JPH0239525A - Heat treatment device for semiconductor - Google Patents
Heat treatment device for semiconductorInfo
- Publication number
- JPH0239525A JPH0239525A JP63188477A JP18847788A JPH0239525A JP H0239525 A JPH0239525 A JP H0239525A JP 63188477 A JP63188477 A JP 63188477A JP 18847788 A JP18847788 A JP 18847788A JP H0239525 A JPH0239525 A JP H0239525A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- temperature
- heat treatment
- radiation
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 62
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 230000005855 radiation Effects 0.000 claims abstract description 73
- 238000012545 processing Methods 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 4
- 230000007723 transport mechanism Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 20
- 238000011282 treatment Methods 0.000 abstract description 10
- 238000003780 insertion Methods 0.000 abstract description 6
- 230000037431 insertion Effects 0.000 abstract description 6
- 235000012431 wafers Nutrition 0.000 description 110
- 238000005259 measurement Methods 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 9
- 239000010408 film Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 238000009529 body temperature measurement Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Landscapes
- Control Of Temperature (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は拡散、アニール、酸化などの半導体熱処理を行
う装置に係り、特に枚葉式の熱処理装置において好適な
ウェハ放射測温を行うことにより、均一なウェハ熱処理
を行う半導体熱処理装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for performing semiconductor heat treatment such as diffusion, annealing, and oxidation, and in particular, by performing suitable wafer radiation temperature measurement in a single-wafer type heat treatment apparatus. , relates to a semiconductor heat treatment apparatus that performs uniform wafer heat treatment.
拡散装置に代表されるバッチ式の半導体熱処理装置は、
耐熱性治具に載せた25〜100枚程のウェハを反応管
内に挿入してヒータで加熱し、熱処理を行っている。ヒ
ータは通常複数個に分割し、熱電対で温度を測定してこ
れが目標の温度(設定温度)になるように温度コントロ
ールシステムで発熱量を決め(PID制御)、ケーブル
で電力を供給してウェハを加熱する6また、両端部ヒー
タは設定温度を高くして発熱量を増し、温度均−領域(
均熱区間)が長くなるように工夫され、前記のウェハは
、この均熱区間内において均一温度で熱処理する。Batch-type semiconductor heat treatment equipment, typified by diffusion equipment, is
Approximately 25 to 100 wafers placed on a heat-resistant jig are inserted into a reaction tube and heated with a heater to perform heat treatment. The heater is usually divided into multiple parts, the temperature is measured with a thermocouple, the amount of heat generated is determined by a temperature control system (PID control) so that this becomes the target temperature (set temperature), and the power is supplied with a cable to control the wafer. 6 In addition, the set temperature of the heaters at both ends is increased to increase the amount of heat generated, and the temperature uniformity region (
The wafer is heat-treated at a uniform temperature within this soaking period.
従来のバッチ式の熱処理は先に反応管内に入いるウェハ
と後で入いるウェハの間で、挿入・引出時の温度履歴が
異る。そのため、パターンの微細化とともに熱処理時間
が短くなるにつれて、挿入・引出時の影響が相対的に大
きくなり、実効的熱処理量のバラツキが問題となってき
た。In conventional batch heat treatment, the temperature history during insertion and withdrawal differs between the wafers that enter the reaction tube first and the wafers that enter the reaction tube later. Therefore, as the pattern becomes finer and the heat treatment time becomes shorter, the influence of insertion and withdrawal becomes relatively large, and variations in the effective amount of heat treatment become a problem.
これに対し、1枚あるいは2枚のウェハを繰り返し処理
する枚葉式熱処理装置はウェハの温度履歴を均一にする
ことができ、数分程度の短時間処理における熱処理量の
均一性に関して、有利性は非常に大きい。On the other hand, single-wafer heat treatment equipment, which processes one or two wafers repeatedly, can make the temperature history of the wafer uniform, and has an advantage in terms of uniformity of heat treatment amount in a short processing time of several minutes. is very large.
ただし、これらの短時間熱処理では前述の拡散装置のよ
うにヒータ温度を目標の設定温度に合致させるffNJ
#だけでは、ウェハの温度MW均一性を確保することが
難しい。すなわち、枚葉式の熱処理では冷たいウェハが
連続して挿入され、はぼ炉壁温度に近くなったところで
引き出されるという工程を繰り返し、これらの熱的外乱
要因によってヒータ温度とウェハ温度が一対一の対応を
示さなくなるからである。したがって、枚葉式熱処理装
置ではウェハの温度を直接測定し、これに基づいた温度
制御が必要になる。However, in these short-time heat treatments, ffNJ is used to match the heater temperature to the target set temperature, as in the aforementioned diffusion device.
# alone makes it difficult to ensure temperature MW uniformity of the wafer. In other words, in single-wafer heat treatment, the process of repeatedly inserting cold wafers and withdrawing them when the temperature approaches the furnace wall temperature is repeated. This is because they will not be able to respond. Therefore, in a single wafer heat treatment apparatus, it is necessary to directly measure the temperature of the wafer and control the temperature based on this measurement.
本発明の目的は実効熱処理量を均一にする温度制御を行
うことができる半導体熱処理装置を提供することにある
。An object of the present invention is to provide a semiconductor heat treatment apparatus that can perform temperature control to make the effective heat treatment amount uniform.
上記目的は、ウェハを高速で反応管内に挿入する機構と
、ウェハの熱放射(以後、ウェハの透過がない範囲1μ
m以下に選んだ放射温度計の測定波長におけるものを指
す)を捕える。放射温度計と、炉壁(ウェハ表面で反射
した後に放射温度計に入射する熱放射を発する部分)の
温度を測定する温度計と、この放射温度計と炉壁温度計
の出力からウェハの温度を求める温度変換器と前記ウェ
ハの挿入機構を制御するメカコントローラと、ヒータ発
熱量を制御する温度コントローラと、温度変換器、メカ
コントローラ、温度コントローラを制御するメインコン
トローラを備えることによって達成される。The above purpose was to develop a mechanism for inserting the wafer into the reaction tube at high speed, and a mechanism for inserting the wafer into the reaction tube, and a heat radiation of the wafer (hereinafter, a range of 1 μm where no wafer transmission occurs).
(refers to the measurement wavelength of the radiation thermometer selected below m). A radiation thermometer, a thermometer that measures the temperature of the furnace wall (the part that emits thermal radiation that enters the radiation thermometer after being reflected on the wafer surface), and a thermometer that measures the temperature of the wafer from the output of this radiation thermometer and the furnace wall thermometer. This is achieved by providing a temperature converter for determining the wafer, a mechanical controller for controlling the wafer insertion mechanism, a temperature controller for controlling the amount of heat generated by the heater, and a main controller for controlling the temperature converter, the mechanical controller, and the temperature controller.
一般に、半導体熱処理装置内のウェハ放射測温において
、放射温度計が受光する熱放射は以下のように表わせる
。Generally, in wafer radiation temperature measurement in a semiconductor heat treatment apparatus, the thermal radiation received by a radiation thermometer can be expressed as follows.
Et=A・[w・E(’]、’−)+Ell
・=(1)Et :放射温度計が受光する全熱放射
A :測定光路中に入れた光学要素の特性による定数
EW :ウエハの放射率
E(T):温度Tの黒体が放射する熱放射Eo :外
乱放射
ここで外乱放射とは1例えば炉内壁の熱放射の内、ウェ
ハや反応管の表面で反射した後に放射温度計に入射する
ものを指している。したがって、正確にウェハ温度を測
定するためには、この外乱放射およびウェハ放射率の補
正を行って、E(’r、)を求めることが必要である。Et=A・[w・E('],'-)+Ell
・=(1) Et: Total heat radiation received by the radiation thermometer A: Constant EW depending on the characteristics of the optical element placed in the measurement optical path: Wafer emissivity E(T): Heat radiated by a black body at temperature T Radiation Eo: Disturbance radiation Here, disturbance radiation refers to, for example, thermal radiation from the inner wall of the reactor, which is incident on the radiation thermometer after being reflected by the surface of the wafer or reaction tube. Therefore, in order to accurately measure the wafer temperature, it is necessary to correct the disturbance radiation and the wafer emissivity to obtain E('r,).
以下、前記の枚葉式熱処理装置の各構成要素の作用を順
次説明する。Hereinafter, the operation of each component of the single wafer heat treatment apparatus will be explained in sequence.
放射温度計は、反応管内の所定場所に入った状態のウェ
ハ熱放射を受光するように設置する。この時、上記外乱
放射の発生源が炉内の比較的温度が均一な炉壁部となる
ようにウェハの保持角度と放射温度計の傾きを調整し、
さらにこの部分の温度を測定する温度計を設ける。炉壁
用の温度計は熱電対でも良いし、放射温度計でも良い(
その場合、炉壁の放射率は1と評価して良い)。The radiation thermometer is installed to receive the wafer thermal radiation that has entered a predetermined location within the reaction tube. At this time, the holding angle of the wafer and the inclination of the radiation thermometer are adjusted so that the source of the disturbance radiation is the furnace wall where the temperature is relatively uniform in the furnace,
Furthermore, a thermometer is provided to measure the temperature of this part. The thermometer for the furnace wall may be a thermocouple or a radiation thermometer (
In that case, the emissivity of the furnace wall can be evaluated as 1).
このような光学系の調整により1式(1)は次のように
変形できる。By adjusting the optical system in this way, equation (1) can be transformed as follows.
Et=A・εwsE(Tw)+B・ρ+r”E(Th)
’・’(2)ρW(=1−2w):ウェハ反射率(透過
なし)Th :炉壁温度
B :測定光路中に入れた光学要素の特性による定数
また、反応管の表面反射を考慮する必要がある場合は、
次式となる。Et=A・εwsE(Tw)+B・ρ+r”E(Th)
'・' (2) ρW (=1-2w): Wafer reflectance (no transmission) Th: Furnace wall temperature B: Constant depending on the characteristics of the optical element placed in the measurement optical path Also, consider the surface reflection of the reaction tube If you need it,
The following formula is obtained.
Et=A−EW−E(Tw)+B−p#−E(Th)+
C−ps−E(Th’ ) −(3)ρS :反応管
の表面反射率(既知とする)’rh’ :反応管表面
反射による外乱放射を発する炉壁の温度
C:測定光路中に入れた光学要素の特性による定数
ここで、室温ウェハを反応管内の挿入を高速で行うと、
ウェハが所定位置で止った時には、まだウェハは温度が
あまり上がらない状態(例えば1000℃の炉内に20
0++n/sの速度で約5秒間で挿入した場合に300
〜400℃以下)に保たれる。ウェハが放射する熱放射
は、温度が上昇するにつれて指数関数的に増加するから
、ウェハ挿入直後に放射温度計が受ける熱放射は式(2
)。Et=A-EW-E(Tw)+B-p#-E(Th)+
C-ps-E(Th') - (3) ρS: Surface reflectance of the reaction tube (assumed to be known) 'rh': Temperature of the reactor wall that emits disturbance radiation due to reaction tube surface reflection C: Placed in the measurement optical path Here, when the room temperature wafer is inserted into the reaction tube at high speed,
When the wafer stops at a predetermined position, the temperature of the wafer has not yet risen significantly (for example, the wafer is placed in a 1000°C furnace for 200°C).
300 when inserted in about 5 seconds at a speed of 0++n/s
~400℃ or less). Since the thermal radiation emitted by the wafer increases exponentially as the temperature rises, the thermal radiation received by the radiation thermometer immediately after inserting the wafer is expressed by the formula (2
).
(3)の右辺第1項が無視でき(E(TV)斗0)、外
乱放射のみによる出力が得られる。The first term on the right side of (3) can be ignored (E(TV) 0), and an output only due to disturbance radiation can be obtained.
これを利用して次のようにウェハ放射率を求め。Using this, calculate the wafer emissivity as follows.
ざらに炉壁温度をもとに外乱放射を評価して補正を加え
、正確なウェハ放射測温を可能とする。まず、メカコン
トローラはウェハを挿入するタイミングをメインコント
ローラを通じて温度変換器に送信し、温度変換器はその
時点の放射温度計と炉壁温度計の出力を取り込む。次に
、各々の測定値をE tQ、 Thot Tho’ と
して式(2)、 (3)を用いて以下のようにウェハ放
射率を求める。The disturbance radiation is roughly evaluated and corrected based on the furnace wall temperature, enabling accurate wafer radiation temperature measurement. First, the mechanical controller sends the timing for inserting the wafer to the temperature converter via the main controller, and the temperature converter takes in the outputs of the radiation thermometer and furnace wall thermometer at that time. Next, the wafer emissivity is determined as follows using equations (2) and (3) with each measured value as E tQ and Thot Tho'.
・・・(5)
この値を用いて、ウェハ放射率補正を行うが、複数の同
一種類のウェハを処理する時は、最初のウェハのみ上記
の計算を行えば良く、以後は同じ放射率の値で補正でき
る。これでε1.ρ、の値が既知となったので、後は適
当な時間間隔で放射温度計と炉壁温度計の出力を取り込
み、式(2)、 (3)をもとにE(TV)を求め、さ
らに放射温度計の特性からこれを温度T、に変換する。...(5) Wafer emissivity correction is performed using this value, but when processing multiple wafers of the same type, the above calculation only needs to be performed for the first wafer, and subsequent wafers with the same emissivity Can be corrected by value. Now ε1. Now that the value of ρ is known, the next step is to take in the outputs of the radiation thermometer and the furnace wall thermometer at appropriate time intervals, and calculate E(TV) based on equations (2) and (3). Furthermore, this is converted into a temperature T based on the characteristics of the radiation thermometer.
このようにすれば、冷たいウェハを挿入した直後の炉壁
温度低下およびその後の回復による外乱放射の変化に対
しても適切な補正となる。In this way, appropriate correction can be made for changes in disturbance radiation due to a decrease in furnace wall temperature immediately after inserting a cold wafer and subsequent recovery.
また、以上で求めたウェハ温度をもとにしてメインコン
トローラはウェハ熱処理量の均一化を図る。すなわち、
測定毎に求めたウェハ温度T、はメインコントローラ内
で対応する熱処理量(酸化の場合:酸化膜厚さ、アニー
ル:シート抵抗、拡散:不純物濃度分布)に変換し、各
ウェハ毎にこの値を積分する。そして、あらかじめ設定
した所定の熱処理量になった時点でメカコントローラに
指令を出してウェハを引き出せば均一な熱処理が可能に
なる。この場合は、ウェハはよって熱処理時間を変える
ことになるが、逆に処理時間を一定として、所定の熱処
理量と測定値との偏差から、次のウェハ処理に対する適
切なヒータの設定温度を算出して、温度コントローラの
設定を書き換えるといった予測制御による熱処理の均一
化も容易である。Furthermore, the main controller attempts to equalize the amount of wafer heat treatment based on the wafer temperature determined above. That is,
The wafer temperature T obtained for each measurement is converted into the corresponding heat treatment amount (in the case of oxidation: oxide film thickness, annealing: sheet resistance, diffusion: impurity concentration distribution) in the main controller, and this value is converted for each wafer. Integrate. Then, when a predetermined amount of heat treatment is reached, a command is issued to the mechanical controller to pull out the wafer, thereby making it possible to perform uniform heat treatment. In this case, the heat treatment time for the wafer will change accordingly, but conversely, with the treatment time constant, the appropriate heater temperature setting for the next wafer treatment can be calculated from the deviation between the predetermined heat treatment amount and the measured value. Therefore, it is easy to make the heat treatment uniform by predictive control such as rewriting the settings of the temperature controller.
以上のように、ウェハ間の熱処理量にバラツキが生じな
いため、歩留りを向上できる。As described above, since there is no variation in the amount of heat treatment between wafers, the yield can be improved.
以下、本発明の一実施例を第1図から第5図により説明
する。An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
第1図は本発明を適用した枚葉式の熱処理装置の加熱炉
断面の概略と、各コントローラ、温度変換器間の信号の
流れを継続的に示したものである。FIG. 1 schematically shows a cross section of a heating furnace of a single wafer type heat treatment apparatus to which the present invention is applied, and continuously shows the flow of signals between each controller and temperature converter.
加熱炉の構造は、複数に分割した平板状ヒータ4A〜4
Cの外側に断熱材7を設け、平板状ヒータ4A〜4Cの
内側には均熱管3(SiC製)を、さらにその内側には
反応管2(石英製)を設ける。The structure of the heating furnace includes flat heaters 4A to 4 divided into multiple parts.
A heat insulating material 7 is provided outside C, a soaking tube 3 (made of SiC) is provided inside the flat heaters 4A to 4C, and a reaction tube 2 (made of quartz) is provided inside the same.
平板状ヒータ4A〜4Cは温度コントローラ21でPI
D制御し、制御用熱電対5で測定したヒータ温度と設定
温度とから、適切な発熱量を決定し、ケーブル6を通し
て電力を供給するという手順をとる。ウェハ1はメカコ
ントローラ22で制御する搬送機構9に一端を固定した
治具8によって通常1枚あるいは2枚1組でほぼ垂直に
保持し、F方より反応管2の中に挿入して熱処理を行う
。The flat heaters 4A to 4C are connected to the PI by the temperature controller 21.
D control, an appropriate calorific value is determined from the heater temperature measured by the control thermocouple 5 and the set temperature, and power is supplied through the cable 6. The wafers 1 are usually held almost vertically, singly or in pairs, by a jig 8 with one end fixed to a transport mechanism 9 controlled by a mechanical controller 22, and are inserted into the reaction tube 2 from the F side to undergo heat treatment. conduct.
ウェハ1が発する熱放射はプリズムスタンド13で保持
した石英プリズム11とミラー12によって光路を曲げ
られた後、加熱炉の下方で、且つ炉口の直下から外れた
位置に設置した放射温度計10(測定波長0.9nm
、半値IIJ 100 n m以下)によって検知する
。また、ウェハ1に対面した均熱管3の温度を測定する
ため熱電対14を設け1次に説明した外乱放射の発生源
である炉壁の温度として、この熱電対14の値を用いる
。The optical path of the thermal radiation emitted by the wafer 1 is bent by the quartz prism 11 and the mirror 12 held by the prism stand 13, and then the radiation thermometer 10 ( Measurement wavelength 0.9nm
, half-value IIJ 100 nm or less). Further, a thermocouple 14 is provided to measure the temperature of the soaking tube 3 facing the wafer 1, and the value of this thermocouple 14 is used as the temperature of the furnace wall, which is the source of the disturbance radiation described in the first section.
第2図には放射温度計10が受ける熱放射の光路を示し
た。実線がウェハ1の熱放射、点線が外乱放射である。FIG. 2 shows the optical path of thermal radiation received by the radiation thermometer 10. The solid line is the thermal radiation of the wafer 1, and the dotted line is the disturbance radiation.
治具8はウェハ1を一定方向に数度傾けた状態で保持す
る。これは、ウェハ1の姿勢を安定させ、外乱放射を発
する炉壁の位置が3Aが移動しない(熱電対14の測定
位置とほぼ同じ温度の炉壁が外乱放射の発生位置とする
)ようにすることが目的である。また、熱電対14は本
来炉壁3Aの温度を測定すべきであるが、本実施例では
送側の炉壁3Bの温度もほぼ同じと考えられるため、こ
の炉壁3Bの温度を測定するようにした。The jig 8 holds the wafer 1 tilted several degrees in a certain direction. This stabilizes the posture of the wafer 1 and prevents the position of the furnace wall that emits disturbance radiation from moving (the furnace wall, which has approximately the same temperature as the measurement position of the thermocouple 14, is the generation position of the disturbance radiation). That is the purpose. In addition, although the thermocouple 14 should originally measure the temperature of the furnace wall 3A, in this embodiment, the temperature of the furnace wall 3B on the sending side is considered to be almost the same, so it is necessary to measure the temperature of the furnace wall 3B. I made it.
第1図に戻り、温度変換器23には放射温度計10と熱
電対14を接続し、これらの信号から外乱放射の補正お
よびウェハ放射率の補正などを行つてウェハ1の温度を
算出する。メインコントローラ20は、温度コントロー
ラ21.メカコントローラ22.温度変換器23に接続
され、これらの機器を総合的に管理する。Returning to FIG. 1, a radiation thermometer 10 and a thermocouple 14 are connected to the temperature converter 23, and the temperature of the wafer 1 is calculated from these signals by correcting disturbance radiation and correcting the wafer emissivity. The main controller 20 includes a temperature controller 21. Mechanical controller 22. It is connected to the temperature converter 23 and manages these devices comprehensively.
第3図には、これらの機器の機能の中で本発明に関連す
る部分を抜き出し、処理の流れに沿って記述した一例を
示す、順に説明する。FIG. 3 shows an example in which the functions of these devices related to the present invention are extracted and described along the flow of processing, which will be explained in order.
まず、熱処理に先立ち、メインコントローラ20に処理
条件を入力する。例えば、処理温度、処理時間、i度モ
ニタの条件、ガスパターンなどが設定項目である。メイ
ンコントローラ20は、これらの条件の中から温度コン
トローラ21.メインコントローラ22.温度変換器2
3に対して必要な情報を提供し、各機器はそれを受けて
熱処理の初期設定あるいは条件設定を行い、その後、待
機状態となる。First, prior to heat treatment, processing conditions are input to the main controller 20. For example, the setting items include processing temperature, processing time, i-degree monitoring conditions, and gas pattern. The main controller 20 selects the temperature controller 21 . Main controller 22. Temperature converter 2
In response to the information, each device performs initial settings or condition settings for heat treatment, and then enters a standby state.
次に、待機状態においてメインコントローラ2oに処理
開始命令を入力する。これに対応してメカコントローラ
22はウェハ1を治具8にローディングし、反応管2内
への挿入する。また、温度変換器23はウェハ19挿入
と同時にメカコントローラ22から発せられる信号によ
ってその時点の放射温度計10と熱電対14との値を取
り込んで放射率を算出する。ウェハ放射率の算出および
以降の温度モニタに対する基礎式は、式(3)に基づき
、反応管29石英プリズム11の透過率。Next, in the standby state, a processing start command is input to the main controller 2o. In response to this, the mechanical controller 22 loads the wafer 1 onto the jig 8 and inserts it into the reaction tube 2. Further, the temperature converter 23 receives the values of the radiation thermometer 10 and the thermocouple 14 at that time in response to a signal issued from the mechanical controller 22 at the same time as the wafer 19 is inserted, and calculates the emissivity. The basic equation for calculation of wafer emissivity and subsequent temperature monitoring is based on equation (3), and the transmittance of the reaction tube 29 and the quartz prism 11.
ミラー12の反射率を考慮し、なおかつ、T h ’=
T hとみなした以下の式を用いた。Considering the reflectance of the mirror 12, T h '=
The following formula was used considering T h.
Et=(τg’τp’ρJ”εw−E(Tw)+rp’
ρ、(ρw+ρ5)E(Th)・・・(6)
ρs :反応管透過率(0,067at0.9 prr
+)τ5(=1−ρs):反応管の透過率(=0.93
3ato、9μm)
τP :石英プリズムの透過率(=Q、933゜ato
、9μm)
ρ、:ミラーの反射率(=0.865at0.9μm)
上記のウェハ挿入直後における放射温度計10の出力を
Eto、熱電対14の出力をThOとすれば、ウェハの
挿入速度が速いためE (TV)<: E (TI、)
が成り立ち次のように放射率を求められる。Et=(τg'τp'ρJ"εw-E(Tw)+rp'
ρ, (ρw+ρ5)E(Th)...(6) ρs: Reaction tube permeability (0,067at0.9 prr
+) τ5 (=1-ρs): Transmittance of reaction tube (=0.93
3ato, 9μm) τP: Transmittance of quartz prism (=Q, 933゜ato
, 9 μm) ρ, : Mirror reflectance (=0.865 at 0.9 μm) If the output of the radiation thermometer 10 immediately after inserting the wafer is Eto, and the output of the thermocouple 14 is ThO, the wafer insertion speed is fast. For E (TV)<: E (TI,)
holds, and the emissivity can be calculated as follows.
以後、ウェハ熱処理中温度変換器23はこの放射率ε、
を用いて、式(6)からウェハ温度を算出する。メイン
コントローラ20はこの値からウェハ1の現在までの熱
処理量を積分計算し、設定した処理量になった所で熱処
理完了と判断して、メカコントローラ22にウェハ1を
引き出すよう指令する。Thereafter, the temperature converter 23 during wafer heat treatment uses this emissivity ε,
The wafer temperature is calculated from equation (6) using The main controller 20 integrally calculates the amount of heat treatment of the wafer 1 to date from this value, determines that the heat treatment is complete when the set amount of treatment is reached, and instructs the mechanical controller 22 to pull out the wafer 1.
引き出したウェハ1は治具8よりアンローディングし、
メカコントローラ22は次に処理すべきウェハ1の有無
を判定して、ウェハ1が有る場合はウェハローディング
より処理を繰り返し、無い場合は処理を終了する。また
、熱処理条件の設定後は温度コントローラ21は常にヒ
ータ4A〜4Cの温度を一定の値になるように制御して
いる。The pulled out wafer 1 is unloaded from the jig 8,
The mechanical controller 22 determines whether or not there is a wafer 1 to be processed next. If there is a wafer 1, the process is repeated from wafer loading, and if there is no wafer 1, the process is terminated. Further, after setting the heat treatment conditions, the temperature controller 21 always controls the temperatures of the heaters 4A to 4C to a constant value.
以上は、ウェハ1の処理時間を変えて熱処理量の均一化
を図る場合であった。処理時間を全く同じにしてヒータ
の設定温度を変える場合は第4図に示すような熱処理の
流れとなる。すなわち、熱処理条件の設定からウェハ挿
入2m度モニタ等は先の場合と同一であるが、熱処理量
の積分値に対して測定毎に所定の値と比較していたのを
やめ、引出し直後に、所定の熱処理量と測定値の偏差か
ら次回のヒータ設定温度を決める。処理時間は常に一定
で、仮に今回の熱処理量が足りなければ、次回のヒータ
設定温度を上げるし、多ければ設定温度を下げる。The above was a case where the processing time of the wafer 1 was changed to make the amount of heat treatment uniform. When the treatment time is exactly the same and the set temperature of the heater is changed, the heat treatment flow is as shown in FIG. 4. In other words, the setting of heat treatment conditions and the 2m degree monitor for wafer insertion are the same as in the previous case, but the integral value of the heat treatment amount is no longer compared with a predetermined value for each measurement, and immediately after withdrawal, The next heater setting temperature is determined from the deviation between the predetermined amount of heat treatment and the measured value. The processing time is always constant, and if the amount of heat treatment this time is not enough, the set temperature of the heater will be increased the next time, and if it is too much, the set temperature will be lowered.
ウェハ温度を熱処理量に変換するには、各処理に対して
適切な関係式があるのでこれを用いえば良い。また、実
験、シミュレーション等により、温度とこれらの熱処理
量との関係がわかっている場合には、その関係をメイン
コントローラ2o内にデータとして保存し5これを参照
すれば良い。In order to convert the wafer temperature into the amount of heat treatment, there is a relational expression appropriate for each treatment, so this can be used. Furthermore, if the relationship between the temperature and the amount of heat treatment is known through experiments, simulations, etc., that relationship may be stored as data in the main controller 2o and referred to.
次に、以上の熱処理において得られる、放射温度計1o
、@mm対接4出力を補正を加えず温度に変換した値、
および補正を加えて得られるウェハの温度の典型的なパ
ターンを第5図に示す。実線が放射温度計10.破線が
熱電対14.−点鎖線がウェハ温度を示している。放射
温度計10の出力はウェハ挿入直後、急に低下し極少値
をとった後、徐々に上昇する。この極少値が外乱放射に
よる出力である。また、熱電対14による炉壁温度の測
定値もウェハ挿入直後20〜30’Ca度低下し、徐々
に回復している。(ウェハが炉内に無い時は温度モニタ
を停止するが仮にこれを続けた場合に第5図のようなウ
ェハ引出し時の測定値に段差が付く現象が起きる。これ
は、ウェハを引き出した瞬間、炉壁の温度を測定するよ
うになるからである。)この温度変化による外乱放射の
値は第5図の下方に示すように変化するが、式(6)に
より適正な補正がなされて、正しいウェハ温度が求めら
れる。Next, the radiation thermometer 1o obtained in the above heat treatment
, @mm Value converted from 4 contact outputs to temperature without correction,
FIG. 5 shows a typical pattern of the wafer temperature obtained by adding and correcting the temperature. The solid line is the radiation thermometer 10. The broken line is the thermocouple 14. - The dashed line indicates the wafer temperature. Immediately after the wafer is inserted, the output of the radiation thermometer 10 suddenly decreases to a minimum value, and then gradually increases. This minimum value is the output due to disturbance radiation. Further, the furnace wall temperature measured by the thermocouple 14 also decreased by 20 to 30'Ca degrees immediately after inserting the wafer, and gradually recovered. (Temperature monitoring is stopped when there are no wafers in the furnace, but if this continues, a phenomenon will occur in which there will be a step in the measured value when the wafer is pulled out, as shown in Figure 5.This occurs at the moment the wafer is pulled out.) (This is because the temperature of the furnace wall is measured.) The value of disturbance radiation due to this temperature change changes as shown in the lower part of Fig. 5, but after proper correction is made using equation (6), Correct wafer temperature is required.
最後に、以上のような方法で求めたウェハ放射率の値の
妥当性について述べる。本発明者らは、ウェハ上に形成
された薄膜の干渉効果によって。Finally, we will discuss the validity of the wafer emissivity values obtained using the method described above. The inventors found that through the interference effect of thin films formed on the wafer.
正弦波状に変化する放射率の値を以下の式で推定できる
(単層薄膜に対する式、多層薄膜についてはこれの重ね
合せで良い)ことを確認した。It was confirmed that the emissivity value, which changes sinusoidally, can be estimated using the following formula (the formula for a single-layer thin film, and a combination of these for multi-layer thin films).
・・・(8)
λ
ρl :薄膜表面における反射率
ρ2 :薄膜と下地の境界における反射率0 :放射温
度計の測定方向と、ウェハ法線がなす角度
λ :放射温度計の測定波長
n :簿膜の屈折率
d :薄膜の厚さ
ここでρ1はフレネルの公式より以下のように求まる。...(8) λ ρl : Reflectance on the thin film surface ρ2 : Reflectance at the boundary between the thin film and the base 0 : Angle between the measurement direction of the radiation thermometer and the wafer normal λ : Measurement wavelength of the radiation thermometer n : Refractive index of film d: Thickness of thin film Here, ρ1 is determined from Fresnel's formula as follows.
・・・(9)
。。8θ−石百:πn”a
””cosfJ+ππ=司
Rpz+Rs”
ρ ニー
(この式は石英プリズムおよび、石英の反応管この表面
反射を考慮し、透過率を求める時にも有効である。)
また、ρ1については屈折率が既知(酸化膜S 1Oz
=1.45)で膜厚を種々変えたウェハを試料を用いて
実験を行って求めた。...(9). . 8θ−Shihyaku:πn”a ””cosfJ+ππ=ShiRpz+Rs” ρ (This formula is also effective when calculating the transmittance of a quartz prism and a quartz reaction tube, taking into account the surface reflection.) Also, ρ1 The refractive index is known for (oxide film S 1Oz
= 1.45), and was determined through experiments using samples of wafers with various film thicknesses.
具体的には、実験では温度均一性が1000℃±0.5
℃の炉内に裏側から熱電対を接着したウェハを挿入し、
炉口側より熱電対を接着した反対側の温度を測定するよ
うに放射温度計を設定した。Specifically, in the experiment, the temperature uniformity was 1000℃±0.5
A wafer with a thermocouple glued to it is inserted from the back side into a furnace at °C.
A radiation thermometer was set to measure the temperature from the furnace mouth side to the opposite side to which the thermocouple was attached.
この方法では熱電対がほぼウェハの真温度を示し、なお
かつ、ウェハが放射温度計に正対(ウェハ法線と放射温
度計の測定光路が一致)していれば、ウェハのみの熱放
射を受光できる(ウェハは鏡面とする)。したがって次
のようにウェハ放射率が求められる。In this method, if the thermocouple indicates approximately the true temperature of the wafer and the wafer is directly facing the radiation thermometer (the wafer normal and the measurement optical path of the radiation thermometer match), it will receive thermal radiation from only the wafer. Yes (the wafer has a mirror surface). Therefore, the wafer emissivity is determined as follows.
ε、′:実験より求めたウェハ放射率
E、 :放射温度計の出力
”rw’ :熱電対により測定したウェハ温度以上の
実験より酸化膜ではn=1゜45.ρ1=0.034.
ρz=0.16 という(ilを得た。ε,': Wafer emissivity E obtained from experiment: Output of radiation thermometer "rw': From experiment at wafer temperature measured by thermocouple or higher, n=1°45.ρ1=0.034 for oxide film.
We obtained (il) ρz=0.16.
以上の結果、酸化膜の膜厚が既知であればウェハの放射
率が求められる。例えば6230人の場合、ε、=0.
704である。As a result of the above, if the thickness of the oxide film is known, the emissivity of the wafer can be determined. For example, in the case of 6230 people, ε,=0.
704.
これに対し、本発明によるウェハ放射率の推定値は以下
のようになる。放射温度計10は以下の特性を有する物
を使用した。On the other hand, the estimated value of the wafer emissivity according to the present invention is as follows. The radiation thermometer 10 used had the following characteristics.
■:放射温度計10の温度T (K)の黒体に対する出
力(熱放射に比例)
A = 960.3228 x 1. O−’B =
−2,56976X 10−’C=6.804135X
105
Cz =0.014388
V(T)ccE(T)であるから式(7)より、EtO
に対する出力をVtoとすれば
となる。■: Output of the temperature T (K) of the radiation thermometer 10 relative to the black body (proportional to thermal radiation) A = 960.3228 x 1. O-'B=
-2,56976X 10-'C=6.804135X
Since 105 Cz = 0.014388 V(T)ccE(T), from equation (7), EtO
Letting the output for Vto be Vto.
また、前述の6230人の酸化膜が形成されたウェハで
実験した所
Vro=0.73274 (V)
to =949.0 (T:)
が得られ式(6)の所に記入したρ幻τr、ρSの値を
用いて、放射率を式(12)より求めるとε1=0.6
97 となる。以上の結果より、本発明による放射率
の推定誤差は±1%程度に収っていると推定できる。In addition, when we conducted an experiment on the wafer on which the oxide film of the 6230 people described above was formed, we obtained Vro = 0.73274 (V) to = 949.0 (T:), and the ρ illusion τr entered in equation (6) , the emissivity is calculated from equation (12) using the value of ρS, ε1=0.6
It becomes 97. From the above results, it can be estimated that the emissivity estimation error according to the present invention is within about ±1%.
本発明によれば1枚葉式の熱処理装置において、ウェハ
の放射率を適確に補正でき、さらに、連続してウェハを
炉内に挿入・引出しを行い処理する時の炉壁温度変化に
よる外乱放射の変動を適正に予測できるので、常に正確
なウェハ温度測定ができる。また、直接ウェハの温度を
測定することにより、熱処理時間の調整、あるいはヒー
タ設定温度の変更等の対応が容易になり、均一な熱処理
が可能となることから、歩留りの向上が期待できる。According to the present invention, it is possible to accurately correct the emissivity of a wafer in a single-wafer type heat treatment apparatus, and furthermore, it is possible to accurately correct the emissivity of a wafer, and furthermore, the disturbance caused by changes in furnace wall temperature when wafers are continuously inserted into and pulled out of the furnace for processing. Since radiation fluctuations can be properly predicted, accurate wafer temperature measurements can be made at all times. Furthermore, by directly measuring the temperature of the wafer, it becomes easier to adjust the heat treatment time or change the heater temperature setting, and uniform heat treatment becomes possible, which can be expected to improve yield.
第1図は本発明の一実施例である枚葉式の熱処理装置加
熱炉の断面および各コントローラ間の信号の流れを示す
図、第2図は本発明を構成する放射温度計が受ける熱放
射を示す図、第3図、第4図は本発明による熱処理のフ
ローチャート図、第5図は熱処理時における放射温度計
と炉壁用温度計の出力及びウェハの温度の変化を示す図
である。
1・・・ウェハ、2・・・反応管、3・・・均熱管、4
−1〜4−3・・・ヒータ、5・・・制御用熱電対、6
・・・ケーブル、7・・・断熱材、8・・・治具、9・
・・搬送機構、1゜・・放射温度計、11・・・石英プ
リズム、12・・・ミラ13・・・プリズムスタンド、
14・・・炉壁用熱電体、20・・・メインコントロー
ラ、21・・・温度コントローラ、2−2・・・メカコ
ントローラ、23・・・温度″JJ31 図
JO・・−戎射逼渡S十
ネ
り
搬道滅牌
第
閃
埠
J、L
(°C)Fig. 1 is a diagram showing a cross section of a heating furnace of a single-wafer type heat treatment apparatus which is an embodiment of the present invention, and a diagram showing the flow of signals between each controller, and Fig. 2 is a diagram showing the heat radiation received by a radiation thermometer constituting the present invention. FIGS. 3 and 4 are flowcharts of heat treatment according to the present invention, and FIG. 5 is a diagram showing outputs of a radiation thermometer and a furnace wall thermometer and changes in wafer temperature during heat treatment. 1... Wafer, 2... Reaction tube, 3... Soaking tube, 4
-1 to 4-3... Heater, 5... Control thermocouple, 6
...Cable, 7.Insulation material, 8.Jig, 9.
...Transportation mechanism, 1°...Radiation thermometer, 11...Quartz prism, 12...Mira 13...Prism stand,
14...Thermoelectric body for furnace wall, 20...Main controller, 21...Temperature controller, 2-2...Mechanical controller, 23...Temperature"JJ31 Figure JO...-Ekishotadado S Tenneri Carriedou Mekadai Senboku J, L (°C)
Claims (1)
を保持する治具と、この治具を固定したウェハ搬送機構
とを有する半導体熱処理装置において、前記加熱炉に挿
入したウェハの熱放射を受光する放射温度計と、加熱炉
の炉壁の中で、そこから発せられる熱放射がウェハ表面
で反射した後、放射温度計に入射する位置にある部分の
温度を測定する温度計と、これらの出力からウェハ放射
率と上記ウェハ表面での熱放射の反射の効果を補正して
ウェハの真の温度を求める温度変換器と、前記搬送機構
によってウェハを加熱炉内に挿入するタイミングを温度
変換器に送信するメカコントローラと、温度変換器から
出力されるウェハの真温度から、ウェハの熱処理量を積
分計算し、これに基づいてウェハの引出しおよび加熱炉
の温度を制御する温度コントインコントローラとを備え
たことを特徴とする半導体熱処理装置。1. In a semiconductor heat processing apparatus that has a heating furnace having an opening for loading and unloading the wafer, a jig for holding the wafer, and a wafer transport mechanism to which this jig is fixed, the heat radiation of the wafer inserted into the heating furnace is A radiation thermometer that receives light; a thermometer that measures the temperature of the part of the furnace wall of the heating furnace where the thermal radiation emitted from the wall is reflected on the wafer surface and then enters the radiation thermometer; A temperature converter that calculates the true temperature of the wafer by correcting the wafer emissivity and the effect of reflection of thermal radiation on the wafer surface from the output of A temperature control controller that integrally calculates the amount of wafer heat treatment from the true temperature of the wafer output from the temperature converter and controls the temperature of the wafer drawer and heating furnace based on this. A semiconductor heat treatment apparatus characterized by comprising:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63188477A JPH0239525A (en) | 1988-07-29 | 1988-07-29 | Heat treatment device for semiconductor |
DE3855871T DE3855871T2 (en) | 1987-09-11 | 1988-09-09 | Device for carrying out a heat treatment on semiconductor wafers |
EP88114763A EP0306967B1 (en) | 1987-09-11 | 1988-09-09 | Apparatus for performing heat treatment on semiconductor wafers |
US07/242,175 US5001327A (en) | 1987-09-11 | 1988-09-09 | Apparatus and method for performing heat treatment on semiconductor wafers |
KR1019880011652A KR920004911B1 (en) | 1987-09-11 | 1988-09-09 | Thermally processing apparatus and method of semiconductor wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63188477A JPH0239525A (en) | 1988-07-29 | 1988-07-29 | Heat treatment device for semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0239525A true JPH0239525A (en) | 1990-02-08 |
Family
ID=16224412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63188477A Pending JPH0239525A (en) | 1987-09-11 | 1988-07-29 | Heat treatment device for semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0239525A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009218609A (en) * | 2009-05-13 | 2009-09-24 | Hitachi Kokusai Electric Inc | Heat treatment apparatus, heater unit, and semiconductor manufacturing method |
US20100206482A1 (en) * | 2009-02-02 | 2010-08-19 | Tokyo Electron Limited | Plasma processing apparatus and temperature measuring method and apparatus used therein |
WO2014156853A1 (en) * | 2013-03-29 | 2014-10-02 | 大陽日酸株式会社 | Method for adjusting vapor-phase growth apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5458350A (en) * | 1977-09-29 | 1979-05-11 | Siemens Ag | Device for depositing semiconductor material |
JPS55154727A (en) * | 1979-05-21 | 1980-12-02 | Hitachi Ltd | Method of controlling semiconductor diffusion temperature |
JPS6134929A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing device of semiconductor device |
JPS6215816A (en) * | 1985-07-12 | 1987-01-24 | Matsushita Electric Ind Co Ltd | Infrared-ray heater |
JPS62105419A (en) * | 1985-11-01 | 1987-05-15 | Hitachi Ltd | Temperature controlling method for diffusing device |
JPS62113034A (en) * | 1985-11-13 | 1987-05-23 | Kokusai Electric Co Ltd | Temperature measuring apparatus for semiconductor during the heating of lamp |
-
1988
- 1988-07-29 JP JP63188477A patent/JPH0239525A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5458350A (en) * | 1977-09-29 | 1979-05-11 | Siemens Ag | Device for depositing semiconductor material |
JPS55154727A (en) * | 1979-05-21 | 1980-12-02 | Hitachi Ltd | Method of controlling semiconductor diffusion temperature |
JPS6134929A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing device of semiconductor device |
JPS6215816A (en) * | 1985-07-12 | 1987-01-24 | Matsushita Electric Ind Co Ltd | Infrared-ray heater |
JPS62105419A (en) * | 1985-11-01 | 1987-05-15 | Hitachi Ltd | Temperature controlling method for diffusing device |
JPS62113034A (en) * | 1985-11-13 | 1987-05-23 | Kokusai Electric Co Ltd | Temperature measuring apparatus for semiconductor during the heating of lamp |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100206482A1 (en) * | 2009-02-02 | 2010-08-19 | Tokyo Electron Limited | Plasma processing apparatus and temperature measuring method and apparatus used therein |
US8986494B2 (en) * | 2009-02-02 | 2015-03-24 | Tokyo Electron Limited | Plasma processing apparatus and temperature measuring method and apparatus used therein |
JP2009218609A (en) * | 2009-05-13 | 2009-09-24 | Hitachi Kokusai Electric Inc | Heat treatment apparatus, heater unit, and semiconductor manufacturing method |
WO2014156853A1 (en) * | 2013-03-29 | 2014-10-02 | 大陽日酸株式会社 | Method for adjusting vapor-phase growth apparatus |
JP2014194996A (en) * | 2013-03-29 | 2014-10-09 | Taiyo Nippon Sanso Corp | Vapor deposition apparatus adjustment method |
US9670583B2 (en) | 2013-03-29 | 2017-06-06 | Taiyo Nippon Sanso Corporation | Method for adjusting vapor-phase growth apparatus |
TWI614367B (en) * | 2013-03-29 | 2018-02-11 | 大陽日酸股份有限公司 | Adjustment method for vapor phase growth apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6191399B1 (en) | System of controlling the temperature of a processing chamber | |
JP4511724B2 (en) | Substrate temperature measuring method and substrate temperature measuring apparatus | |
JPH05196505A (en) | Bi-channel radiation detecting method | |
JPH0623935B2 (en) | Heat treatment control method with improved reproducibility | |
JP6464765B2 (en) | Heat treatment apparatus, heat treatment method and storage medium | |
WO1998038673A1 (en) | Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device | |
JP2007208287A (en) | Device for measuring temperature of substrate | |
JP2002522912A (en) | Tuning of substrate temperature measurement system | |
JPH10154665A (en) | Adaptive temperature controller and method of operation | |
TW476997B (en) | Method of temperature-calibrating heat treating apparatus | |
US20030061989A1 (en) | Semiconductor manufacturing system | |
US6780795B2 (en) | Heat treatment apparatus for preventing an initial temperature drop when consecutively processing a plurality of objects | |
JPH0239525A (en) | Heat treatment device for semiconductor | |
JP2009147170A (en) | Method and device for manufacturing semiconductor device | |
TW409320B (en) | Lamp annealer and method for annealing semiconductor wafer | |
JP4346208B2 (en) | Temperature measuring method, heat treatment apparatus and method, and computer-readable medium | |
JPH07201765A (en) | Heat-treating device and heat treatment | |
JP2006170616A (en) | Method and device for measuring temperature, and semiconductor heat treating device | |
JP2982026B2 (en) | Temperature measuring device and temperature measuring device for body to be heated using the same | |
JPH10144618A (en) | Heater for manufacturing semiconductor device | |
JP2729283B2 (en) | Lamp annealing furnace temperature controller | |
JP4646354B2 (en) | Heat treatment apparatus and method | |
JPH0552445B2 (en) | ||
JP3915679B2 (en) | Heat treatment method for semiconductor wafer | |
JPH06242840A (en) | Sheet type heat treatment processor and heat treatment temperature monitoring method |