardness
JPS54115616A (en) * 1978-02-28 1979-09-08 Hitachi Metals Ltd Corrosion and abrasion resistant alloy steel

Also Published As

Publication number Publication date
JPS6256555A (en) 1987-03-12

Similar Documents

Publication Publication Date Title
US5714114A (en) High hardness martensitic stainless steel with good pitting corrosion resistance
US4086085A (en) Austenitic iron alloys
BRPI0308832B1 (en) steel block
US5358577A (en) High strength and high toughness martensitic stainless steel and method of manufacturing the same
JPH05287455A (en) Martensitic stainless steel for oil well
US3355280A (en) High strength, martensitic stainless steel
CA2043146C (en) Precipitation-hardenable tool steel
JPH0239582B2 (en)
US4227923A (en) Plastic molding steel having improved resistance to corrosion by halogen gas
CN111961991B (en) TRIP type duplex stainless steel with ultrahigh strength-elongation product and preparation method thereof
JPS6029446A (en) Alloy steel for precision plastic die parts
JPH0146582B2 (en)
JPS62136555A (en) Steel wire for wear and corrosion resistant parts having high fatigue strength
JPH0448050A (en) Spring steel strip
JPH059508B2 (en)
JP2742578B2 (en) High hardness stainless steel for cold forging
JPS62180033A (en) High-toughness wear-resisting steel
JPH02163348A (en) High-hardness stainless steel for cutting
JPH03115545A (en) Die steel for plastics
JPS59170240A (en) Alloy tool steel
JPS59215470A (en) Alloy steel with high wear and corrosion resistance
JPH0129133B2 (en)
US3008820A (en) Alloy steel
JPH02170944A (en) Case hardening steel
JPH02175845A (en) Corrosion resisting steel for metal mold for plastics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term