JPH0239524A - Manufacture of polycrystalline silicone thin film transistor - Google Patents

Manufacture of polycrystalline silicone thin film transistor

Info

Publication number
JPH0239524A
JPH0239524A JP19079788A JP19079788A JPH0239524A JP H0239524 A JPH0239524 A JP H0239524A JP 19079788 A JP19079788 A JP 19079788A JP 19079788 A JP19079788 A JP 19079788A JP H0239524 A JPH0239524 A JP H0239524A
Authority
JP
Japan
Prior art keywords
hydrogen
thin film
plasma
organic compound
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19079788A
Other languages
Japanese (ja)
Inventor
Zenichi Akiyama
善一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19079788A priority Critical patent/JPH0239524A/en
Publication of JPH0239524A publication Critical patent/JPH0239524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To enable excellent plasma hydrogen treatment by introducing organic compound into gas used for hydrogen plasma treatment so as to accumulate a diamond carbon thin film and also dispersing hydrogen into polycrystalline silicon. CONSTITUTION:Organic compound to be used does not contain halogen inside the molecule, and this organic compound is composed of each atom of C, H, O and N, and staturated hydrocarbon, unsaturated hydrocarbon, alcohol and the like, ether and the like, aromatic and the like can be cited, and it is to be desired to use the one that the amounts of molecules are small. And in the case where methanol is selected as the organic compound and this is gasified and is introduced into plasma hydrogen treatment together with H2 gas, if a high frequency electric field is apllied to between parallel plate electrodes 21 and 22 glow discharge arises, and material gas is decomposed into radicals and ions in plasma. And by these active kinds hydrogen dispersion is done in polycrystalline silicon, and a diamond carbon thin film is accumulated on a substrate. Hereby, carrier shifting degree is improved by the hydrogen dispersion, and at the same time favolable plasma treatment can be done.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は薄膜トランジスタ(TPT)の製造方法に関し
、詳しくは、多結晶シリコンを用いた薄膜トランジスタ
製造で特定のプラズマ処理を施こすことによって、TP
T特性の改善をはかるとともにパッシベーション膜の成
膜をも行なうようにした新規な多結晶シリコン薄膜トラ
ンジスタの製造方法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for manufacturing a thin film transistor (TPT).
The present invention relates to a method for manufacturing a novel polycrystalline silicon thin film transistor, which improves T characteristics and also forms a passivation film.

〔従来技術〕[Prior art]

センサ、液晶パネル、ELパネルなどを駆動させるため
の薄膜トランジスタの研究が随所で盛んに行なわれてお
り、その特性(TPT特性)の改善と並行して更に数多
くの技術分野への応用が期待されている。
Research on thin film transistors for driving sensors, liquid crystal panels, EL panels, etc. is being actively conducted everywhere, and in parallel with improving their characteristics (TPT characteristics), it is expected that they will be applied to many more technical fields. There is.

ところで一般に、ポリシリコン(多結晶シリコン)を半
導体材料として製造されるTPTのメリットは装置の大
面積化である。しかし、多結晶であるがために、ポリシ
リコン結晶粒界でダングリングボンドや結晶格子の乱れ
によるトラップ準位が存在することからキャリアの捕獲
が起こり、粒界に沿って障壁ポテンシャルが形成されキ
ャリア移動度(ad/V’s)が低下してしまうという
欠陥を有している。
By the way, in general, the advantage of TPT manufactured using polysilicon (polycrystalline silicon) as a semiconductor material is that the device can have a large area. However, because it is polycrystalline, there are trap levels caused by dangling bonds and disordered crystal lattices at the polysilicon grain boundaries, which causes carrier capture, and a barrier potential is formed along the grain boundaries, causing carriers to be trapped. It has a defect that the mobility (ad/V's) decreases.

こうした欠陥を解消する対策としては、通常、ポリシリ
コン結晶粒界に水素原子を水素プラズマ処理によって導
入(水素処理)し、結晶格子の乱れを正しダングリング
ボンドの密度を低減させ、前記トラップ準位を小さくし
てキャリア移動度を向上させる方法が一般にとられてい
る。
As a countermeasure to eliminate these defects, hydrogen atoms are usually introduced into the polysilicon grain boundaries by hydrogen plasma treatment (hydrogen treatment) to correct the disorder of the crystal lattice and reduce the density of dangling bonds. Generally, a method is used to improve carrier mobility by reducing the carrier mobility.

第2図はプラズマ水素処理に用いられる最も一般的な装
置の概略を示しており、Sは基板。
Figure 2 shows an outline of the most common equipment used for plasma hydrogen treatment, where S is the substrate.

1は真空槽、21及び22は電極、3はrf電源、4は
基板加熱用ヒータを表わしている。
1 is a vacuum chamber, 21 and 22 are electrodes, 3 is an RF power source, and 4 is a heater for heating the substrate.

このプラズマ水素処理は、真空槽1にH2ガスを導入し
真空排気により真空槽1内を数Torrに保ち、rf電
源(13,56MHz) 3により平行平板電極21、
22間に放電を起こさせる。この放電により)(2ガス
がラジカル及びイオンに解離され、それが基板Sに熱拡
散されるというものである。ここで、基板側電極21は
接地されており、対向電極22にはrf電極3によりセ
ルフバイアスがかかるようになっている。
In this plasma hydrogen treatment, H2 gas is introduced into the vacuum chamber 1, the inside of the vacuum chamber 1 is maintained at several Torr by evacuation, and parallel plate electrodes 21,
A discharge is caused between 22 and 22 hours. Due to this discharge, the two gases are dissociated into radicals and ions, which are thermally diffused to the substrate S. Here, the substrate side electrode 21 is grounded, and the counter electrode 22 is connected to the RF electrode 3. This results in self-bias.

だが、こうした従来の(通常の)平行平板型プラズマ水
素処理にあっては、プラズマ中に発生するラジカルやイ
オン(特にH1イオン)はセルフバイアスのかかってい
るff1t!(対向電極22)に衝突し、そこでH+イ
オンによるスパッタリング現象が生じ、このスパッタリ
ングによって基板S上に電極22の材料成分の薄膜が形
成されるという事態が往々に発生している。従って、電
極22が5US(ステンレス鋼)であれば基板S上に堆
積される膜はFe、 Ni、 Crどの5′異物″を含
有するようになる。
However, in such conventional (ordinary) parallel plate plasma hydrogen processing, the radicals and ions (especially H1 ions) generated in the plasma are self-biased ff1t! (Counter electrode 22), where a sputtering phenomenon occurs due to H+ ions, and this sputtering often causes a thin film of the material component of electrode 22 to be formed on substrate S. Therefore, if the electrode 22 is made of 5US (stainless steel), the film deposited on the substrate S will contain 5' foreign substances such as Fe, Ni, and Cr.

第3図はそうした現象を図解したものであり、破線で囲
まれた領域はプラズマ放電雰囲気、矢印が下向きになっ
ていて丸で囲っであるFe、 Cr。
Figure 3 illustrates such a phenomenon, where the area surrounded by the broken line is a plasma discharge atmosphere, the arrow points downward, and the area surrounded by a circle is Fe, Cr.

及びNiは電極22材料のスパッタリング現象、基板S
上の丸で囲っであるFe、 Cr、及びNjはそのスパ
ッタリングにより堆積した″異物″である。
and Ni are the sputtering phenomenon of the electrode 22 material, the substrate S
Fe, Cr, and Nj, which are circled above, are "foreign substances" deposited by sputtering.

これら″異物″は化学エツチングによってはエツチング
されないし、リーク故障を生じさせるおそれもあり、実
装する際のAQワイヤーボンディングの不良率を上昇さ
せる原因となる。実際、センサ、液晶パネル、ELパネ
ルなどにおいてそれらの駆動用TPTを形成させた後、
この上層にデザインされるデバイスではパ異物″が存在
することは不都合である。
These "foreign substances" cannot be etched by chemical etching and may cause leakage failures, causing an increase in the failure rate of AQ wire bonding during mounting. In fact, after forming the driving TPT for sensors, liquid crystal panels, EL panels, etc.
In devices designed on this upper layer, the presence of "particles" is a disadvantage.

もっとも、平行平板型プラズマ水素処理装置の他に、(
イ)プラズマ発生部と基板セット部とを分離した水素処
理装置を用いる(例えばIEEEEDL、 VoL 7
 、 N[Lll 1986“Hydrogenera
tionfor PoQy−3i FET’S by 
Ion Shower DapingTechniqu
e”)、(ロ)水素処理をシリコンナイトライド(S1
3N4)のプラズマ化学気相成長法で行なう(例えばI
EEE EDL、 VoQ、 5 、 Mail 19
84“Hydrogen Pa5sivation o
f Pofly−5i MO5FET’Sfrom a
 PQasma N1tride 5ource”)な
どがあげられる。だが、前記(イ)では大面積デバイス
の薄膜トランジスタには装置的に実現が難しく、方、前
記(ロ)ではSi、N、膜が形成されるが、この膜は化
学的エツチングに対しあまりにも安定している(エツチ
ングされにくい)ため、必要によりなされるエツチング
が勢い過度になり勝ちで下地のAQ層等へダメージを与
えやすい、等の欠陥がある。
However, in addition to parallel plate plasma hydrogen treatment equipment, (
b) Using a hydrogen treatment device in which the plasma generation part and the substrate setting part are separated (e.g. IEEE EDL, VoL 7
, N [Lll 1986 “Hydrogenera
tionfor PoQy-3i FET'S by
Ion Shower Daping Technique
(b) Hydrogen treatment with silicon nitride (S1
3N4) plasma chemical vapor deposition method (for example, I
EEE EDL, VoQ, 5, Mail 19
84 “Hydrogen Pa5sivation o
f Pofly-5i MO5FET'Sfrom a
However, in (b) above, Si, N, and films are formed, but in (b) above, it is difficult to realize thin film transistors for large-area devices. Since the film is too stable against chemical etching (it is difficult to be etched), the etching that is carried out when necessary tends to be excessively vigorous, which tends to damage the underlying AQ layer and the like.

こうした理由から、最近最も実用に供されているのは、
前記のごとき欠陥(基板S上に堆積される膜中への″異
物″の混入)が指摘されているものの平行平板型プラズ
マ水素処理である。
For these reasons, the ones that have been put into practical use recently are:
Although the above-mentioned defects (inclusion of "foreign matter" into the film deposited on the substrate S) have been pointed out, this is a parallel plate type plasma hydrogen treatment.

〔目  的〕〔the purpose〕

本発明は、良好なプラズマ水素処理がなされると同時に
、安定したかつ加工しやすいパッシベーション膜が形成
される、多結晶シリコン薄膜トランジスタの製造方法を
提供するものである。
The present invention provides a method for manufacturing a polycrystalline silicon thin film transistor in which a stable and easy-to-process passivation film is formed while performing a good plasma hydrogen treatment.

〔構  成〕〔composition〕

本発明は絶縁基板上に多結晶シリコンを半導体材料とし
て形成した薄膜トランジスタ(TPT)の製造方法にお
いて、そのTPTの水素プラズマ処理するに際し、水素
プラズマ処理に使用されるガス中に炭素、水素、酸素及
び窒素を構成原子とした有機化合物を導入せしめること
によって、ダイヤモンド状薄膜を堆積させるとともに多
結晶シリコン内に水素を拡散させることを特徴としてい
る。
The present invention relates to a method for manufacturing a thin film transistor (TPT) in which polycrystalline silicon is formed as a semiconductor material on an insulating substrate, and in hydrogen plasma treatment of the TPT, carbon, hydrogen, oxygen and The method is characterized by depositing a diamond-like thin film and diffusing hydrogen into polycrystalline silicon by introducing an organic compound containing nitrogen as a constituent atom.

ちなみに、本発明者は前記目的を達成するためにいろい
ろ検討を行なった結果、水素ガスとともにガス状又はガ
ス化された有機化合物を真空槽中に導入しそこで平行平
板型プラズマ水素処理を施せば良好な結果が得られるこ
とを確めた。本発明方法はこれに基づいてなされたもの
である。
Incidentally, as a result of various studies to achieve the above object, the present inventor found that it is possible to introduce a gaseous or gasified organic compound together with hydrogen gas into a vacuum chamber and perform parallel plate plasma hydrogen treatment there. It was confirmed that good results could be obtained. The method of the present invention is based on this.

以下に、本発明方法を図面に従がいながら更に詳細に説
明する。第1図は本発明方法の実施に好適な装置の代表
例の1つを示している。第1図と第2図との比較から容
易に判かるように、本発明方法はプラズマ水素処理ガス
にガス状又はガス化された有機化合物を導入することに
よって、ダイヤモンド状炭素薄膜を堆積させると同時に
、多結晶シリコン中に水素を拡散するという手法が採用
されている。
The method of the present invention will be explained in more detail below with reference to the drawings. FIG. 1 shows one representative example of an apparatus suitable for carrying out the method of the invention. As can be easily seen from a comparison between FIG. 1 and FIG. 2, the method of the present invention deposits a diamond-like carbon thin film by introducing a gaseous or gasified organic compound into the plasma hydrogen treatment gas. At the same time, a method of diffusing hydrogen into polycrystalline silicon has been adopted.

ここで使用される有機化合物はその分子中にハロゲンを
含んでおらず、更に好ましくはハロゲンに加えてアルカ
リ金属をもその分子中に含んだものでなければよく、従
って、好ましくはC,H,○及びN(更に好ましくはC
,H及びO)の各原子で構成された有機化合物である。
The organic compound used here does not contain a halogen in its molecule, and more preferably does not contain an alkali metal in its molecule in addition to a halogen. Therefore, preferably C, H, ○ and N (more preferably C
, H, and O).

具体的には、飽和炭化水素(アルカン類)、不飽和炭化
水素(アルケン類、アルキン類)、アルコール類、エー
テル類、芳香族類などがあげられるが、好ましくは分子
量の小さいものの使用が有利である。有機化合物が常温
で液体のものである場合にはバブラーを使用しガス化さ
せてから真空槽1内に導入する必要がある。
Specific examples include saturated hydrocarbons (alkanes), unsaturated hydrocarbons (alkenes, alkynes), alcohols, ethers, aromatics, etc., but it is advantageous to use those with a small molecular weight. be. If the organic compound is liquid at room temperature, it is necessary to gasify it using a bubbler before introducing it into the vacuum chamber 1.

有機化合物ガス/水素ガスの流量割合は、有機化合物の
種類によって一概に決められないが、おおむね5SCC
M/11005CC〜30SCCM/ 11005CC
好ましくは約20SCCM / 11005CCである
。また、真空槽1内の圧力は0.3〜2.0Torr、
好ましくは約0.5Torrであり、基板温度は100
−400℃、好ましくは約350℃である。
The flow rate ratio of organic compound gas/hydrogen gas cannot be determined unconditionally depending on the type of organic compound, but it is approximately 5SCC.
M/11005CC~30SCCM/11005CC
Preferably about 20SCCM/11005CC. In addition, the pressure inside the vacuum chamber 1 is 0.3 to 2.0 Torr,
Preferably it is about 0.5 Torr and the substrate temperature is 100
-400°C, preferably about 350°C.

いま、有機化合物としてメタノール(CH,OH)を選
択しこれをガス化させ、H2ガスとともに第゛1図のプ
ラズマ水素処理中に導入した場合を例にとって説明する
Now, an example will be explained in which methanol (CH, OH) is selected as an organic compound, gasified, and introduced together with H2 gas during the plasma hydrogen treatment shown in FIG. 1.

平行平板電極21.22間に高周波電界(13,56M
t(z)を印加するとグロー放電が発生し、原料ガス(
H2ガス、CH,01(ガス)はプラズマ中でラジカル
とイオンとに分解される。
A high frequency electric field (13,56M
When t(z) is applied, a glow discharge occurs and the raw material gas (
H2 gas and CH,01 (gas) are decomposed into radicals and ions in the plasma.

(水素分子) H2→2H・・・(1) H2−+2H”+2e−−(2) H2→2 H+ H” + e −=・(3)(メタノ
ール分子) CH30H−+CH”+OH−・・(4)CH,○H−
+CH3”+OH”    ・・(5)CH30H−+
CH3”+OH−+ 2 e−−(6)CH,OH−+
CH,”+○H−・・・(7)CH,”→CHア +H
・・・(8) CH3”−+CH2”+I−(”+ 2 e−−(9)
CH→○ +H・・・(10) CH−)0  +H・・・(11) これら式において、それぞれ(1)から(3)までは多
結晶シリコンへの水素拡散に寄与、(4)から(7)ま
でのうちメチルラジカル、メチルアニオンがダイヤモン
ド状炭素薄膜形成に寄与、(8)から(11)までのう
ち水素ラジカル、水素アニオンが多結晶シリコンへの水
素拡散に寄与、(10)及び(11)のうち酸素ラジカ
ルは炭素薄膜のエツチングに寄与するといった役割を果
す。なお、そうした寄与にあずからない、ラジカル、イ
オン等はその量が僅かであり、また、そうしたラジカル
、イオン等の存在は本発明方法では無視しうることがで
きる。
(Hydrogen molecule) H2→2H...(1) H2-+2H"+2e--(2) H2-→2 H+ H"+e-=・(3)(Methanol molecule) CH30H-+CH"+OH-...( 4) CH, ○H-
+CH3"+OH"...(5)CH30H-+
CH3"+OH-+ 2 e--(6) CH, OH-+
CH,"+○H-...(7)CH,"→CHa +H
...(8) CH3"-+CH2"+I-("+ 2 e--(9)
CH→○ +H...(10) CH-)0 +H...(11) In these equations, (1) to (3) contribute to hydrogen diffusion into polycrystalline silicon, and (4) to ( Among 7), methyl radicals and methyl anions contribute to the formation of a diamond-like carbon thin film, among (8) to (11), hydrogen radicals and hydrogen anions contribute to hydrogen diffusion into polycrystalline silicon, and (10) and ( Of 11), oxygen radicals play a role of contributing to etching of the carbon thin film. Note that the amount of radicals, ions, etc. that do not make such a contribution is small, and the presence of such radicals, ions, etc. can be ignored in the method of the present invention.

即ち、これら活性種により、多結晶シリコンには水素拡
散が行なわれ、同時に、基板上にはダイヤモンド状炭素
薄膜が堆積される。
That is, hydrogen is diffused into the polycrystalline silicon by these active species, and at the same time, a diamond-like carbon thin film is deposited on the substrate.

但し、この堆積されたダイヤモンド状炭素薄膜は、X 
−ray及び電子回折分析によりアモルファス状態(a
−C:H)であって、完全なダイヤモンド構°造を呈し
ている訳ではなく、製膜条件によっても異なるが、IR
吸収法及びラマン分光法による分析の結果、ダイヤモン
ド構造(炭素原子がsp3の混成軌道を形成)とグラフ
ァイト構造(炭素原子がsp2の混成軌道を形成)とが
混在した状態となっているのが認められる。ダイヤモン
ド構造の占める割合が多ければ絶縁性にすぐれ、また応
力の少ない(約10’N/m)膜が形成される。
However, this deposited diamond-like carbon thin film is
-ray and electron diffraction analysis revealed an amorphous state (a
-C:H), which does not have a perfect diamond structure and varies depending on the film forming conditions, but the IR
As a result of analysis by absorption method and Raman spectroscopy, it was found that the diamond structure (carbon atoms form an sp3 hybrid orbital) and graphite structure (carbon atoms form an sp2 hybrid orbital) coexist. It will be done. If the proportion occupied by the diamond structure is high, a film with excellent insulation properties and low stress (approximately 10'N/m) will be formed.

メタノール中の炭素はSF3の混成軌道を有しているた
め、軌道結合しているH原子等が立体障壁となり、s 
P3の結合を保持しながら堆積される。従って、理想的
なダイヤモンド状炭素薄膜が形成されやすい。また、メ
タノール中の酸素(正確には式(10)及び(11)中
の酸素ラジカル)は堆積されていくダイヤモンド状炭素
薄膜をエツチングし、このエツチングの作用により弱い
結合の炭素が除かれ、強い結合のみのダイヤモンド状炭
素薄膜が形成できる。
Since the carbon in methanol has a hybrid orbital of SF3, the orbital-bonded H atoms etc. act as steric barriers, causing s
It is deposited while retaining the bond of P3. Therefore, an ideal diamond-like carbon thin film is easily formed. In addition, the oxygen in methanol (more precisely, the oxygen radicals in formulas (10) and (11)) etches the diamond-like carbon thin film that is being deposited, and this etching action removes weak carbon bonds and strengthens them. A diamond-like carbon thin film with only bonds can be formed.

CH、OHの池水発明方法に特に有用な有機化合物とし
てはメタン(CI(4)、エタン(C2Hs )、ベン
ゼン(cs HG )などがあげられる。
Organic compounds that are particularly useful in the CH, OH method include methane (CI(4)), ethane (C2Hs), benzene (csHG), and the like.

本発明方法により形成されたダイヤモンド状炭素膜はそ
のエツチングに際して下地AQ膜(AQ配a)等へのダ
メージを与えることが避けられる。
The diamond-like carbon film formed by the method of the present invention can avoid damaging the underlying AQ film (AQ pattern a) and the like during etching.

〔効  果〕 本発明方法によれば、水素拡散によって多結晶シリコン
中のダングリングボンドを極力減少せしめられキャリア
移動度が向上し、同時に、表面にダイヤモンド状炭素薄
膜を形状しうるので、工程の短縮が図られ、歩留りも向
上する。
[Effects] According to the method of the present invention, dangling bonds in polycrystalline silicon are reduced as much as possible by hydrogen diffusion, carrier mobility is improved, and at the same time, a diamond-like carbon thin film can be formed on the surface, so that the process can be simplified. It is possible to shorten the time and improve yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に有用な装置の一例の概略図
である。 第2図及び第3図は従来の平行平板型プラズマ水素処理
を説明するための図である。 1・真空槽 21.22・・・電極 3・・rf  電 源   4・・・基板加熱用ヒータ
S・基 板
FIG. 1 is a schematic diagram of an example of apparatus useful in carrying out the method of the present invention. FIGS. 2 and 3 are diagrams for explaining conventional parallel plate type plasma hydrogen processing. 1. Vacuum chamber 21. 22... Electrode 3... RF power supply 4... Substrate heating heater S/substrate

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁基板上に多結晶シリコンを半導体材料として形
成した薄膜トランジスタを水素プラズマ処理するに際し
て、その水素プラズマ処理に使用されるガス中に炭素、
水素、酸素及び窒素を構成原子とした有機化合物を導入
せしめ、ダイヤモンド状薄膜を堆積させるとともに多結
晶シリコン内に水素を拡散させることを特徴とする多結
晶シリコン薄膜トランジスタの製造方法。
1. When hydrogen plasma treatment is performed on a thin film transistor made of polycrystalline silicon as a semiconductor material on an insulating substrate, carbon,
A method for manufacturing a polycrystalline silicon thin film transistor, which comprises introducing an organic compound containing hydrogen, oxygen, and nitrogen as constituent atoms, depositing a diamond-like thin film, and diffusing hydrogen into polycrystalline silicon.
JP19079788A 1988-07-29 1988-07-29 Manufacture of polycrystalline silicone thin film transistor Pending JPH0239524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19079788A JPH0239524A (en) 1988-07-29 1988-07-29 Manufacture of polycrystalline silicone thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19079788A JPH0239524A (en) 1988-07-29 1988-07-29 Manufacture of polycrystalline silicone thin film transistor

Publications (1)

Publication Number Publication Date
JPH0239524A true JPH0239524A (en) 1990-02-08

Family

ID=16263903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19079788A Pending JPH0239524A (en) 1988-07-29 1988-07-29 Manufacture of polycrystalline silicone thin film transistor

Country Status (1)

Country Link
JP (1) JPH0239524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015597A (en) * 1989-08-29 1991-05-14 Centre National D'etudes Des Telecommunications Et D'etudes Spatiales Process for the production of an inverted structure, active matrix display screen
WO2014098247A1 (en) 2012-12-21 2014-06-26 川崎重工業株式会社 Care bed and method for changing shape thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015597A (en) * 1989-08-29 1991-05-14 Centre National D'etudes Des Telecommunications Et D'etudes Spatiales Process for the production of an inverted structure, active matrix display screen
WO2014098247A1 (en) 2012-12-21 2014-06-26 川崎重工業株式会社 Care bed and method for changing shape thereof

Similar Documents

Publication Publication Date Title
US7981810B1 (en) Methods of depositing highly selective transparent ashable hardmask films
JP5650421B2 (en) Graphene production method
US7381644B1 (en) Pulsed PECVD method for modulating hydrogen content in hard mask
TW202030351A (en) Method of topology-selective film formation of silicon oxide
CN107675250B (en) Method and apparatus for selective deposition of epitaxial germanium alloy stressors
TWI393191B (en) Low temperature thin film transistor process, device property, and device stability improvement
US20130244446A1 (en) Method for Forming Si-Containing Film Using Two Precursors by ALD
WO2000044033A1 (en) Method and apparatus for film deposition
JPH1187341A (en) Film formation and film-forming apparatus
JPH07147251A (en) Growth of crystalline silicon carbide film
US20110095402A1 (en) Gate dielectric film with controlled structural and physical properties over a large surface area substrate
JPH02239623A (en) Stabilizing layer and its manufacture
Kakiuchi et al. Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition
JP3509856B2 (en) Protective layer for stabilizing layer and its manufacturing method
US8216639B2 (en) Methods for elimination or reduction of oxide and/or soot deposition in carbon containing layers
JPH0239524A (en) Manufacture of polycrystalline silicone thin film transistor
JPH1081968A (en) Production of amorphous silicon coating
JP3237788B2 (en) Manufacturing method of amorphous silicon thin film
JPS62180073A (en) Amorphous carbon film and its production
US20100093184A1 (en) Method for making a metal oxide layer
Flewitt et al. Low-temperature deposition of hydrogenated amorphous silicon in an electron cyclotron resonance reactor for flexible displays
Kirimura et al. Low-temperature microcrystalline silicon film deposited by high-density and low-potential plasma technique using hydrogen radicals
JPH05102068A (en) Forming method for electrode of electronic device using diamond
Severens et al. On the effect of substrate temperature on a-Si: H deposition using an expanding thermal plasma
KR20190038323A (en) Source for depositing graphene oxide and method of forming graphene oxide thin film using the same