JPH0239501B2 - - Google Patents

Info

Publication number
JPH0239501B2
JPH0239501B2 JP56159657A JP15965781A JPH0239501B2 JP H0239501 B2 JPH0239501 B2 JP H0239501B2 JP 56159657 A JP56159657 A JP 56159657A JP 15965781 A JP15965781 A JP 15965781A JP H0239501 B2 JPH0239501 B2 JP H0239501B2
Authority
JP
Japan
Prior art keywords
formula
reduced pressure
under reduced
water
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56159657A
Other languages
Japanese (ja)
Other versions
JPS5859946A (en
Inventor
Satoshi Horii
Yukihiko Kameda
Hiroshi Fukase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP15965781A priority Critical patent/JPS5859946A/en
Priority to DE8181306141T priority patent/DE3166093D1/en
Priority to EP81306141A priority patent/EP0056194B1/en
Priority to US06/334,986 priority patent/US4701559A/en
Priority to CA000393545A priority patent/CA1184181A/en
Publication of JPS5859946A publication Critical patent/JPS5859946A/en
Priority to US07/039,278 priority patent/US4777294A/en
Priority to US07/039,277 priority patent/US4803303A/en
Publication of JPH0239501B2 publication Critical patent/JPH0239501B2/ja
Priority to MX9202937A priority patent/MX9202937A/en
Granted legal-status Critical Current

Links

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式 〔式中、―A―B―は The present invention is based on the general formula [In the formula, -A-B- is

【式】【formula】

【式】または[expression] or

【式】を示し、Rは水 酸基を1個有していてもよい炭素数3〜7のシク
ロアルキル基を示す〕で表わされる擬似アミノ糖
〔pseudo―amino―sugar;ザ・ジヤーナル・オ
ブ・オルガニツク・ケミストリー(J.Org.
Chem),第31巻,1516〜1521頁(1966年)に擬
似糖(pseudo―sugar)なる用語が定義されてい
る〕のN―置換誘導体、その製造法および用途に
関する。 上記擬似アミノ糖のN―置換誘導体〔〕中の
擬似アミノ糖部分、すなわち、一般式 〔式中の記号は前記と同意義〕で表わされる擬
似アミノ糖は、例えばバリエナミン
(valienamine)〔式中―A―B―が
Pseudo-amino-sugar represented by [Formula] and R represents a cycloalkyl group having 3 to 7 carbon atoms which may have one hydroxyl group]・Chemistry (J.Org.
Chem, Vol. 31, pp. 1516-1521 (1966); The pseudo amino sugar moiety in the above N-substituted derivative of the pseudo amino sugar [], that is, the general formula The pseudo-amino sugar represented by [the symbols in the formula have the same meanings as above] is, for example, valienamine [in the formula -A-B- is

【式】 で示される化合物,ジヤーナル・オブ・ザ・ケミ
カル・ソサイエテイ・ケミカル・コミユニケーシ
ヨン(J.Chem.Soc.Chem.Comm.)746〜747頁
(1972年)〕、バリダミン(validamine)〔式中―
A―B―が
Compound represented by [Formula], Journal of the Chemical Society Chemical Communication (J.Chem.Soc.Chem.Comm.) pp. 746-747 (1972)], validamine [ During the ceremony-
A-B- is

【式】で示される化合物,ザ・ ジヤーナル・オブ・アンテイバイオテイクス(J.
Anti―biotics),第24巻,59〜63頁(1971年)〕、
バリオールアミン(valiolamine)〔式中―A―B
―が
The compound represented by the formula, The Journal of Antibiotics (J.
Antibiotics), Vol. 24, pp. 59-63 (1971)],
valiolamine [in the formula -A-B
-but

【式】で示される化合物,特願昭56− 55907〕であり、このうちバリエナミンがα―グ
ルコシダーゼ阻害活性を有することは知られてい
る〔ザ・ジヤーナル・オブ・アンテイバイオテイ
クス(J.Antibiotics),第33巻,1575〜1576頁
(1980年)〕。また放線菌によつて生産され、バリ
エナミンを構成成分として分子内に有しているα
―グルコシダーゼ阻害活性を有する化合物とし
て、アカルボーズ〔(acarbose),BAYg5421,
ナトウーアヴイツセンシヤフテン
(naturwissenschaften),第64巻,535〜537頁
(1977年),特公昭54−39474〕,トレスタチン
〔(tre―statin),第23回天然有機化合物討論会講
演要旨集(23rd Symposium,The Chemistry
of Natural Products;Symposium papers),
632〜639頁(1980年10月),特開昭54−163511〕,
アデイポシン〔(adiposin),TAI―A,B,ザ・
ジヤパニーズ・ジヤーナル・オブ・アンテイバイ
オテイクス(Jap.J.Antibio―tics),第36巻,119
頁(1981年);澱粉科学(J.Jap.Soc.Starch
Soi),第26巻,134〜144頁(1979年),第27巻,
107〜113頁(1980年),特開昭54−106402,54−
106403〕,アミロスタチン〔(amylostatin),第
4回糖質シンポジウム講演要旨集,58〜59頁
(1981年8月),特開昭50−123891,特開昭55−
71494,55−157595〕、オリゴスタチン
〔(oligostatin),SF―1130X,特開昭53−26398,
特開昭56−43294,日本抗生物質学術協議会
(Japan Antibiotics Research Association)第
219回研究会(1980年7月);オリゴスタチンCは
バリエナミンの代わりにヒドロキシバリダミン
(hydroxyvalidamine,ザ・ジヤーナル・オブ・
アンテイバイオテイクス(J.Antibiotics),第24
巻,59〜63頁(1971年))を構成成分として含有
している〕,アミノ糖化合物(特開昭54−92909)
などが知られている。また上記の化合物を含む微
生物起源のα―グルコシダーゼ阻害物質について
のエー・トルシヤイト(E.Truscheit)らの総説
〔アンゲバンテ・ヒエミー(Angewandte
Chemi),第93巻,738〜755頁(1981年)〕が報告
されている。しかし、上記一般式〔〕で表わさ
れるバリエナミン,バリダミンおよびバリオール
アミンなどの擬似アミノ糖類のN―置換誘導体が
α―グルコシダーゼ阻害活性を示すことについて
は全く知られていない。 本発明者らは、バリエナミン,バリダミン,バ
リオールアミンなどの擬似アミノ糖類の新規な各
種N―置換誘導体について研究を行なつた結果、
一般式〔〕で表わされる擬似アミノ糖のN―置
換誘導体がα―グルコシダーゼ阻害活性を有する
こと、とりわけ、バリオールアミンのN―置換誘
導体が強いα―グルコシダーゼ阻害活性を有する
ことを知見し本発明を完成した。 すなわち、本発明は 1 一般式〔〕で表わされる化合物またはその
水和物あるいは酸付加塩、 2 一般式〔〕で表わされる化合物と炭素数3
〜7のシクロアルカンのエポキシドとを反応さ
せることを特徴とする一般式 〔式中、R′は水酸基を1個有する炭素数3
〜7のシクロアルキル基を、―A―B―は前記
と同意義をそれぞれ示す〕で表わされる化合物
またはその水和物あるいは酸付加塩の製造法、 3 一般式〔〕で表わされる化合物と水酸基を
1個有していてもよい炭素数3〜7のシクロア
ルカンとを反応させ、ついで還元反応に付する
ことを特徴とする一般式〔〕で表わされる化
合物またはその水和物あるいは酸付加塩の製造
法、 4 一般式〔〕で表わされる化合物と水酸基を
1個有していてもよい炭素数3〜7の脂環式炭
化水素ハライドとを反応させることを特徴とす
る一般式〔〕で表わされる化合物またはその
水和物あるいは酸付加塩の製造法、および 5 一般式〔〕で表わされる化合物またはその
水和物あるいは酸付加塩を含有するα―グルコ
シダーゼ阻害剤に関する。 一般式〔〕,〔′〕で表わされる擬似アミノ
糖のN―置換誘導体の具体例としては (1) N―(2―ヒドロキシシクロヘキシル)バリ
オールアミン (2) N―シクロヘキシルバリオールアミン (3) N―(2―ヒドロキシシクロペンチル)バリ
オールアミン (4) N―シクロペンチルバリオールアミン (5) N―(2―ヒドロキシシクロヘキシル)バリ
ダミン (6) N―シクロヘキシルバリダミン (7) N―(2―ヒドロキシシクロペンチル)バリ
ダミン (8) N―シクロペンチルバリダミン (9) N―(2―ヒドロキシシクロヘキシル)バリ
エナミン (10) N―シクロヘキシルバリエナミン (11) N―(2―ヒドロキシシクロペンチル)バリ
エナミン (12) N―シクロペンチルバリエナミン (13) N―〔(1R,2R)―2―ヒドロキシシクロ
ヘキシル〕バリオールアミン (14) N―〔(1S,2S)―2―ヒドロキシシクロ
ヘキシル〕バリオールアミン (15) N―〔(1R,2R)―2―ヒドロキシシクロ
ペンチル〕バリオールアミン (16) N―〔(1S,2S)―2―ヒドロキシシクロ
ペンチル〕バリオールアミン などが挙げられる。 本発明のα―グルコシダーゼ阻害剤は、人間お
よび人間以外の動物の炭水化物の代謝を抑制する
ために、例えば血糖上昇抑制作用を有しており、
過血糖症状および過血糖に起因する種々の疾患、
例えば、肥満症,脂肪過多症,過脂肪血症(動脈
硬化症),糖尿病,前糖尿病及び口腔微生物によ
る糖代謝に帰因する疾病,例えば、虫歯等の予防
に有用な化合物である。また擬似アミノ糖のN―
置換誘導体〔〕を添加して製造した食品は、代
謝異常の患者食として、および代謝異常予防食と
して健康な人にも適している。また、低脂肪の良
質の食用獣肉を得るための家畜類の飼料添加剤と
しても有用である。したがつて本発明のα―グル
コシダーゼ阻害剤は医薬品および食品添加物、動
物用飼料添加剤として有用である。本発明のα―
グルコシダーゼ阻害剤は経口または非経口的に、
好ましくは経口的に投与する。 上記の擬似アミノ糖のN―置換誘導体〔〕は
安定な結晶または粉末で毒性もほとんどなく(ラ
ツトLD50500mg/Kg以上)、遊離塩基または水和
物として用いることができ、通常の方法により薬
学的に許容できる酸との任意の無毒性の酸付加塩
として用いることもできる。このような酸として
は、例えば、塩酸,臭化水素酸,硫酸,リン酸,
硝酸などの無機酸、酢酸,りんご酸,くえん酸,
アスコルビン酸,マンデル酸,メタンスルホン酸
などの有機酸等が用いられる。このような擬似ア
ミノ糖のN―置換誘導体[]またはその水和物
あるいは酸付加塩は単独または無毒性担体と混合
して用いる。例えばコーヒー,清涼飲料水,果
汁,ビール,牛乳,ジヤム,あん,ゼリー等の液
状或いは固状の食品,調味料,或いは種々の主食
並びに副食等と共に用いてもよく、直接あるいは
食品添加剤の形で用いることができ、あるいは食
前または食後に服用することができる。さらには
低脂肪の良質の食用獣肉を得るための家畜類の飼
料添加剤等とすることもできる。 本発明のα―グルコシダーゼ阻害剤は、例え
ば、水,エタノール,エチレングリコール,ポリ
エチレングリコール等の液状担体、澱粉,セルロ
ース,ポリアミド粉末等の固型担体等の無毒性担
体で希釈して、アンプル剤,顆粒剤,錠剤,丸
剤,カプセル剤,シロツプ剤等に常法にしたがつ
て調製し、上記種々の用途に供することができ
る。また、甘味剤,保存剤,分散剤,着色剤も共
用することができる。 具体的には、例えば、化合物〔〕約20〜400
mgを含有する製剤を毎食後服用することにより、
喫食による血中のグルコースの濃度の増加を抑制
することができる。また、例えば食品中の炭水化
物の含量の0.0005〜1%程度の化合物〔〕を
種々の食品に添加してもよい。 飼料に混ぜる場合は、飼料中の炭水化物含量の
0.0005〜1%が望ましい。 本発明に含まれる擬似アミノ糖のN―置換誘導
体〔〕,〔′〕はいずれも文献未記載の新規化
合物であり、例えば化合物〔′〕は下記のよう
な方法によつて合成することができる。すなわ
ち、好ましくは適当な溶媒中、バリオールアミ
ン,バリダミン,バリエナミンなどの擬似アミノ
糖〔〕を1,2―エポキシシクロヘキサン,
1,2―エポキシシクロペンタンなどの1,2―
エポキシシクロアルカンと反応させることによつ
て合成することができる。 適当な反応溶媒としては、例えば、水、メタノ
ール,エタノール,プロパノール,ブタノール等
の低級アルカノール類、アセトン,メチルエチル
ケトン,メチルイソブチルケトン等のケトン類、
ジメチルスルホキシド、ジメチルホルムアミド、
N―メチルアセトアミド、メチルセロソルブ,エ
チレングリコールジメチルエーテル,ジエチレン
グリコールジメチルエーテル等のグライム類、ジ
オキサン、テトラヒドロフラン、アセトニトリル
等の極性溶媒またはそれらの混合溶媒、あるいは
それらとベンゼン,ヘキサン,クロロホルム,ジ
クロロメタン,酢酸エチル等の非極性溶媒との混
合溶媒等が用いられ、混合溶媒が均一相でない場
合には相間移動触媒の存在下に反応を行なつても
よい。 反応温度は特に限定されないが、通常室温ない
し100℃程度にまで加熱して行なわれる。反応時
間は反応温度により差異があるが通常数分ないし
24時間程度反応させることによつて目的を達する
ことができる。 本発明に含まれる擬似アミノ糖のN―置換誘導
体〔〕は、適当な溶媒中、バリオールアミン,
バリダミン,バリエナミンなどの擬似アミノ糖
〔〕をシクロヘキサノン,シクロペンタノンな
どのシクロアルカノンと反応させて得られるシツ
フ塩基(アゾメチン誘導体)を還元反応に付すこ
とによつて合成することができる。擬似アミノ糖
類〔〕のアミノ基とシクロアルカノン類との縮
合反応および、それに続く還元反応は同一の反応
容器中で連続的に行なつてもよいし、両反応を別
個に二段階に分けて行なつてもよい。反応溶媒と
しては、例えば、水、メタノール,プロパノー
ル,ブタノール等のアルコール類、ジメチルスル
ホキシド,ジメチルホルムアミド、N―メチルア
セトアミド、メチルセロソルブ,ジメチルセロソ
ルブ,ジエチレングリコールジメチルエーテル等
のグライム類、ジオキサン、テトラヒドロフラ
ン、アセトニトリル等の極性溶媒、または、これ
らの混合溶媒、または、それらの極性溶媒とクロ
ロホルム,ジクロロメタン等の非極性溶媒との混
合物を用いることができる。 該シツフ塩基の形成反応における反応温度は特
に限定されないが、通常室温ないし100℃程度に
まで加熱して行なわれる。反応時間は反応温度に
より、また使用するアルデヒド類またはケトン類
の種類により差異があるが、通常、数分ないし24
時間程度反応させることによつて目的を達するこ
とができる。 形成されたシツフ塩基の還元反応のためには各
種の水素化金属錯体還元剤、例えば水素化ホウ素
ナトリウム,水素化ホウ素カリウム,水素化ホウ
素リチウム,水素化トリメトキシホウ素ナトリウ
ム等の水素化ホウ素アルカリ金属、シアノ水素化
ホウ素ナトリウム等のシアノ水素化ホウ素アルカ
リ金属、水素化アルミニウムリチウム等の水素化
アルミニウムアルカリ金属、ジメチルアミンボラ
ン等のジアルキルアミンボランが有利に用いられ
る。なお、シアノ水素化ホウ素アルカリ金属、例
えばシアノ水素化ホウ素ナトリウムを用いる場合
には、酸性の条件、例えば、塩酸、酢酸等の存在
下に反応を行なうことが好ましい。 反応温度は特に限定されないが、通常温度で、
場合によつては、特に反応の初期においては氷冷
下に、また場合によつては100℃程度にまで加熱
して行なわれ、還元するシツフ塩基および還元剤
の種類によつて差異がある。反応時間も反応温度
により、また還元するシツフ塩基や還元剤の種類
によつて差異があるが、通常数分ないし24時間程
度反応させることによつて目的を達することがで
きる。 形成されたシツフ塩基の還元反応において、原
料として用いた擬似アミノ糖が、バリオールアミ
ンおよびバリダミンのように不飽和二重結合を有
していない場合には接触還元の手段を用いること
もできる。すなわち、シツフ塩基を適当な溶媒中
で接触還元用触媒の存在下に水素気流中で振盪ま
たは撹拌することにより行われる。接触還元用触
媒としては、例えば、白金黒、二酸化白金、パラ
ジウム黒、パラジウムカーボン、ラネーニツケル
等が用いられ、通常用いられる溶媒としては、例
えば、水、メタノール,エタノール等のアルコー
ル類、ジオキサン、テトラヒドロフラン、ジメチ
ルホルムアミドまたは、これらの混合溶媒等が用
いられる。反応は通常、室温常圧で行なわれる
が、加圧下に行なつてもよく、また加温してもよ
い。 本発明に含まれる擬似アミノ糖のN―置換誘導
体〔〕は、また下記のような方法で合成するこ
とができる。 すなわち、バリオールアミン,バリダミン,バ
リエナミンなどの擬似アミノ糖〔〕を適当な溶
媒中でブロモシクロヘキサン,クロロシクロヘキ
サン,ブロモシクロペンタン,クロロシクロペン
タン,2―ブロモシクロヘキサノール,2―クロ
ロシクロヘキサノール,2―ブロモシクロペンタ
ノール,2―クロロシクロペンタノールなどのシ
クロアルカンハライドとを反応させることによつ
て合成することができる。 適当な反応溶媒としては、例えば水、メタノー
ル,エタノール,プロパノール,ブタノール等の
低級アルカノール類、アセトン,メチルエチルケ
トン,メチルイソブチルケトン等のケトン類、ジ
メチルスルホキシド、ジメチルホルムアミド、N
―メチルアセトアミド、メチルセロソルブ,エチ
レングリコールジメチルエーテル,ジエチレング
リコールジメチルエーテル等のグライム類、ジオ
キサン、テトラヒドロフラン、アセトニトリル等
の極性溶媒またはそれらの混合溶媒、あるいはそ
れらとベンゼン,ヘキサン,クロロホルム,ジク
ロロメタン,酢酸エチル等の非極性溶媒との混合
溶媒等が用いられ、混合溶媒が均一相でない場合
には相間移動触媒の存在下に反応を行なつてもよ
い。 該反応では脱酸剤としては、例えば炭酸水素ア
ルカリ金属,炭酸アルカリ金属,水酸化アルカリ
金属,トリメチルアミン,トリエチルアミン,ト
リブチルアミン,N―メチルモルホリン,N―メ
チルピペリジン,N,N―ジメチルアニリン,ピ
リジン,ピリコリン,ルチジン等の無機および有
機塩基を用いることもできる。 反応温度は特に限定されないが、通常室温ない
し100℃程度にまで加熱して行なわれる。反応時
間は反応温度により差異があるが通常数分ないし
24時間程度反応させることによつて目的を達する
ことができる。 以下に参考例,実施例を記載してこの発明の内
容を詳述するが、発明の範囲はこれらに限定され
るものではない。 グルコシダーゼ阻害活性の測定方法 基質としてマルトースおよびシヨ糖を用いた場
合の豚の小腸の粘膜から調製したマルターゼおよ
びサツカラーゼ〔ボルグストレム(B.
Borgstro¨m)およびダールクイスト(A.
Dahlqvist)によつてアクタ・ケミカ・スカンジ
ナビカ(Acta Chem.Scand),12巻,1997〜2006
頁,1958年に記載の方法に従つて調製〕に対する
阻害活性は、0.02Mリン酸緩衝溶液(PH6.8)で
適当に希釈した酸素溶液0.25mlに試験すべき阻害
物質の同緩衝溶液0.5mlおよび基質の0.05Mマル
トースあるいは0.05Mシヨ糖の同緩衝溶液0.25ml
を加え、この混合物を37℃で10分間反応させ、グ
ルコースB―テスト試薬(ヴドウ糖測定用グルコ
ースオキシダーゼ試薬、和光純薬製)3mlを加
え、更に37℃で20分間加温し、反応液の505nm
における吸光度を測定して算出した。 実施例に記載した擬似アミノ糖のN―置換誘導
体のマルターゼ(豚、腸粘膜)に対する50%阻害
濃度〔以下、IC50(マルターゼ)と略記する〕お
よびサツカラーゼ(豚、腸粘膜)に対する50%阻
害濃度〔以下、IC50(サツカラーゼ)と略記する〕
はそれぞれの化合物について3ないし5種の異な
つた濃度で上記の測定法を用いて測定した阻害率
(%)から求めた。
It is a compound represented by the formula [Japanese Patent Application No. 55907/1989], and among these, valienamine is known to have α-glucosidase inhibitory activity [The Journal of Antibiotics]. , Vol. 33, pp. 1575-1576 (1980)]. It is also produced by actinomycetes and has valienamine as a component in its molecule.
- As a compound with glucosidase inhibitory activity, acarbose [(acarbose), BAYg5421,
Naturwissenschaften, Vol. 64, pp. 535-537 (1977), Special Publication No. 54-39474], Trestatin [(tre-statin), Collection of lecture abstracts of the 23rd Natural Organic Compounds Symposium (23rd Symposium, The Chemistry
of Natural Products; Symposium papers)
pp. 632-639 (October 1980), Japanese Patent Publication No. 54-163511],
Adiposin [(adiposin), TAI-A, B, the
Japanese Journal of Antibiotics, Volume 36, 119
Page (1981); Starch Science (J.Jap.Soc.Starch
Soi), Vol. 26, pp. 134-144 (1979), Vol. 27,
pp. 107-113 (1980), JP-A-106402, 54-
106403], Amylostatin [(amylostatin), Abstracts of the 4th Carbohydrate Symposium, pp. 58-59 (August 1981), JP-A-1989-123891, JP-A-55-
71494, 55-157595], oligostatin [(oligostatin), SF-1130X, JP 53-26398,
Japanese Patent Publication No. 56-43294, Japan Antibiotics Research Association
219th Research Meeting (July 1980); Oligostatin C uses hydroxyvalidamine instead of valienamine.
J.Antibiotics, No. 24
vol., pp. 59-63 (1971)) as a constituent], amino sugar compound (Japanese Patent Application Laid-open No. 54-92909)
etc. are known. In addition, a review by E. Truscheit et al. of α-glucosidase inhibitors of microbial origin, including the above-mentioned compounds [Angewandte et al.
Chemi), Vol. 93, pp. 738-755 (1981)]. However, it is completely unknown that N-substituted derivatives of pseudo-amino sugars such as valienamine, validamin, and variolamine represented by the above general formula [] exhibit α-glucosidase inhibitory activity. The present inventors conducted research on various new N-substituted derivatives of pseudo-amino sugars such as valienamine, validamin, and variolamine, and found that
The present invention was based on the discovery that an N-substituted derivative of a pseudo-amino sugar represented by the general formula [] has α-glucosidase inhibitory activity, and in particular, that an N-substituted derivative of variolamine has a strong α-glucosidase inhibitory activity. completed. That is, the present invention provides: 1 a compound represented by the general formula [] or a hydrate or acid addition salt thereof; 2 a compound represented by the general formula [] and a compound having 3 carbon atoms;
A general formula characterized by reacting with an epoxide of a cycloalkane of ~7 [In the formula, R' is a carbon number 3 having one hydroxyl group
~7 cycloalkyl group, -A-B- respectively have the same meanings as above], or a hydrate or acid addition salt thereof; 3. A compound represented by the general formula [] and a hydroxyl group. A compound represented by the general formula [], or its hydrate or acid addition salt, which is characterized by reacting it with a cycloalkane having 3 to 7 carbon atoms which may have one cycloalkane, and then subjecting it to a reduction reaction. 4. A method for producing a compound represented by the general formula [], which is characterized by reacting a compound represented by the general formula [] with an alicyclic hydrocarbon halide having 3 to 7 carbon atoms which may have one hydroxyl group. The present invention relates to a method for producing the compound represented by the above formula or a hydrate or acid addition salt thereof, and an α-glucosidase inhibitor containing the compound represented by the general formula [] or a hydrate or acid addition salt thereof. Specific examples of N-substituted derivatives of pseudo-amino sugars represented by the general formulas [] and [′] are (1) N-(2-hydroxycyclohexyl)variolamine (2) N-cyclohexylvariolamine (3) N-(2-hydroxycyclopentyl)variolamine (4) N-cyclopentylvariolamine (5) N-(2-hydroxycyclohexyl)validamine (6) N-cyclohexylvalidamine (7) N-(2-hydroxycyclopentyl ) Validamine (8) N-cyclopentylvalienamine (9) N-(2-hydroxycyclohexyl)valienamine (10) N-cyclohexylvalienamine (11) N-(2-hydroxycyclopentyl)valienamine (12) N-cyclopentylvalienamine (13) N-[(1R,2R)-2-hydroxycyclohexyl]variolamine (14) N-[(1S,2S)-2-hydroxycyclohexyl]variolamine (15) N-[(1R,2R )-2-hydroxycyclopentyl]variolamine (16) N-[(1S,2S)-2-hydroxycyclopentyl]variolamine and the like. The α-glucosidase inhibitor of the present invention has, for example, a blood sugar rise suppressing effect in order to suppress carbohydrate metabolism in humans and non-human animals,
Hyperglycemic symptoms and various diseases caused by hyperglycemia,
For example, it is a compound useful for preventing obesity, adiposity, hyperlipidemia (arteriosclerosis), diabetes, prediabetes, and diseases caused by sugar metabolism by oral microorganisms, such as dental caries. Also, pseudo amino sugar N-
Foods produced by adding substituted derivatives [ ] are suitable for healthy people as food for patients with metabolic disorders and as preventative food for metabolic disorders. It is also useful as a feed additive for livestock to obtain low-fat, high-quality edible meat. Therefore, the α-glucosidase inhibitor of the present invention is useful as a pharmaceutical, food additive, and animal feed additive. α of the present invention
Glucosidase inhibitors can be administered orally or parenterally;
Preferably it is administered orally. The above N-substituted derivatives of amino sugar pseudosaccharides [ ] are stable crystals or powders with almost no toxicity (Rat LD 50 500 mg/Kg or more), can be used as free bases or hydrates, and can be used in pharmaceutical preparations by conventional methods. It can also be used as any non-toxic acid addition salt with a legally acceptable acid. Such acids include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid,
Inorganic acids such as nitric acid, acetic acid, malic acid, citric acid,
Organic acids such as ascorbic acid, mandelic acid, and methanesulfonic acid are used. Such N-substituted derivatives of pseudo-amino sugars [ ] or their hydrates or acid addition salts are used alone or in combination with non-toxic carriers. For example, it may be used with liquid or solid foods such as coffee, soft drinks, fruit juices, beer, milk, diam, bean paste, and jelly, seasonings, or various staple foods and side dishes, and may be used directly or in the form of food additives. or can be taken before or after meals. Furthermore, it can also be used as a feed additive for livestock to obtain low-fat, high-quality edible meat. The α-glucosidase inhibitor of the present invention can be diluted with a nontoxic carrier such as a liquid carrier such as water, ethanol, ethylene glycol, or polyethylene glycol, or a solid carrier such as starch, cellulose, or polyamide powder, and then prepared as an ampoule. Granules, tablets, pills, capsules, syrups, etc. can be prepared according to conventional methods and used for the various uses mentioned above. In addition, sweeteners, preservatives, dispersants, and coloring agents can also be used. Specifically, for example, the compound [] about 20 to 400
By taking a formulation containing mg after every meal,
Increase in blood glucose concentration due to eating can be suppressed. Further, for example, the compound may be added to various foods in an amount of about 0.0005 to 1% of the carbohydrate content in the foods. When mixed with feed, check the carbohydrate content of the feed.
0.0005 to 1% is desirable. Both of the N-substituted derivatives [] and ['] of pseudo-amino sugars included in the present invention are new compounds that have not been described in any literature. For example, compound ['] can be synthesized by the following method. . That is, preferably in a suitable solvent, a pseudo amino sugar such as variolamine, validamin, valienamine, etc. is mixed with 1,2-epoxycyclohexane,
1,2- such as 1,2-epoxycyclopentane
It can be synthesized by reacting with epoxycycloalkane. Suitable reaction solvents include, for example, water, lower alkanols such as methanol, ethanol, propanol, butanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
dimethyl sulfoxide, dimethyl formamide,
Glymes such as N-methylacetamide, methyl cellosolve, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether; polar solvents such as dioxane, tetrahydrofuran, and acetonitrile; or mixed solvents thereof; A mixed solvent with a polar solvent is used, and if the mixed solvent is not a homogeneous phase, the reaction may be carried out in the presence of a phase transfer catalyst. Although the reaction temperature is not particularly limited, it is usually carried out by heating from room temperature to about 100°C. The reaction time varies depending on the reaction temperature, but is usually within a few minutes.
The purpose can be achieved by reacting for about 24 hours. The N-substituted derivatives of pseudo-amino sugars [] included in the present invention can be prepared from variolamine, variolamine,
It can be synthesized by subjecting a Schiff base (azomethine derivative) obtained by reacting a pseudo amino sugar such as validamine or valienamine with a cycloalkanone such as cyclohexanone or cyclopentanone to a reduction reaction. The condensation reaction between the amino group of the pseudo-amino sugar [] and the cycloalkanone and the subsequent reduction reaction may be carried out continuously in the same reaction vessel, or both reactions may be carried out separately in two stages. You may do so. Examples of reaction solvents include water, alcohols such as methanol, propanol, and butanol, glymes such as dimethyl sulfoxide, dimethylformamide, N-methylacetamide, methyl cellosolve, dimethyl cellosolve, and diethylene glycol dimethyl ether, dioxane, tetrahydrofuran, and acetonitrile. A polar solvent, a mixed solvent thereof, or a mixture of these polar solvents and a nonpolar solvent such as chloroform or dichloromethane can be used. The reaction temperature in the Schiff base formation reaction is not particularly limited, but it is usually carried out at room temperature to about 100°C. The reaction time varies depending on the reaction temperature and the type of aldehyde or ketone used, but it is usually several minutes to 24 minutes.
The purpose can be achieved by allowing the reaction to take some time. Various metal hydride complex reducing agents such as sodium borohydride, potassium borohydride, lithium borohydride, sodium trimethoxyborohydride, etc. can be used for the reduction reaction of the Schiff base formed. , alkali metal cyanoborohydride such as sodium cyanoborohydride, alkali metal aluminum hydride such as lithium aluminum hydride, and dialkylamine borane such as dimethylamineborane are advantageously used. In addition, when using an alkali metal cyanoborohydride, for example, sodium cyanoborohydride, it is preferable to carry out the reaction under acidic conditions, for example, in the presence of hydrochloric acid, acetic acid, or the like. The reaction temperature is not particularly limited, but it is a normal temperature,
In some cases, especially in the early stages of the reaction, the reaction is carried out under ice-cooling, or in some cases heated to about 100° C., and the reaction varies depending on the Schiff base to be reduced and the type of reducing agent. The reaction time also varies depending on the reaction temperature and the type of Schiff base and reducing agent to be reduced, but the purpose can usually be achieved by allowing the reaction to occur for about several minutes to 24 hours. In the reduction reaction of the formed Schiff base, catalytic reduction can also be used when the pseudo-amino sugar used as a raw material does not have an unsaturated double bond like variolamine and validamine. That is, the reaction is carried out by shaking or stirring Schiff's base in a suitable solvent in the presence of a catalyst for catalytic reduction in a hydrogen stream. Catalytic reduction catalysts used include, for example, platinum black, platinum dioxide, palladium black, palladium carbon, Raney nickel, etc., and commonly used solvents include, for example, water, alcohols such as methanol and ethanol, dioxane, tetrahydrofuran, Dimethylformamide or a mixed solvent thereof is used. The reaction is usually carried out at room temperature and normal pressure, but may also be carried out under pressure or with heating. The N-substituted derivatives of pseudo-amino sugars included in the present invention can also be synthesized by the following method. That is, pseudo-amino sugars such as variolamine, validamine, and valienamine are mixed with bromocyclohexane, chlorocyclohexane, bromocyclopentane, chlorocyclopentane, 2-bromocyclohexanol, 2-chlorocyclohexanol, 2- It can be synthesized by reacting with a cycloalkane halide such as bromocyclopentanol or 2-chlorocyclopentanol. Suitable reaction solvents include, for example, water, lower alkanols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, dimethyl sulfoxide, dimethyl formamide, N
- Glymes such as methyl acetamide, methyl cellosolve, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, polar solvents such as dioxane, tetrahydrofuran, acetonitrile, or mixed solvents thereof, or non-polar solvents such as benzene, hexane, chloroform, dichloromethane, ethyl acetate, etc. A mixed solvent with a solvent is used, and if the mixed solvent is not a homogeneous phase, the reaction may be carried out in the presence of a phase transfer catalyst. In this reaction, examples of deoxidizing agents include alkali metal hydrogen carbonate, alkali metal carbonate, alkali metal hydroxide, trimethylamine, triethylamine, tributylamine, N-methylmorpholine, N-methylpiperidine, N,N-dimethylaniline, pyridine, Inorganic and organic bases such as pyricholine, lutidine, etc. can also be used. Although the reaction temperature is not particularly limited, it is usually carried out by heating from room temperature to about 100°C. The reaction time varies depending on the reaction temperature, but is usually within a few minutes.
The purpose can be achieved by reacting for about 24 hours. The content of the present invention will be explained in detail by referring to Reference Examples and Examples below, but the scope of the invention is not limited thereto. Method for measuring glucosidase inhibitory activity Maltase and sucarase prepared from pig small intestine mucosa [Borgström (B.
Borgstro¨m) and Dahlquist (A.
Acta Chem.Scand, Volume 12, 1997-2006
[prepared according to the method described in J. P., 1958] was determined by adding 0.5 ml of a solution of the inhibitor to be tested in 0.25 ml of an oxygen solution appropriately diluted with 0.02 M phosphate buffer (PH 6.8) in the same buffer. and 0.25ml of the same buffer solution of 0.05M maltose or 0.05M sucrose as substrate
was added, the mixture was allowed to react at 37°C for 10 minutes, 3 ml of glucose B-test reagent (glucose oxidase reagent for measuring glucose, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further heated at 37°C for 20 minutes to remove the reaction mixture. 505nm
It was calculated by measuring the absorbance at . 50% inhibitory concentration for maltase (pig, intestinal mucosa) [hereinafter abbreviated as IC 50 (maltase)] and 50% inhibition for sutucarase (pig, intestinal mucosa) of the N-substituted derivatives of pseudo-amino sugars described in Examples Concentration [hereinafter abbreviated as IC 50 (Satsucalase)]
was determined from the inhibition rate (%) of each compound measured at 3 to 5 different concentrations using the above method.

【表】 この表は、実施例1〜6で得られた化合物で代
表される本願目的物[]またはその水和物ある
いは酸付加塩が、公知のバリドキシルアミンAお
よびバリダマイシンAよりも優れたα―グルコシ
ダーゼ(アルターゼ,サツカラーゼ)阻害作用を
有していることを明らかにしている。 なお、実施例に記載した各化合物の精製工程に
おけるカラムクロマトグラフイーの溶出画分は、
通常、薄層クロマトグラフイー(TLC)で含有
成分をしらべ、必要な成分を含んでいる画分を集
めて、次の工程に供した。実施例に記載した各化
合物のTLCのRf値は、特にことわらない限りは、
薄層プレートはプレコーテツド(Pre―coated)
TLCプレート・シリカゲル60F254(メルク社製,
西ドイツ)を用い、展開溶媒としてn―プロピル
アルコール・酢酸・水(4:1:1)を用いて測
定した。(対照試料として上記の方法で測定した
擬似アミノ糖のRf値:バリエナミンRf=0.42,
バリダミンRf=0.35,バリオールアミンRf=
0.30) 実施例 1 N―(2―ヒドロキシシクロヘキシル)バリオ
ールアミン バリオールアミン2.0gと1,2―エポキシシ
クロヘキサン2mlをメタノール100mlに溶解し、
撹拌下に加熱還流する。5時間反応後、1,2―
エポキシシクロヘキサン4mlを追加し、更に10時
間、撹拌下に加熱還流する。反応液を減圧濃縮
し、残留物にエチルエーテルを加え、生じた沈澱
をろ取する。得られた粉末を少量の水に溶解し、
アンバーライトCG―50(NH+ 4型,400ml,ロー
ム・アンド・ハース社製,米国)のカラムクロマ
トに付し、水で溶出すると2成分に分離される。
先に溶出される画分(フラクシヨンNo.38〜80,各
フラクシヨン19g)を集めて減圧濃縮後、凍結乾
燥すると〔α〕24 D−41.9゜(c=1,H2O)を示すN
―(2―ヒドロキシシクロヘキシル)バリオール
アミンの光学異性体の一つが得られ(収量1.1
g)、続いて溶出される画分(フラクシヨンNo.91
〜297,各フラクシヨン19g)を集めて減圧濃縮
後、凍結乾燥すると〔α〕24 D+43.4゜(c=1,
H2O)を示すN―(2―ヒドロキシシクロヘキ
シル)バリオールアミンのもう一つの光学異性体
が得られる(収量0.95g)。 〔α〕24 D−41.9゜を示す異性体(即ち、N―
[(1R,2R)―2―ヒドロキシシクロヘキシル]
バリオールアミン) 元素分析:C13H25NO6・1/4H2O 計算値(%):C52.77;H8.69;N4.73 実験値(%):C52.72;H8.89;N4.72 TLC:Rf=0.51 IC50(マルターゼ):6.1×10-9M, IC50(サツカラーゼ):5.2×10-9M。 〔α〕24 D+43.4゜を示す異性体(即ち、N―
[(1S,2S)―2―ヒドロキシシクロヘキシル]
バリオールアミン) 元素分析:C13H25NO6・1/2H2O 計算値(%):C51.98;H8.73;N4.66 実験値(%):C51.76;H9.11;N4.81 TLC:Rf=0.48 IC50(サツカラーゼ):1.6×10-7M。 実施例 2 N―シクロヘキシルバリオールアミン バリオールアミン2.0gとシクロヘキサノン3.5
mlをジメチルホルムアミド50mlに溶解し、2N塩
酸1.5mlおよびシアノ水素化ホウ素ナトリウム2.6
を加え、60〜70℃で17時間撹拌する。反応液を減
圧濃縮し、残留物を水約100mlに溶解し、ダウエ
ツクス50W×8(H+型,ダウ・ケミカル社製,米
国)200mlを加えて約1時間撹拌する。この混合
物をダウエツクス50W×8(H+型,100ml)のカ
ラムの上に加え、カラムを水洗後、0.5Nアンモ
ニア水で溶出する。溶出画分(1.2〜3.5)を減
圧濃縮し、得られた濃縮液(約20ml)をアンバー
ライトCG―50(NH+ 4型,ローム・アンド・ハー
ス社製,250ml)のカラムクロマトに付し、水で
溶出する。溶出画分(700ml〜6.8)を減圧濃縮
後、凍結乾燥するとN―シクロヘキシルバリオー
ルアミン1.4gが得られる。 〔α〕24 D+10.8゜(c=1,H2O) 元素分析:C13H25NO5・1/2H2O 計算値(%):C54.91;H9.22;N4.93 実験値(%):C55.13;H9.23;N4.94 TLC:Rf=0.56 IC50(マルターゼ):4.1×10-7M, IC50(サツカラーゼ):1.5×10-8M。 実施例 3 N―(2―ヒドロキシシクロペンチル)バリオ
ールアミン バリオールアミン2.0gをメタノール100mlに溶
解し、1,2―エポキシシクロペンタン6mlを加
えて24時間加熱還流する。反応液を減圧濃縮し、
残留物にエチルエーテルを加えると沈澱が得られ
る。上澄みを傾瀉して除き、沈澱を水(約100ml)
に溶解した後、約20mlまで減圧濃縮する。濃縮液
をアンバーライトCG―50(NH+ 4型,ローム・ア
ンド・ハース社製,400ml)のカラムクロマトに
付し、水で溶出して、先に溶出される画分(Rf
=0.48の成分を含む画分;フラクシヨンNo.24〜
28、各フランクシヨン19g)と後で溶出される画
分(主としてRf=0.43の成分を含む画分;フラク
シヨンNo.29〜70,各フラクシヨン19g)に分け
る。後で溶出される画分(フラクシヨンNo.29〜
70)を約40mlまで減圧濃縮し、アンバーライト
CG−50(NH+ 4型,500ml)のカラムクロマトに付
し、水で溶出(各フラクシヨン19g)して、Rf
=0.48の成分を含む画分(フラクシヨンNo.36〜
40),Rf=0.48と0.43の成分を含む画分(フラク
シヨンNo.41〜50),Rf=0.43の成分を含む画分
(フラクシヨンNo.51〜70)に分ける。フラクシヨ
ンNo.41〜50の画分をもう一度アンバーライトCG
―50(NH+ 4,270ml)のカラムクロマトに付し、
水で溶出(各フラクシヨン19g)して、Rf=0.48
の成分を含む画分(フラクシヨンNo.21〜23)と
Rf=0.43の成分を含む画分(フラクシヨンNo.27〜
44)に分ける。Rf=0.48の成分を含む画分を合わ
せて減圧濃縮後、凍結乾燥すると〔α〕24 D−16.2゜
(c=1,H2O)を示すN―(2―ヒドロキシシ
クロペンチル)バリオールアミンの光学異性体の
一つが得られ(収量0.5g)、Rf=0.43の成分を含
む画分を合わせて減圧濃縮後、凍結乾燥すると
〔α〕24 D+40.4゜(c=1.0,H2O)を示すN―(2―
ヒドロキシシクロペンチル)バリオールアミンの
もう一つの光学異性体が得られる(収量0.4g)。 〔α〕24 D−16.2゜(c=1,H2O)を示す異性体 元素分析:C12H23NO6・1/2H2O 計算値(%):C50.34;H8.45;N4.89 実験値(%):C50.73;H8.40;N4.86 TLC:Rf=0.48 IC50(マルターゼ):5.8×10-8M, IC50(サツカラーゼ):2.4×10-8M。 〔α〕24 D+40.4゜(c=1,H2O)を示す異性体 元素分析:C12H23NO6・1/2H2O 計算値(%):C50.34;H8.45;N4.89 実験値(%):C50.43;H8.93;N4.87 TLC:Rf=0.43 IC50(サツカラーゼ):1.3×10-7M。 実施例 4 N―(2―ヒドロキシシクロヘキシル)バリダ
ミン バリダミン2.0gをメタノール100mlに溶解し、
1,2―エポキシシクロヘキサン6mlを加えて撹
拌下に9時間加熱還流する。反応液を減圧濃縮
し、残留物にエチルエーテルを加え、生ずる沈澱
をアンバーライトCG―50(NH+ 4型,ローム・ア
ンド・ハース社製,400ml)のカラムクロマトに
付し、水で溶出する。溶出画分(フラクシヨンNo.
26〜60,各フラクシヨン19g)を減圧濃縮後、凍
結乾燥するとN―(2―ヒドロキシシクロヘキシ
ル)バリダミンの白色粉末1.1gが得られる。 〔α〕24 D+61.1゜(c=1,H2O) 元素分析:C13H25NO5・1/2H2O 計算値(%):C54.91;H9.22;N4.93 実験値(%):C55.12;H9.39;N4.82 TLC:Rf=0.52 IC50(サツカラーゼ):9.6×10-8M。 実施例 5 N―(2―ヒドロキシシクロペンチル)バリダ
ミン バリダミン2.0gをメタノール100mlに溶解し、
1,2―エポキシシクロペンタン6mlを加えて、
24時間加熱還流する。反応液を減圧濃縮し、残留
物にエチルエーテルを加え、生じた沈澱をアンバ
ーライトCG―50(NH+ 4型,ローム・アンド・ハ
ース社製,400ml)のカラムクロマトに付し、水
で溶出する。溶出画分(フラクシヨンNo.21〜45,
各フラクシヨン19g)を減圧濃縮後、凍結乾燥す
るとN―(2―ヒドロキシシクロペンチル)バリ
ダミンの白色粉末0.7gが得られる。 〔α〕24 D+70.1゜(c=1,H2O) 元素分析:C12H23NO5・1/2H2O 計算値(%):C53.32;H8.95;N5.18 実験値(%):C53.33;H9.28;N5.18 TLC:Rf=0.49 IC50(サツカラーゼ):1.3×10-7M。 実施例 6 N―(2―ヒドロキシシクロヘキシル)バリエ
ナミン バリエナミン2.0gをメタノール100mlに溶解
し、1,2―エポキシシクロヘキサン6mlを加え
て撹拌下に9時間加熱還流する。反応液を減圧濃
縮し、残留物にエチルエーテルを加えて生じた沈
澱をろ取する。得られた粉末をアンバーライト
CG―50(NH+ 4型,ローム・アンド・ハース社製,
400ml)のカラムクロマトに付し、水で溶出する。
溶出画分(フラクシヨンNo.26〜80,各フラクシヨ
ン19g)を減圧濃縮後、凍結乾燥するとN―(2
―ヒドロキシシクロヘキシル)バリエナミン1.1
gが得られる。 〔α〕24 D+88.2゜(c=1,H2O) 元素分析:C13H23NO5・1/2H2O 計算値(%):C55.30;H8.57;N4.96 実験値(%):C55.78;H8.73;N4.93 TLC:Rf=0.58 IC50(サツカラーゼ):1.7×10-7M。 実施例 7 N―(2―ヒドロキシシクロペンチル)バリエ
ナミン バリエナミン2.0gをメタノール100mlに溶解
し、1,2―エポキシシクロペンタン6mlを加え
て24時間加熱還流する。反応液を減圧濃縮し、残
留物にエチルエーテルを加え、得られた沈澱をア
ンバーライトCG―50(NH+ 4型,ローム・アン
ド・ハース社製,400ml)のカラムクロマトに付
し、水で溶出する。溶出画分(フラクシヨンNo.26
〜55,各フラクシヨン19g)を減圧濃縮後、凍結
乾燥するとN―(2―ヒドロキシシクロペンチ
ル)バリエナミンの白色粉末0.8gが得られる。 〔α〕24 D+112.2゜(c=1,H2O) 元素分析:C12H21NO5・1/4H2O 計算値(%):C54.63;H8.22;N5.31 実験値(%):C54.59;H8.07;N5.31 TLC:Rf=0.56 実施例 8 N―シクロペンチルバリオールアミン バリオールアミン2.0gとシクロペンタノン3.5
mlをジメチルホルムアミド50mlに溶解し、2N塩
酸1.5mlおよびシアノ水素化ホウ素ナトリウム2.6
gを加え、60〜70℃で18時間撹拌する。反応液を
減圧濃縮してジメチルホルムアミドを留去し、更
にトルエンを加えて減圧濃縮を繰り返す。残留物
を水50mlに溶解し、ダウエツクス50W×8(H+
型,ダウ・ケミカル社製)200mlを加え、1時間
撹拌する。この混合物をダウエツクス50W×8
(H+型)100mlを入れたカラムの上に加え、カラ
ムを水(1.8)で洗浄後、0.5Nアンモニア水で
溶出する。溶出画分(1.45〜2.2の画分)を減
圧濃縮し、濃縮液をアンバーライトCG―50
(NH+ 4型,ローム・アンド・ハース社製,250ml)
のカラムクロマトに付し、水で溶出する。溶出画
分(520ml〜2.8の画分)を減圧濃縮後、凍結乾
燥するとN―シクロペンチルバリオールアミンの
白色粉末1.2gが得られる。 〔α〕23 D+8.0゜(c=1,H2O) 元素分析:C12H23NO5 計算値(%):C55.15;H8.87;N5.36 実験値(%):C55.27;H8.99;N5.62 TLC:Rf=0.50 参考例 1 N―(2―ヒドロキシ―3―フエノキシプロピ
ル)バリエナミン 水酸化ナトリウム2.2gの水溶液(10ml)に、
窒素気流中、フニノール4.7gを溶解し、エピク
ロルヒドリン5gを加え、室温で24時間撹拌す
る。反応液に水50mlを加え、ジクロルメタン50ml
で2回抽出する。ジクロルメタン層を水洗し、硫
酸ナトリウムで乾燥後、溶媒を留去すると、1―
フエノキシ―2,3―エポキシプロパンおよび1
―クロロ―2―ヒドロキシ―3―フエノキシプロ
パンの混合物約7gが得られる。 バリエナミン2.0gをN,N―ジメチルホルム
アミド80mlに溶解し、炭酸水素ナトリウム5.8g
を加えた後、上記の1―フエノキシ―2,3―エ
ポキシプロパンおよび1―クロロ―2―ヒドロキ
シ―3―フエノキシプロパンの混合物約7gを加
え、浴温90℃で一夜撹拌する。反応液をろ過し、
ろ液を減圧濃縮して溶媒を留去する。残留物に水
およびn―ブチルアルコールを加え、2N塩酸で
PH2に調節し、分配後、水層を分取する。n―ブ
チルアルコール層は更に水で抽出する。水層を合
わせ、減圧濃縮後、MCIゲルCHP20P(250ml)
(三菱化成工業製)のカラムクロマトに付し、水
で溶出する。溶出画分(フラクシヨンNo.31〜80,
各フラクシヨン18g)を減圧濃縮後、凍結乾燥す
るとN―(2―ヒドロキシ―3―フエノキシプロ
ピル)バリエナミン塩酸塩の白色粉末1.25gを得
る。 元素分析:C16H23NO6・HCl・1/2H2O 計算値(%):C51.82;H6.80;N3.78; Cl9.56 実験値(%):C51.93;H7.01;N3.97; Cl10.05 〔α〕23 D+54.4゜(c=1,H2O) IC50(マルターゼ):2.4×10-5M TLC:Rf=0.71 N―(2―ヒドロキシ―3―フエノキシプロピ
ル)バリエナミン塩酸塩600mgを水20mlに溶解し、
N―水酸化ナトリウムでPH10.4に調節後、MCIゲ
ルCHP―20P(150ml,三菱化成工業製)のカラム
クロマトに付し、水(600ml)で洗浄後、水(1
)−80%メタノール水(1)のグラジエント
で溶出する。溶出画分(フランクシヨンNo.75〜
88,各フラクシヨン18g)を約20mlに減圧濃縮
し、濃縮液を一夜冷蔵庫中に放置するとN―(2
―ヒドロキシ―3―フエノキシプロピル)バリエ
ナミンの結晶108mgが得られる。 元素分析:C16H23NO6 計算値(%):C59.06;H7.13;N4.31 実験値(%):C59.00;H7.08;N4.13 〔α〕27 D+104.9゜(c=1,H2O) TLC:Rf=0.71 参考例 2 N―(β―ヒドロキシフエネチル)バリエナミ
ンおよびN―〔α―(ヒドロキシメチル)ペン
ジル〕バリエナミン バリエナミン10gとスチレンオキシド12mlをメ
タノール300mlに溶解し、加熱還流する。4時間
後にスチレンオキシド10mlを追加し、更に4時間
加熱還流する。反応液を減圧濃縮し、残留物を水
および酢酸エチルの間で分配させ、水層を分取す
る。水層を減圧濃縮し、ダウエツクス1×2
(OH-型,550ml,ダウ・ケミカル社製)のカラ
ムクロマトに付し、水で溶出する。溶出画分(フ
ラクシヨンNo.71〜312,各フラクシヨン18g)を
減圧濃縮後、更にアンバーライトCG―50(NH+ 4
型,1)のカラムクロマトに付し、水で溶出す
ると、まずN―〔α―(ヒドロキシメチル)ベン
ジル〕バリエナミン(フラクシヨンNo.42〜55,各
フラクシヨン18g)が、続いてN―(β―ヒドロ
キシフエネチル)バリエナミン(フラクシヨンNo.
73〜320,各フラクシヨン18g)が溶出される。
それぞれの溶出画分を減圧濃縮後、凍結乾燥する
とN―〔α―(ヒドロキシメチル)ベンジル〕バ
リエナミン2.9gおよびN―(β―ヒドロキシフ
エネチル)バリエナミン6gがそれぞれ白色粉末
として得られる。 N―(β―ヒドロキシフエネチル)バリエナミ
ン 元素分析:C15H21NO5・1/2H2O 計算値(%):C59.19;H7.29;N4.60 実験値(%):C59.14;H7.43;N4.69 〔α〕27 D+108.6゜(c=1,H2O) NMR(D2O)δ:2.7〜3.3(2H,―NH―C 2
―),4.7〜5.1(1H,
[Table] This table shows that the object of the present application [] or its hydrate or acid addition salt represented by the compounds obtained in Examples 1 to 6 is superior to the known validoxylamine A and validamycin A. It has been revealed that it has an α-glucosidase (altase, satucalase) inhibitory effect. In addition, the elution fraction of column chromatography in the purification process of each compound described in the examples is as follows:
Usually, the components contained were examined using thin layer chromatography (TLC), and fractions containing the necessary components were collected and used in the next step. Unless otherwise specified, the TLC Rf value of each compound described in the examples is as follows:
Thin plate is pre-coated
TLC plate silica gel 60F 254 (Merck,
(West Germany) and using n-propyl alcohol/acetic acid/water (4:1:1) as a developing solvent. (Rf value of pseudo amino sugar measured by the above method as a control sample: Valienamine Rf = 0.42,
Validamine Rf=0.35, Variolamine Rf=
0.30) Example 1 N-(2-hydroxycyclohexyl)variolamine 2.0g of variolamine and 2ml of 1,2-epoxycyclohexane were dissolved in 100ml of methanol,
Heat to reflux while stirring. After 5 hours of reaction, 1,2-
Add 4 ml of epoxycyclohexane and heat to reflux with stirring for an additional 10 hours. The reaction solution was concentrated under reduced pressure, ethyl ether was added to the residue, and the resulting precipitate was collected by filtration. Dissolve the resulting powder in a small amount of water,
When applied to Amberlite CG-50 (NH + 4 type, 400 ml, manufactured by Rohm and Haas, USA) column chromatography and eluted with water, it is separated into two components.
The first eluted fractions (fractions No. 38 to 80, 19 g each) were collected, concentrated under reduced pressure, and then lyophilized to give a N of [α] 24 D −41.9° (c=1, H 2 O).
One of the optical isomers of -(2-hydroxycyclohexyl)variolamine was obtained (yield 1.1
g), the subsequently eluted fraction (fraction No. 91
~297, 19 g of each fraction) were collected, concentrated under reduced pressure, and lyophilized to obtain [α] 24 D +43.4° (c = 1,
Another optical isomer of N-(2-hydroxycyclohexyl)variolamine is obtained (yield: 0.95 g) exhibiting H 2 O). [α] 24 D An isomer exhibiting -41.9° (i.e., N-
[(1R,2R)-2-hydroxycyclohexyl]
Variolamine) Elemental analysis: C 13 H 25 NO 6・1/4H 2 O Calculated value (%): C52.77; H8.69; N4.73 Experimental value (%): C52.72; H8.89; N4.72 TLC: Rf=0.51 IC 50 (maltase): 6.1×10 -9 M, IC 50 (satucalase): 5.2×10 -9 M. [α] 24 D An isomer exhibiting +43.4° (i.e., N-
[(1S,2S)-2-hydroxycyclohexyl]
Variolamine) Elemental analysis: C 13 H 25 NO 6・1/2H 2 O Calculated value (%): C51.98; H8.73; N4.66 Experimental value (%): C51.76; H9.11; N4.81 TLC: Rf=0.48 IC 50 (Satucalase): 1.6×10 -7 M. Example 2 N-cyclohexylvariolamine 2.0g of variolamine and 3.5g of cyclohexanone
ml in 50 ml dimethylformamide, 1.5 ml 2N hydrochloric acid and 2.6 ml sodium cyanoborohydride.
and stir at 60-70°C for 17 hours. The reaction solution was concentrated under reduced pressure, the residue was dissolved in about 100 ml of water, 200 ml of Dowex 50W x 8 (H + type, Dow Chemical Co., USA) was added, and the mixture was stirred for about 1 hour. Add this mixture onto a column of Dowex 50W x 8 (H + type, 100 ml), wash the column with water, and elute with 0.5N aqueous ammonia. The eluted fractions (1.2 to 3.5) were concentrated under reduced pressure, and the resulting concentrate (approximately 20 ml) was subjected to column chromatography using Amberlite CG-50 (NH + 4 type, manufactured by Rohm and Haas, 250 ml). , elutes with water. The eluted fraction (700ml to 6.8ml) is concentrated under reduced pressure and then lyophilized to obtain 1.4g of N-cyclohexylvariolamine. [α] 24 D +10.8゜ (c=1, H 2 O) Elemental analysis: C 13 H 25 NO 5・1/2H 2 O Calculated value (%): C54.91; H9.22; N4.93 Experimental values (%): C55.13; H9.23; N4.94 TLC: Rf=0.56 IC 50 (maltase): 4.1×10 -7 M, IC 50 (satucalase): 1.5×10 -8 M. Example 3 N-(2-Hydroxycyclopentyl) Variolamine 2.0 g of Variolamine is dissolved in 100 ml of methanol, 6 ml of 1,2-epoxycyclopentane is added, and the mixture is heated under reflux for 24 hours. Concentrate the reaction solution under reduced pressure,
Addition of ethyl ether to the residue results in a precipitate. Decant and remove the supernatant, and pour the precipitate into water (approx. 100ml).
After dissolving in water, concentrate under reduced pressure to approximately 20 ml. The concentrated solution was subjected to column chromatography using Amberlite CG-50 (NH + 4 type, manufactured by Rohm and Haas, 400 ml), eluted with water, and the first eluted fraction (Rf
Fraction containing component = 0.48; Fraction No. 24~
28, each fraction 19 g) and a fraction to be eluted later (a fraction mainly containing components with Rf = 0.43; fractions No. 29 to 70, each fraction 19 g). Fractions eluted later (fractions No. 29~
70) to about 40ml under reduced pressure, and
It was subjected to column chromatography using CG-50 (NH + 4 type, 500 ml), eluted with water (each fraction 19 g), and Rf
Fraction containing components = 0.48 (Fraction No. 36 ~
40), fractions containing components with Rf = 0.48 and 0.43 (fractions No. 41 to 50), and fractions containing components with Rf = 0.43 (fractions No. 51 to 70). Fractions No. 41 to 50 are Amberlite CG again.
-50 (NH + 4 , 270ml) column chromatography,
Elute with water (19 g each fraction), Rf = 0.48
Fractions containing components (fractions No. 21 to 23) and
Fraction containing components with Rf = 0.43 (Fraction No. 27 ~
44). The fractions containing the component with Rf = 0.48 were combined, concentrated under reduced pressure, and lyophilized to obtain N-(2-hydroxycyclopentyl)variolamine, which exhibits [α] 24 D -16.2° (c = 1, H 2 O). One of the optical isomers was obtained (yield: 0.5 g), and the fractions containing the component with Rf = 0.43 were combined, concentrated under reduced pressure, and lyophilized to obtain [α] 24 D +40.4° (c = 1.0, H 2 O ) indicating N-(2-
Another optical isomer of hydroxycyclopentyl)variolamine is obtained (yield 0.4 g). [α] Isomer showing 24 D −16.2° (c=1, H 2 O) Elemental analysis: C 12 H 23 NO 6・1/2H 2 O Calculated value (%): C50.34; H8.45; N4.89 Experimental value (%): C50.73; H8.40; N4.86 TLC: Rf=0.48 IC 50 (maltase): 5.8×10 -8 M, IC 50 (satucalase): 2.4×10 -8 M . [α] 24 D Isomer showing +40.4° (c=1, H 2 O) Elemental analysis: C 12 H 23 NO 6・1/2H 2 O Calculated value (%): C50.34; H8.45 ; N4.89 Experimental value (%): C50.43; H8.93; N4.87 TLC: Rf=0.43 IC 50 (Satucalase): 1.3×10 -7 M. Example 4 N-(2-hydroxycyclohexyl)validamine Dissolve 2.0 g of validamine in 100 ml of methanol,
Add 6 ml of 1,2-epoxycyclohexane and heat under reflux for 9 hours while stirring. The reaction solution was concentrated under reduced pressure, ethyl ether was added to the residue, and the resulting precipitate was subjected to column chromatography using Amberlite CG-50 (NH + 4 type, manufactured by Rohm and Haas, 400 ml) and eluted with water. . Elution fraction (Fraction No.
26-60, each fraction (19 g) was concentrated under reduced pressure and lyophilized to obtain 1.1 g of white powder of N-(2-hydroxycyclohexyl)validamine. [α] 24 D +61.1゜ (c=1, H 2 O) Elemental analysis: C 13 H 25 NO 5・1/2H 2 O Calculated value (%): C54.91; H9.22; N4.93 Experimental value (%): C55.12; H9.39; N4.82 TLC: Rf=0.52 IC 50 (Satsucalase): 9.6×10 -8 M. Example 5 N-(2-hydroxycyclopentyl)validamine 2.0 g of validamine was dissolved in 100 ml of methanol,
Add 6 ml of 1,2-epoxycyclopentane,
Heat to reflux for 24 hours. The reaction solution was concentrated under reduced pressure, ethyl ether was added to the residue, and the resulting precipitate was subjected to column chromatography using Amberlite CG-50 (NH + 4 type, manufactured by Rohm and Haas, 400 ml) and eluted with water. do. Elution fraction (Fraction No. 21-45,
After concentrating each fraction (19 g) under reduced pressure, lyophilization yields 0.7 g of white powder of N-(2-hydroxycyclopentyl)validamine. [α] 24 D +70.1゜ (c=1, H 2 O) Elemental analysis: C 12 H 23 NO 5・1/2H 2 O Calculated value (%): C53.32; H8.95; N5.18 Experimental value (%): C53.33; H9.28; N5.18 TLC: Rf = 0.49 IC 50 (Satucalase): 1.3 x 10 -7 M. Example 6 N-(2-hydroxycyclohexyl)valienamine 2.0 g of valienamine is dissolved in 100 ml of methanol, 6 ml of 1,2-epoxycyclohexane is added, and the mixture is heated under reflux for 9 hours while stirring. The reaction solution was concentrated under reduced pressure, ethyl ether was added to the residue, and the resulting precipitate was collected by filtration. Amberlite the resulting powder
CG-50 (NH + 4 type, manufactured by Rohm and Haas,
400ml) column chromatography and elute with water.
The eluted fractions (fractions No. 26 to 80, each fraction 19 g) were concentrated under reduced pressure and lyophilized to yield N-(2
-Hydroxycyclohexyl) Valienamine 1.1
g is obtained. [α] 24 D +88.2゜ (c=1, H 2 O) Elemental analysis: C 13 H 23 NO 5・1/2H 2 O Calculated value (%): C55.30; H8.57; N4.96 Experimental value (%): C55.78; H8.73; N4.93 TLC: Rf = 0.58 IC 50 (Satucalase): 1.7 x 10 -7 M. Example 7 N-(2-hydroxycyclopentyl)valienamine 2.0 g of valienamine is dissolved in 100 ml of methanol, 6 ml of 1,2-epoxycyclopentane is added, and the mixture is heated under reflux for 24 hours. The reaction solution was concentrated under reduced pressure, ethyl ether was added to the residue, and the resulting precipitate was subjected to column chromatography using Amberlite CG-50 (NH + 4 type, manufactured by Rohm and Haas Co., Ltd., 400 ml). Elute. Elution fraction (Fraction No. 26
~55, each fraction (19 g) was concentrated under reduced pressure and lyophilized to obtain 0.8 g of white powder of N-(2-hydroxycyclopentyl)valienamine. [α] 24 D +112.2゜ (c=1, H 2 O) Elemental analysis: C 12 H 21 NO 5・1/4H 2 O Calculated value (%): C54.63; H8.22; N5.31 Experimental value (%): C54.59; H8.07; N5.31 TLC: Rf=0.56 Example 8 N-cyclopentylvariolamine 2.0g of variolamine and 3.5g of cyclopentanone
ml in 50 ml dimethylformamide, 1.5 ml 2N hydrochloric acid and 2.6 ml sodium cyanoborohydride.
g and stirred at 60-70°C for 18 hours. The reaction solution is concentrated under reduced pressure to remove dimethylformamide, toluene is further added, and the concentration under reduced pressure is repeated. Dissolve the residue in 50 ml of water and wash it with Dowex 50W x 8 (H +
Add 200 ml of mold (manufactured by Dow Chemical Company) and stir for 1 hour. Dowex 50W x 8
(H + form) onto a column containing 100 ml, wash the column with water (1.8), and elute with 0.5N aqueous ammonia. Concentrate the elution fraction (1.45 to 2.2 fraction) under reduced pressure, and transfer the concentrated solution to Amberlite CG-50.
(NH + 4 type, manufactured by Rohm and Haas, 250ml)
column chromatography and elute with water. The eluted fractions (520 ml to 2.8 fractions) are concentrated under reduced pressure and then lyophilized to obtain 1.2 g of white powder of N-cyclopentylvariolamine. [α] 23 D +8.0゜ (c=1, H 2 O) Elemental analysis: C 12 H 23 NO 5 Calculated value (%): C55.15; H8.87; N5.36 Experimental value (%): C55.27; H8.99; N5.62 TLC: Rf=0.50 Reference example 1 N-(2-hydroxy-3-phenoxypropyl) valienamine In an aqueous solution (10 ml) of 2.2 g of sodium hydroxide,
In a nitrogen stream, dissolve 4.7 g of Funinol, add 5 g of epichlorohydrin, and stir at room temperature for 24 hours. Add 50ml of water to the reaction solution and add 50ml of dichloromethane.
Extract twice. The dichloromethane layer was washed with water, dried over sodium sulfate, and the solvent was distilled off to give 1-
Phenoxy-2,3-epoxypropane and 1
Approximately 7 g of a mixture of -chloro-2-hydroxy-3-phenoxypropane is obtained. Dissolve 2.0g of valienamine in 80ml of N,N-dimethylformamide and 5.8g of sodium bicarbonate.
After adding about 7 g of the above mixture of 1-phenoxy-2,3-epoxypropane and 1-chloro-2-hydroxy-3-phenoxypropane, the mixture was stirred overnight at a bath temperature of 90°C. Filter the reaction solution,
The filtrate is concentrated under reduced pressure to remove the solvent. Add water and n-butyl alcohol to the residue, and dilute with 2N hydrochloric acid.
After adjusting the pH to 2 and distributing, separate the aqueous layer. The n-butyl alcohol layer is further extracted with water. Combine the aqueous layers and concentrate under reduced pressure, then use MCI gel CHP20P (250ml)
(manufactured by Mitsubishi Chemical Industries) column chromatography and eluted with water. Elution fraction (Fraction No. 31-80,
Each fraction (18 g) was concentrated under reduced pressure and lyophilized to obtain 1.25 g of white powder of N-(2-hydroxy-3-phenoxypropyl)valienamine hydrochloride. Elemental analysis: C 16 H 23 NO 6・HCl・1/2H 2 O Calculated value (%): C51.82; H6.80; N3.78; Cl9.56 Experimental value (%): C51.93; H7. 01; N3.97; Cl10.05 [α] 23 D +54.4゜ (c=1, H 2 O) IC 50 (maltase): 2.4×10 -5 M TLC: Rf=0.71 N-(2-hydroxy -3-Phenoxypropyl) Valienamine hydrochloride 600mg was dissolved in 20ml of water,
After adjusting the pH to 10.4 with N-sodium hydroxide, it was subjected to column chromatography using MCI gel CHP-20P (150 ml, manufactured by Mitsubishi Chemical Industries, Ltd.), washed with water (600 ml), and then washed with water (1
) - 80% methanol/water (1). Elution fraction (Franchise No. 75~
88, each fraction (18 g) was concentrated under reduced pressure to about 20 ml, and the concentrated liquid was left in the refrigerator overnight.
-Hydroxy-3-phenoxypropyl) valienamine crystals (108 mg) are obtained. Elemental analysis: C 16 H 23 NO 6 Calculated value (%): C59.06; H7.13; N4.31 Experimental value (%): C59.00; H7.08; N4.13 [α] 27 D +104. 9゜(c=1, H 2 O) TLC: Rf=0.71 Reference example 2 N-(β-hydroxyphenethyl)valienamine and N-[α-(hydroxymethyl)penzyl]valienamine 10 g of valienamine and 12 ml of styrene oxide. Dissolve in 300ml of methanol and heat to reflux. After 4 hours, 10 ml of styrene oxide was added, and the mixture was further heated under reflux for 4 hours. The reaction solution was concentrated under reduced pressure, the residue was partitioned between water and ethyl acetate, and the aqueous layer was separated. Concentrate the aqueous layer under reduced pressure, and
(OH - type, 550 ml, manufactured by Dow Chemical Company) column chromatography and elute with water. After concentrating the eluted fractions (fractions No. 71 to 312, each fraction 18 g) under reduced pressure, Amberlite CG-50 (NH + 4
When subjected to type 1) column chromatography and eluted with water, N-[α-(hydroxymethyl)benzyl]valienamine (fractions No. 42 to 55, 18 g each) was first detected, followed by N-(β- Hydroxyphenethyl) Valienamine (Fraction No.
73-320, each fraction 18 g) are eluted.
After concentrating each eluted fraction under reduced pressure, it is lyophilized to obtain 2.9 g of N-[α-(hydroxymethyl)benzyl]valienamine and 6 g of N-(β-hydroxyphenethyl)valienamine as white powders. N-(β-hydroxyphenethyl)valienamine Elemental analysis: C 15 H 21 NO 5・1/2H 2 O Calculated value (%): C59.19; H7.29; N4.60 Experimental value (%): C59 .14; H7.43; N4.69 [α] 27 D +108.6° (c=1, H 2 O) NMR (D 2 O) δ: 2.7 to 3.3 (2H, -NH-C H 2
--), 4.7~5.1 (1H,

【式】),5.9〜 6.1(1H,6―CH=),7.59(5H,s,C6 5―)。 TLC:Rf=0.71 N―〔α―(ヒドロキシメチル)ベンジル〕バ
リエナミン 元素分析:C15H21NO5・1/2H2O 計算値(%):C59.19;H7.29;N4.60 実験値(%):C59.61;H7.30;N4.67 〔α〕27 D+120.6゜(c=1,H2O) TLC:Rf=0.67 IC50(マルターゼ):1.4×10-5M 参考例 3 N―(1,3―ジヒドロキシ―1―フエニル―
2―プロピル)バリエナミン バリエナミン1gをメタノール15mlに溶解し、
ジオキサン10mlを加えた後、2―ブロモ―1,3
―ジヒドロキシ―1―フエニルプロパン2,3g
および炭酸水素ナトリウム1.2gを加え、70℃で
3日間撹拌する。反応液をろ過し、不溶物をメタ
ノールで洗浄後、ろ液と洗液を合わせ減圧濃縮す
る。残留物に水を加え、2N―塩酸でPH2に調節
し、酢酸エチルで洗浄する。水層を減圧濃縮し、
濃縮液をMCIゲルCHP20P(350ml)のカラムクロ
マトに付し、水で溶出する。溶出画分(フラクシ
ヨンNo.29―46,各フラクシヨン18g)を集め減圧
濃縮後、凍結乾燥するとN―(1,3―ジヒドロ
キシ―1―フエニル―2―プロピル)バリエナミ
ン塩酸塩の白色粉末1.1gを得る。 元素分析:C16H23NO6・HCl・11/2H2O 計算値(%):C49.42;H7.00;N3.60; Cl9.12 実験値(%):C49.33;H6.76;N3.99; Cl9.58 〔α〕23 D+34.4゜(c=1,H2O) TLC:Rf=0.67 IC50(マルターゼ):9.6×10-6M 参考例 4 N―(3,4―ジヒドロキシベンジル)バリエ
ナミン バリエナミン2gおよび3,4―ジ―(テトラ
ヒドロピラニルオキシ)ベンズアルデヒド8gを
メタノール30mlに溶解し、室温で2時間撹拌す
る。反応液を減圧濃縮後、残留物にエチルエーテ
ルを加え、生ずる沈澱をろ取し、乾燥する。得ら
れたシツフ塩基をメタノール50mlに溶解し、氷冷
下に水素化ホウ素ナトリウム700mgを少量ずつ加
え、氷冷下に2時間撹拌する。反応液に水、アセ
トンおよびn―ブチルアルコールを加え、減圧濃
縮して有機溶媒を留去する。得られた水溶液を
MCIゲルCHP20P(250ml,三菱化成工業製)のカ
ラムクロマトに付し、水(800ml)で洗浄後、水
(1)―メタノール(1)のグラジエントで
溶出する。溶出画分(フラクシヨンNo.61―78,各
フラクシヨン18g)を減圧濃縮乾固するとN―
〔3,4―ジ―(テトラヒドロピラニルオキシ)
ベンジル〕バリエナミン(Rf=0.74)3.3gが得
られる。 N―〔3,4―ジ―(テトラヒドロピラニルオ
キシ)ベンジル〕バリエナミン2.2gを0.5N硫酸
110mlに溶解し、室温で一夜撹拌後、水酸化バリ
ウムでPH5に調節し、ろ過する。ろ液を減圧濃縮
し、PH7.5に調節後、MCIゲルCHP20P(400ml,
三菱化成工業製)のカラムクロマトに付し、水で
溶出する。溶出画分(フラクシヨンNo.21―30,各
フラクシヨン18g)を減圧濃縮後、凍結乾燥する
とN―(3,4―ジヒドロキシベンジル)バリエ
ナミン880mgが得られる。 元素分析:C14H19NO6 計算値(%):C56.56;H6.44;N4.71 実験値(%):C56.38;H6.51;N4.32 〔α〕23 D+76.7゜(c=1,H2O) TLC:Rf=0.62 IC50(マルターゼ):8.1×10-6M 参考例 5 N―(β―ヒドロキシフエネチル)バリダミン
およびN―〔α―(ヒドロキシメチル)ベンジ
ル〕バリダミン バリダミン5.0gとスチレンオキシド6mlをメ
タノール150mlに溶解し、加熱還流する。4時間
後にスチレンオキシド5mlを追加し、更に4時間
加熱還流する。反応液を減圧濃縮し、残留物を水
および酢酸エチルの間で分配させ、水層を分取す
る。水層を減圧濃縮後、ダウエツクス50W×8
(H+型,150ml,ダウ・ケミカル社製)のカラム
クロマトに付し、カラムを水洗後、0.5Nアンモ
ニア水で溶出する。溶出画分を減圧濃縮し、残留
物をアンバーライトCG―50(NH+ 4型,3,ロ
ーム・アンド・ハース社製)のカラムクロマトに
付し、水で溶出すると2つの成分に分離される。
先に溶出される画分を減圧濃縮後、凍結乾燥する
とN―〔α―(ヒドロキシメチル)ベンジル〕バ
リダミンの白色粉末(1.7g)が得られる、続い
て溶出される画分を減圧濃縮後、凍結乾燥すると
N―(β―ヒドロキシフエネチル)バリダミン
(4.7g)が得られる。 N―(β―ヒドロキシフエネチル)バリダミン 元素分析:C15H23NO5・1/2H2O 計算値(%):C58.81;H7.90;N4.57 実験値(%):C59.21;H8.16;N4.69 〔α〕27 D+58.6゜(c=1,H2O) TLC:Rf=0.67 N―〔α―(ヒドロキシメチル)ベンジル〕バ
リダミン 元素分析:C15H23NO5 計算値(%):C60.59;H7.80;N4.71 実験値(%):C60.33;H8.29;N4.87 〔α〕27 D+70.6゜(c=1,H2O) TLC:Rf=0.63 IC50(マルターゼ):4.5×10-6M 参考例 6 N―(2―ヒドロキシ―3―フエノキシプロピ
ル)バリダミン 水酸化ナトリウム2.2gの水溶液(10ml)に、
窒素気流中、フエノール4.7gを溶解し、エピク
ロルヒドリン5gを加え、室温で24時間撹拌す
る。反応液に水50mlを加え、ジクロルメタン50ml
で2回抽出する。ジクロルメタン層を水洗し、無
水硫酸ナトリウムで乾燥後、溶媒を留去すると、
1―フエノキシ―2,3―エポキシプロパンおよ
び1―クロロ―2―ヒドロキシ―3―フエノキシ
プロパンの混合物約7gが得られる。 バリダミン2.0gをN,N―ジメチルホルムア
ミド80mlに溶解し、炭酸水素ナトリウム5.7gを
加えた後、上記の1―フエノキシ―2,3―エポ
キシプロパンおよび1―クロロ―2―ヒドロキシ
―3―フエノキシプロパンの混合物約7gを加
え、浴温90℃で一夜撹拌する。反応液をろ過し、
ろ液を減圧濃縮し、残留物に水およびn―ブチル
アルコールを加え、2N塩酸でPH2に調節し、分
配後、水層を分取する。水層を減圧濃縮後、
MCIゲルCHP20P(250ml,三菱化成工業製)のカ
ラムクロマトに付し、水で溶出する。溶出画分を
減圧濃縮後、凍結乾燥するとN―(2―ヒドロキ
シ―3―フエノキシプロピル)バリダミン塩酸塩
の白色粉末1.7gが得られる。 元素分析:C16H25NO6・HCl・1/2H2O 計算値(%):C51.54;H7.30;N3.76; Cl9.51 実験値(%):C51.10;H7.53;N4.25; Cl10.00 〔α〕23 D+43.0゜(c=1,H2O) TLC:Rf=0.66 IC50(マルターゼ):3.4×10-6M 参考例 7 N―(D―アラビノ―2,3,4,5―テトラ
ヒドロキシ―1―ヒドロキシメチルペンチル)
バリダミン バリダミン3.0gとD―フルクトース6.6gをジ
メチルホルムアミド75mlに溶解し、2N塩酸2.2ml
を加えた後、シアノ水素化ホウ素ナトリウム3.8
gを加え、60〜70℃で40時間撹拌する。反応液を
減圧濃縮し、残留物を水に溶解し、2N塩酸で酸
性(PH0.5以下)にし、発泡が止むまで撹拌し、
N―水酸化ナトリウムでPH4.5に調節し、減圧濃
縮する。濃縮液をダウエツクス50W×8(H+型,
300ml,ダウ・ケミカル社製)のカラムクロマト
に付し、カラムを水洗後、0.5Nアンモニア水で
溶出する。溶出画分を減圧濃縮し、残留物をダウ
エツクス1×2(OH-型,450ml)のカラムクロ
マトに付し、水で溶出する。溶出画分を減圧濃縮
後、凍結乾燥してN―D―アラビノ―2,3,
4,5―テトラヒドロキシ―1―ヒドロキシメチ
ルベンチル)バリダミン2.7gが得られる。 元素分析:C13H27NO9 計算値(%):C45.74;H7.97;N4.10 実験値(%):C45.38;H8.46;N4.14 〔α〕27 D+70.1゜(c=1,H2O) TLC:Rf=0.29 IC50(マルターゼ):5.9×10-7M 参考例 8 N―(3,5―ジ―tert―ブチル―4―ヒドロ
キシベンジル)バリオールアミン バリオールアミン3.0gと3,5―ジ―tert―ブ
チル―4―ヒドロキシベンズアルデヒド7.0gを
メタノール30ml中、40℃で2時間撹拌する。反応
液を減圧濃縮し、残留物に石油エーテルを加えて
生じる沈澱をろ取する。得られたシツフ塩基をメ
タノール50mlに溶解し、氷水で冷却下に、水素化
ホウ素ナトリウム1.0gを少しずつ加えた後、更
に2.5時間撹拌する。反応液を減圧濃縮し、残留
物に酢酸エチルと水を加え、撹拌下に2N塩酸で
PH2に調節した後、水層を分取する。水層を酢酸
エチルで洗浄後、酢酸エチルを加え、撹拌下にN
水酸化ナトリウム溶液でPH10に調節した後、酢酸
エチル層を分取する。酢酸エチル層を水洗し、無
水硫酸マグネシウムで乾燥し、減圧濃縮する。残
留物に石油エーテルを加え、一夜室温に放置する
とN―(3,5―ジ―tert―ブチル―4―ヒドロ
キシベンジル)バリオールアミン3.0gが得られ
る。 元素分析:C22H37NO6 計算値(%):C64.21;H9.06;N3.40 実験値(%):C64.00;H9.34;N3.25 〔α〕24 D−2.3゜(c=1,CH3OH) IC50(マルターゼ):4.3×10-8M, IC50(サツカラーゼ):6.8×10-9M 参考例 9 N―(β―ヒドロキシ―2―メトキシフエネチ
ル)バリオールアミン バリオールアミン4.1gと2―メトキシフエニ
ルグリオキサール4.0gをジメチルホルムアミド
20mlとメタノール100mlの混液に溶解し、室温で
1.5時間撹拌後、氷水で冷却下に水素化ホウ素ナ
トリウム1.2gを加え、室温で1時間撹拌する。
反応液を減圧濃縮し、残留物に酢酸エチルと水を
加え、撹拌下に2N塩酸でPH2に調節する。水層
を分取し、酢酸エチル層を1/10N塩酸で抽出す
る。水層を合わせてN水酸化ナトリウムでPH10に
調節後、減圧濃縮する。濃縮液をダウエツクス
50W×8(H+型,400ml,ダウ・ケミカル社製)
のカラムクロマトに付し、カラムを水洗後、
0.5Nアンモニア水で溶出する。溶出画分を減圧
濃縮し、残留物をMCIゲルCHP20P(250ml,三菱
化成工業製)のカラムクロマトに付し、カラムを
水洗後、水(1)―メタノール(1)のグラ
ジエントで溶出する。溶出画分を減圧濃縮後、凍
結乾燥するとN―(β―ヒドロキシ―2―メトキ
シフエネチル)バリオールアミンの白色粉末3.0
gが得られる。 元素分析:C16H25NO7・1/2H2O 計算値(%):C54.53;H7.44;N3.98 実験値(%):C54.36;H7.35;N3.86 〔α〕24 D+11.9゜(c=1,H2O) TLC:Rf=0.63 IC50(マルターゼ):6.3×10-8M, IC50(サツカラーゼ):9.9×10-9M 実施例 9 果汁入飲料に対しN―シクロヘキシルバリオー
ルアミン30mgを加えて、均一に撹拌混合して果汁
入飲料を得る。 実施例 10 常法によるいちご・ジヤム製造工程(煮熱処
理)終了後品温が50℃に低下したとき、N―(2
―ヒドロキシシクロペンチル)バリダミンをでき
あがり製品重量に対して0.4%均一に混和したの
ち、冷却していちご・ジヤム製品を得る。 実施例 11 N―(2―ヒドロキシシクロヘキシル)バリオ
ールアミン 10重量部 乳糖 100重量部 を均一に混合し、粉末または細粒状として散剤と
する。
[Formula]), 5.9-6.1 (1H, 6-CH=), 7.59 (5H, s, C 6 H 5 -). TLC: Rf=0.71 N-[α-(hydroxymethyl)benzyl]valienamine Elemental analysis: C 15 H 21 NO 5・1/2H 2 O Calculated value (%): C59.19; H7.29; N4.60 Experiment Value (%): C59.61; H7.30; N4.67 [α] 27 D +120.6° (c=1, H 2 O) TLC: Rf=0.67 IC 50 (maltase): 1.4×10 -5 M Reference example 3 N-(1,3-dihydroxy-1-phenyl-
2-Propyl) Valienamine Dissolve 1 g of valienamine in 15 ml of methanol,
After adding 10ml of dioxane, 2-bromo-1,3
-Dihydroxy-1-phenylpropane 2.3g
Add 1.2 g of sodium hydrogen carbonate and stir at 70°C for 3 days. After filtering the reaction solution and washing insoluble matter with methanol, the filtrate and washing solution are combined and concentrated under reduced pressure. Add water to the residue, adjust the pH to 2 with 2N hydrochloric acid, and wash with ethyl acetate. Concentrate the aqueous layer under reduced pressure,
The concentrated solution is subjected to column chromatography using MCI gel CHP20P (350 ml) and eluted with water. The eluted fractions (fractions No. 29-46, 18 g each) were collected, concentrated under reduced pressure, and lyophilized to yield 1.1 g of white powder of N-(1,3-dihydroxy-1-phenyl-2-propyl) valienamine hydrochloride. obtain. Elemental analysis: C 16 H 23 NO 6・HCl・11/2H 2 O Calculated value (%): C49.42; H7.00; N3.60; Cl9.12 Experimental value (%): C49.33; H6. 76; N3.99; Cl9.58 [α] 23 D +34.4゜ (c=1, H 2 O) TLC: Rf=0.67 IC 50 (maltase): 9.6×10 -6 M Reference example 4 N-( 3,4-dihydroxybenzyl)valienamine 2 g of valienamine and 8 g of 3,4-di-(tetrahydropyranyloxy)benzaldehyde are dissolved in 30 ml of methanol and stirred at room temperature for 2 hours. After concentrating the reaction solution under reduced pressure, ethyl ether is added to the residue, and the resulting precipitate is filtered and dried. The obtained Schiff base was dissolved in 50 ml of methanol, 700 mg of sodium borohydride was added little by little under ice cooling, and the mixture was stirred for 2 hours under ice cooling. Water, acetone and n-butyl alcohol were added to the reaction solution, and the mixture was concentrated under reduced pressure to remove the organic solvent. The obtained aqueous solution
Apply to column chromatography using MCI gel CHP20P (250 ml, manufactured by Mitsubishi Chemical Industries, Ltd.), wash with water (800 ml), and elute with a water (1)-methanol (1) gradient. When the eluted fractions (fractions No. 61-78, 18 g of each fraction) were concentrated to dryness under reduced pressure, N-
[3,4-di-(tetrahydropyranyloxy)
3.3 g of benzyl]valienamine (Rf=0.74) are obtained. 2.2 g of N-[3,4-di-(tetrahydropyranyloxy)benzyl]valienamine was dissolved in 0.5N sulfuric acid.
Dissolve in 110 ml, stir overnight at room temperature, adjust the pH to 5 with barium hydroxide, and filter. After concentrating the filtrate under reduced pressure and adjusting the pH to 7.5, add MCI gel CHP20P (400ml,
Apply to column chromatography (manufactured by Mitsubishi Chemical Industries, Ltd.) and elute with water. The eluted fractions (fractions No. 21-30, 18 g each) are concentrated under reduced pressure and then lyophilized to obtain 880 mg of N-(3,4-dihydroxybenzyl)valienamine. Elemental analysis: C 14 H 19 NO 6 Calculated value (%): C56.56; H6.44; N4.71 Experimental value (%): C56.38; H6.51; N4.32 [α] 23 D +76. 7゜(c=1, H 2 O) TLC: Rf=0.62 IC 50 (maltase): 8.1×10 -6 M Reference example 5 N-(β-hydroxyphenethyl)validamine and N-[α-(hydroxy methyl)benzyl]validamine 5.0 g of validamine and 6 ml of styrene oxide are dissolved in 150 ml of methanol and heated to reflux. After 4 hours, 5 ml of styrene oxide was added and the mixture was further heated under reflux for 4 hours. The reaction solution was concentrated under reduced pressure, the residue was partitioned between water and ethyl acetate, and the aqueous layer was separated. After concentrating the aqueous layer under reduced pressure, dowex 50W x 8
(H + type, 150 ml, manufactured by Dow Chemical Company) column chromatography, and after washing the column with water, elute with 0.5N aqueous ammonia. The eluted fraction was concentrated under reduced pressure, and the residue was applied to Amberlite CG-50 (NH + 4 type, 3, manufactured by Rohm and Haas) column chromatography, and when eluted with water, it was separated into two components. .
The first eluted fraction is concentrated under reduced pressure and then lyophilized to obtain a white powder (1.7 g) of N-[α-(hydroxymethyl)benzyl]validamine.Then, the eluted fraction is subsequently concentrated under reduced pressure, Lyophilization yields N-(β-hydroxyphenethyl)validamine (4.7 g). N-(β-hydroxyphenethyl)validamine Elemental analysis: C 15 H 23 NO 5・1/2H 2 O Calculated value (%): C58.81; H7.90; N4.57 Experimental value (%): C59 .21; H8.16; N4.69 [α] 27 D +58.6° (c=1, H 2 O) TLC: Rf=0.67 N-[α-(hydroxymethyl)benzyl]validamine Elemental analysis: C 15 H 23 NO 5 Calculated value (%): C60.59; H7.80; N4.71 Experimental value (%): C60.33; H8.29; N4.87 [α] 27 D +70.6° (c= 1, H 2 O) TLC: Rf=0.63 IC 50 (maltase): 4.5×10 -6 M Reference example 6 N-(2-hydroxy-3-phenoxypropyl)validamine Aqueous solution of 2.2 g of sodium hydroxide (10 ml) ) to,
Dissolve 4.7 g of phenol in a nitrogen stream, add 5 g of epichlorohydrin, and stir at room temperature for 24 hours. Add 50ml of water to the reaction solution and add 50ml of dichloromethane.
Extract twice. The dichloromethane layer was washed with water, dried over anhydrous sodium sulfate, and the solvent was distilled off.
Approximately 7 g of a mixture of 1-phenoxy-2,3-epoxypropane and 1-chloro-2-hydroxy-3-phenoxypropane are obtained. After dissolving 2.0 g of Validamine in 80 ml of N,N-dimethylformamide and adding 5.7 g of sodium bicarbonate, the above 1-phenoxy-2,3-epoxypropane and 1-chloro-2-hydroxy-3-phenoxylene were added. Add about 7 g of the cypropane mixture and stir overnight at a bath temperature of 90°C. Filter the reaction solution,
The filtrate is concentrated under reduced pressure, water and n-butyl alcohol are added to the residue, the pH is adjusted to 2 with 2N hydrochloric acid, and after partitioning, the aqueous layer is separated. After concentrating the aqueous layer under reduced pressure,
Apply to column chromatography using MCI gel CHP20P (250 ml, manufactured by Mitsubishi Chemical Industries, Ltd.) and elute with water. The eluted fraction is concentrated under reduced pressure and then lyophilized to obtain 1.7 g of white powder of N-(2-hydroxy-3-phenoxypropyl)validamine hydrochloride. Elemental analysis: C 16 H 25 NO 6・HCl・1/2H 2 O Calculated value (%): C51.54; H7.30; N3.76; Cl9.51 Experimental value (%): C51.10; H7. 53; N4.25; Cl10.00 [α] 23 D +43.0゜ (c=1, H 2 O) TLC: Rf=0.66 IC 50 (maltase): 3.4×10 -6 M Reference example 7 N-( D-arabino-2,3,4,5-tetrahydroxy-1-hydroxymethylpentyl)
Validamine Dissolve 3.0 g of Validamine and 6.6 g of D-fructose in 75 ml of dimethylformamide, and add 2.2 ml of 2N hydrochloric acid.
Sodium cyanoborohydride 3.8
g and stirred at 60-70°C for 40 hours. Concentrate the reaction solution under reduced pressure, dissolve the residue in water, make acidic (PH 0.5 or less) with 2N hydrochloric acid, stir until foaming stops,
Adjust the pH to 4.5 with N-sodium hydroxide and concentrate under reduced pressure. Dowex 50W x 8 (H + type,
After washing the column with water, elute with 0.5N aqueous ammonia. The eluted fractions were concentrated under reduced pressure, and the residue was subjected to column chromatography using Dowex 1×2 (OH - type, 450 ml) and eluted with water. The eluted fraction was concentrated under reduced pressure and then lyophilized to give N-D-arabino-2,3,
2.7 g of 4,5-tetrahydroxy-1-hydroxymethylbentyl)validamine are obtained. Elemental analysis: C 13 H 27 NO 9 Calculated value (%): C45.74; H7.97; N4.10 Experimental value (%): C45.38; H8.46; N4.14 [α] 27 D +70. 1゜(c=1, H 2 O) TLC: Rf=0.29 IC 50 (maltase): 5.9×10 -7 M Reference example 8 N-(3,5-di-tert-butyl-4-hydroxybenzyl) burr Olamine 3.0 g of variolamine and 7.0 g of 3,5-di-tert-butyl-4-hydroxybenzaldehyde are stirred in 30 ml of methanol at 40°C for 2 hours. The reaction solution was concentrated under reduced pressure, petroleum ether was added to the residue, and the resulting precipitate was collected by filtration. The obtained Schiff base was dissolved in 50 ml of methanol, and while cooling with ice water, 1.0 g of sodium borohydride was added little by little, followed by further stirring for 2.5 hours. The reaction solution was concentrated under reduced pressure, ethyl acetate and water were added to the residue, and the mixture was diluted with 2N hydrochloric acid while stirring.
After adjusting the pH to 2, separate the aqueous layer. After washing the aqueous layer with ethyl acetate, ethyl acetate was added, and N was added while stirring.
After adjusting the pH to 10 with sodium hydroxide solution, separate the ethyl acetate layer. The ethyl acetate layer is washed with water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Petroleum ether is added to the residue and left overnight at room temperature to obtain 3.0 g of N-(3,5-di-tert-butyl-4-hydroxybenzyl)variolamine. Elemental analysis: C 22 H 37 NO 6 Calculated value (%): C64.21; H9.06; N3.40 Experimental value (%): C64.00; H9.34; N3.25 [α] 24 D −2.3゜(c=1, CH 3 OH) IC 50 (maltase): 4.3×10 -8 M, IC 50 (satucarase): 6.8×10 -9 M Reference example 9 N-(β-hydroxy-2-methoxyphene (chill) Variolamine 4.1g of variolamine and 4.0g of 2-methoxyphenylglyoxal are dissolved in dimethylformamide.
Dissolve in a mixture of 20 ml and 100 ml of methanol at room temperature.
After stirring for 1.5 hours, 1.2 g of sodium borohydride was added while cooling with ice water, and the mixture was stirred at room temperature for 1 hour.
The reaction solution was concentrated under reduced pressure, ethyl acetate and water were added to the residue, and the pH was adjusted to 2 with 2N hydrochloric acid while stirring. Separate the aqueous layer and extract the ethyl acetate layer with 1/10N hydrochloric acid. The aqueous layers were combined, adjusted to pH 10 with N sodium hydroxide, and concentrated under reduced pressure. Dowex the concentrate
50W×8 (H + type, 400ml, manufactured by Dow Chemical Company)
After washing the column with water,
Elute with 0.5N ammonia water. The eluted fraction is concentrated under reduced pressure, and the residue is subjected to column chromatography using MCI gel CHP20P (250 ml, manufactured by Mitsubishi Chemical Industries, Ltd.). After washing the column with water, it is eluted with a water (1)-methanol (1) gradient. After concentrating the eluted fraction under reduced pressure and lyophilizing it, a white powder of N-(β-hydroxy-2-methoxyphenethyl)variolamine was obtained.
g is obtained. Elemental analysis: C 16 H 25 NO 7・1/2H 2 O Calculated value (%): C54.53; H7.44; N3.98 Experimental value (%): C54.36; H7.35; N3.86 [ α] 24 D +11.9° (c=1, H 2 O) TLC: Rf=0.63 IC 50 (maltase): 6.3×10 -8 M, IC 50 (satucalase): 9.9×10 -9 M Example 9 Add 30 mg of N-cyclohexylvariolamine to the fruit juice-containing beverage and stir and mix uniformly to obtain a fruit juice-containing beverage. Example 10 When the product temperature decreased to 50℃ after the completion of the strawberry/jam manufacturing process (boiling heat treatment) by the conventional method, N-(2
-Hydroxycyclopentyl)validamine is uniformly mixed at 0.4% based on the weight of the finished product, and then cooled to obtain a strawberry/jam product. Example 11 10 parts by weight of N-(2-hydroxycyclohexyl)variolamine and 100 parts by weight of lactose are mixed uniformly and made into a powder or fine granules.

Claims (1)

【特許請求の範囲】 1 一般式 [式中、―A―B―は【式】 【式】または【式】を示し、R は水酸基を1個有していてもよい炭素数3〜7の
シクロアルキル基を示す]で表わされる化合物ま
たはその水和物あるいは酸付加塩。 2 一般式 [式中、―A―B―は【式】 【式】または【式】を示す]で 表わされる化合物と炭素数3〜7のシクロアルカ
ンのエポキシドとを反応させることを特徴とする
一般式 [式中、R′は水酸基を1個有する炭素数3〜
7のシクロアルキル基を、―A―B―は上記と同
意義をそれぞれ示す]で表わされる化合物または
その水和物あるいは酸付加塩の製造法。 3 一般式 [式中、―A―B―は【式】 【式】または【式】を示す]で 表わされる化合物と水酸基を1個有していてもよ
い炭素数3〜7のシクロアルカノンとを反応さ
せ、ついで還元反応に付することを特徴とする一
般式 [式中、Rは水酸基を1個有していてもよい炭
素数3〜7のシクロアルキル基を、―A―B―は
上記と同意義をそれぞれ示す]で表わされる化合
物またはその水和物あるいは酸付加塩の製造法。 4 一般式 [式中、―A―B―は【式】 【式】または【式】を示す]で 表わされる化合物と水酸基を1個有していてもよ
い炭素数3〜7のシクロアルカンハライドとを反
応させることを特徴とする一般式 [式中、Rは水酸基を1個有していてもよい炭
素数3〜7のシクロアルキル基を、―A―B―は
上記と同意義をそれぞれ示す]で表わされる化合
物またはその水和物あるいは酸付加塩の製造法。 5 一般式 [式中、―A―B―は【式】 【式】または【式】を示し、R は水酸基を1個有していてもよい炭素数3〜7の
シクロアルキル基を示す]で表わされる化合物ま
たはその水和物あるいは酸付加塩を含有するα―
グルコシダーゼ阻害剤。
[Claims] 1. General formula [In the formula, -A-B- represents [Formula] [Formula] or [Formula], and R represents a cycloalkyl group having 3 to 7 carbon atoms which may have one hydroxyl group] Compound or its hydrate or acid addition salt. 2 General formula A general formula characterized by reacting a compound represented by [formula] [formula] [formula] or [formula]] with an epoxide of a cycloalkane having 3 to 7 carbon atoms [In the formula, R' has 1 hydroxyl group and has 3 to 3 carbon atoms
7, wherein -A-B- have the same meanings as above, respectively] or a hydrate or acid addition salt thereof. 3 General formula [In the formula, -A-B- represents [Formula] [Formula] or [Formula]] and a cycloalkanone having 3 to 7 carbon atoms which may have one hydroxyl group are reacted. and then subjected to a reduction reaction. A compound represented by [wherein R is a cycloalkyl group having 3 to 7 carbon atoms which may have one hydroxyl group, and -A-B- respectively have the same meanings as above] or a hydrate thereof Or a method for producing acid addition salts. 4 General formula [In the formula, -A-B- represents [Formula] [Formula] or [Formula]] and a cycloalkane halide having 3 to 7 carbon atoms which may have one hydroxyl group are reacted. A general formula characterized by A compound represented by [wherein R is a cycloalkyl group having 3 to 7 carbon atoms which may have one hydroxyl group, and -A-B- respectively have the same meanings as above] or a hydrate thereof Or a method for producing acid addition salts. 5 General formula [In the formula, -A-B- represents [Formula] [Formula] or [Formula], and R represents a cycloalkyl group having 3 to 7 carbon atoms which may have one hydroxyl group] α- containing the compound or its hydrate or acid addition salt
Glucosidase inhibitor.
JP15965781A 1981-01-05 1981-10-06 N-substituted derivative of pseudo-aminosugar, its preparation and use Granted JPS5859946A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP15965781A JPS5859946A (en) 1981-10-06 1981-10-06 N-substituted derivative of pseudo-aminosugar, its preparation and use
DE8181306141T DE3166093D1 (en) 1981-01-05 1981-12-24 N-substituted pseudo-aminosugars, their production and use
EP81306141A EP0056194B1 (en) 1981-01-05 1981-12-24 N-substituted pseudo-aminosugars, their production and use
US06/334,986 US4701559A (en) 1981-01-05 1981-12-28 N-substituted pseudo-aminosugars, their production and use
CA000393545A CA1184181A (en) 1981-01-05 1982-01-04 N-substituted pseudo-aminosugars, their production and use
US07/039,278 US4777294A (en) 1981-01-05 1987-04-17 N-substituted pseudo-aminosugars, their production and use
US07/039,277 US4803303A (en) 1981-01-05 1987-04-17 N-substituted pseudo-aminosugars, their production and use
MX9202937A MX9202937A (en) 1981-01-05 1992-06-17 PSEUDO-AMINOAZUCARES N-SUBSTITUTED.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15965781A JPS5859946A (en) 1981-10-06 1981-10-06 N-substituted derivative of pseudo-aminosugar, its preparation and use

Publications (2)

Publication Number Publication Date
JPS5859946A JPS5859946A (en) 1983-04-09
JPH0239501B2 true JPH0239501B2 (en) 1990-09-05

Family

ID=15698486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15965781A Granted JPS5859946A (en) 1981-01-05 1981-10-06 N-substituted derivative of pseudo-aminosugar, its preparation and use

Country Status (1)

Country Link
JP (1) JPS5859946A (en)

Also Published As

Publication number Publication date
JPS5859946A (en) 1983-04-09

Similar Documents

Publication Publication Date Title
US4701559A (en) N-substituted pseudo-aminosugars, their production and use
JP3059088B2 (en) Propiophenone derivatives and their production
JP7335288B2 (en) Aminoglycoside derivatives and their use in the treatment of inherited diseases
EP0049981B1 (en) Valienamine derivatives, their production and use
EP0089812B1 (en) N-substituted pseudo-aminosugars, their production and use
JP3065235B2 (en) Propiophenone derivatives and their production
EP3404033B1 (en) C-glucoside derivative containing fused phenyl ring or pharmaceutically acceptable salt thereof, process for preparing same, and pharmaceutical composition comprising same
HU213208B (en) Process for preparing 3-deoxy-mannosamine derivatives and pharmaceutical compns. contg. them
JPH0239501B2 (en)
EP3313831B1 (en) N-substituted hydroxamic acids with carbon-based leaving groups as efficient hno donors and uses thereof
JPH0238580B2 (en) BARIOORUAMINNONNCHIKANJUDOTAI * SONOSEIZOHOOYOBYOTO
EP3490975B1 (en) O-substituted hydroxamic acids
BE1000158A4 (en) New anthracycline glycosides, preparation process and their use as antitumor agents.
Ng et al. Synthetic and biological studies of carbasugar SGLT2 inhibitors
Han et al. On the mechanism of sodium cyanoborohydride reduction of tosylhydrazones
JPH0323537B2 (en)
JPH0161100B2 (en)
JPS5951946B2 (en) imidazolone derivatives
JPH11106381A (en) Chromene derivative and its salt and medicine containing the same
Fischer et al. Preparative synthesis of 1-deoxy-D-erythro-2-pentulose and some of its derivatives
JPH0325412B2 (en)
JPH1121243A (en) Medicinal composition
WO2006100413A9 (en) Novel compounds derived from 5-thioxylose and therapeutic use thereof
JP3069824B2 (en) Method for producing 2-chloro-4-nitrophenyl-α-D-maltotrioside
JPH0118904B2 (en)