JPH0239459B2 - HIKARIFUAIBANOSEIZOHOHO - Google Patents

HIKARIFUAIBANOSEIZOHOHO

Info

Publication number
JPH0239459B2
JPH0239459B2 JP7657081A JP7657081A JPH0239459B2 JP H0239459 B2 JPH0239459 B2 JP H0239459B2 JP 7657081 A JP7657081 A JP 7657081A JP 7657081 A JP7657081 A JP 7657081A JP H0239459 B2 JPH0239459 B2 JP H0239459B2
Authority
JP
Japan
Prior art keywords
optical fiber
tube
glass
opening
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7657081A
Other languages
Japanese (ja)
Other versions
JPS57191239A (en
Inventor
Toshio Katsuyama
Hiroyoshi Matsumura
Yasuo Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7657081A priority Critical patent/JPH0239459B2/en
Publication of JPS57191239A publication Critical patent/JPS57191239A/en
Publication of JPH0239459B2 publication Critical patent/JPH0239459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Description

【発明の詳細な説明】 本発明は光フアイバの製造方法、特に、光フア
イバのコアあるいはクラツドが楕円でかつ、光フ
アイバ外周がほぼ円形となる光フアイバの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an optical fiber, and more particularly to a method of manufacturing an optical fiber in which the core or cladding of the optical fiber is elliptical and the outer circumference of the optical fiber is approximately circular.

光集積回路の発展にともない、光の強度という
考えと共に、光の偏波という概念が重要になつて
くる。
With the development of optical integrated circuits, the concept of light polarization has become important as well as the concept of light intensity.

これは例えば光スイツチが偏波面のある方向に
関してのみ動作するため必要になつてくる。この
ような光集積回路と結合する光フアイバは光集積
回路の動作する偏波方向の成分のみを伝送させえ
るものでなければならない。このようなフアイバ
は偏波面保存フアイバと呼ばれ、光通信伝送路と
共に計測用としても重要となつてくる。
This is necessary because, for example, an optical switch operates only in a certain direction of the polarization plane. The optical fiber coupled to such an optical integrated circuit must be capable of transmitting only the component in the polarization direction in which the optical integrated circuit operates. Such fibers are called polarization preserving fibers, and they are becoming important not only for optical communication transmission lines but also for measurement purposes.

このような偏波面保存フアイバの製造方法とし
て、光フアイバのコアあるいはクラツドを楕円に
し、コアとクラツド材料の熱膨張の差を利用し
て、歪を付加する方法が知られている。(文献
エレクトロニクスレターズ1979年10月号677ペー
ジ“Strain birefringlnce in single polarisation
germanosilicate optical fibres”I.P.Kaminow)
この方法は真円のプレホームロツドを作成した
後、一部側面を研磨して高温で線引きし、楕円コ
アの光フアイバを作成するものである。しかしこ
の方法は研磨という作業が入ると同時に、光フア
イバの外径そのものが円型にならない欠点があ
る。
As a method of manufacturing such a polarization-maintaining fiber, a method is known in which the core or cladding of the optical fiber is made into an ellipse and strain is applied by utilizing the difference in thermal expansion between the core and cladding materials. (Literature
Electronics Letters October 1979 issue, page 677 “Strain birefringlance in single polarization
germanosilicate optical fibers”IPKaminow)
This method involves creating a perfectly circular preform rod, then polishing some of the sides and drawing it at high temperature to create an optical fiber with an elliptical core. However, this method requires polishing work and has the drawback that the outer diameter of the optical fiber itself cannot be circular.

したがつて、本発明の目的はコアあるいはクラ
ツドの少なくとも一部が所望の楕円率となる光フ
アイバを簡単な工程で実現することである。すな
わち、研磨等の工程を必要とせず、かつ、光フア
イバの外周は円形となり、芯部のコアあるいはク
ラツドの少なくとも一方が所望の楕円率となる光
フアイバの製造方法を実現することで、特に、光
フアイバのOH基による吸収損失および散乱損失
を少なくする光フアイバの製造方法を実現するこ
とである。
Therefore, an object of the present invention is to realize an optical fiber in which at least a portion of the core or cladding has a desired ellipticity through a simple process. That is, by realizing an optical fiber manufacturing method that does not require a process such as polishing, has a circular outer periphery, and has at least one of the core and the cladding having a desired ellipticity, The object of the present invention is to realize a method for manufacturing an optical fiber that reduces absorption loss and scattering loss due to OH groups in the optical fiber.

本発明は上記目的を達成するため、石英管等の
基材管の内壁に光伝送の要部をなすコア又はコア
およびクラツド材となるガラス薄膜を形成し、こ
れを加熱溶融し中実のガラスロツド(プレホー
ム)を作り、その後光フアイバとするため加熱線
引する方法において、上記プレホームを作る工程
において、上記ガラス薄膜堆積時の反応ガスの出
口側を加熱溶封し、その後、上記ガラス薄膜堆積
時の反応ガスの入口側から吸引減圧しながら上記
ガラス管の長手方向に加熱源を移動しながら加熱
溶着して中実のプレホームを作ることを特徴とす
る。
In order to achieve the above-mentioned object, the present invention forms a core, which is the main part of light transmission, and a glass thin film, which is a cladding material, on the inner wall of a base material tube such as a quartz tube, and then heats and melts this to form a solid glass rod. In the method of making a preform and then heating and drawing it to make an optical fiber, in the step of making the preform, the exit side of the reaction gas during the deposition of the glass thin film is heated and melt-sealed, and then the glass thin film is heated and drawn. The method is characterized in that a solid preform is produced by heating and welding while moving a heat source in the longitudinal direction of the glass tube while suctioning and reducing the pressure from the inlet side of the reaction gas during deposition.

この光フアイバの製造方法は従来知られている
光フアイバの製造方法において、減圧することを
付加することによつて、他に特別な工程を必要と
せず、しかも、楕円部の長、短軸が常に一定とな
る利点有し、更に、プレホームを作る工程におい
て、管外部と管内部が遮断されており、外気の混
入が少なく、ガラス薄膜堆積時に発生し、ガス流
出口付近に堆積する微粉末が減圧時に気流の乱れ
によつて管中心部付近まで流れ込むようなことが
防止されるため、光フアイバの伝送損失の要因と
なるOH基の混入、光散乱の要素を軽減すること
ができる。
This optical fiber manufacturing method does not require any other special process by adding pressure reduction to the conventional optical fiber manufacturing method, and moreover, the long and short axes of the elliptical part are It has the advantage of being constant at all times, and in addition, in the process of making the preform, the outside of the tube is isolated from the inside of the tube, so there is little outside air intrusion, and the fine powder that is generated during glass thin film deposition and accumulates near the gas outlet. Since it is prevented from flowing into the vicinity of the center of the tube due to airflow turbulence during depressurization, it is possible to reduce the incorporation of OH groups and light scattering factors that cause transmission loss in optical fibers.

以下図面を用いて、本発明を詳細に説明する。 The present invention will be explained in detail below using the drawings.

第1図は本発明による光フアイバの製造方法を
実施する装置を示す。同図において、横型回転せ
んばん台7に、ガラス管2が回転できるように装
着される。まず、ガラス管内壁にクラツドあるい
はジヤケツトの一部となるガラス薄膜を形成する
工程では、原料ガス供給口のコツク3を開き、後
述の減圧のためのコツク6を閉じ、原材料ガスを
ガラス管2を通して排気装置9側に流す。この間
加熱源のバーナ8をくり返し移動して、管内の反
応を促進しガラス薄膜を上記ガラス管内壁に形成
する。これらの工程は光フアイバの製造方法とし
て良く知られている。なお図面ではガラス管のバ
ーナでの加熱部において一部が封じられている
が、上記工程においては開き中空パイプとなつて
いる。
FIG. 1 shows an apparatus for carrying out the method of manufacturing an optical fiber according to the invention. In the figure, a glass tube 2 is rotatably mounted on a horizontal rotating table 7. First, in the process of forming a glass thin film that will become a part of the cladding or jacket on the inner wall of the glass tube, the raw material gas supply port 3 is opened, the pressure reduction chamber 6 described later is closed, and the raw material gas is passed through the glass tube 2. Flow to the exhaust device 9 side. During this time, the heat source burner 8 is moved repeatedly to promote the reaction inside the tube and form a glass thin film on the inner wall of the glass tube. These steps are well known as methods for manufacturing optical fibers. Note that in the drawing, the part of the glass tube heated by the burner is sealed, but in the above process it is an open hollow pipe.

次に、上記工程によつて出来たガラス薄膜を有
するガラス管を加熱融着して中実のプレホームロ
ツトを作る。
Next, the glass tube with the glass thin film produced in the above process is heat-fused to form a solid preform rod.

まず、上記工程における原料ガス流の出口側
(図面の右側)の一部加熱によつて溶融封止する。
この工程では当然原料供給口のコツク3は閉じら
れている。次に、通気用パイプのコツク6を開
き、T字型分岐パイプ1の一方から清浄なガス
(例えばAr、N2あるいはO2)を流し、他方から
排気することによつてガラス管2内部を減圧す
る。減圧時は、外気が回転導入端子4などを通し
て管内部に入りやすいので、回転導入端子などは
清浄なN2ガスなどを満したカバー5を設けてお
く。
First, the outlet side (right side in the drawing) of the raw material gas flow in the above step is partially heated to melt and seal.
In this step, the raw material supply port 3 is naturally closed. Next, the inside of the glass tube 2 is opened by opening the vent pipe 6 and flowing clean gas (for example, Ar, N 2 or O 2 ) from one side of the T-shaped branch pipe 1 and exhausting it from the other side. Depressurize. During depressurization, outside air easily enters the tube through the rotation introduction terminal 4, etc., so a cover 5 filled with clean N2 gas or the like is provided over the rotation introduction terminal.

上述の方法によれば、たとえば第2図に示すよ
うにガラス管内壁にガラス膜を作る工程における
ガス流出口側から吸引して減圧した方法に比べて
外部と管内部が遮断されており外気の混入が少な
い。また、ガラス膜堆積時に発生し、ガス流出口
付近に堆積する微粉末6は、出口側から吸引する
場合、減圧に伴なう気流の乱れによつて管中心部
付近まで流れ込む。このことは、光散乱損失の原
因となり、好ましくない。本発明による方法によ
れば、吸引をガス流入口側から行なつているの
で、微粉末堆積部よりガス流入口側で一度溶封し
ておけば、その微粉末が管中心部に流れ込む欠点
がない。
According to the above-mentioned method, the outside and the inside of the tube are isolated from each other, compared to a method in which the pressure is reduced by suctioning from the gas outlet side in the process of forming a glass film on the inner wall of the glass tube, as shown in Figure 2. Less contamination. Furthermore, when the fine powder 6 generated during glass film deposition and deposited near the gas outlet is sucked from the outlet side, it flows into the vicinity of the center of the tube due to the turbulence of the airflow caused by the reduced pressure. This is undesirable because it causes light scattering loss. According to the method of the present invention, suction is performed from the gas inlet side, so if the part where the fine powder is deposited is once melt-sealed on the gas inlet side, there is no problem that the fine powder will flow into the center of the tube. do not have.

次に上述の第1図に関連して説明した本発明の
方法によつて得た光フアイバの具体例について説
明する。
Next, a specific example of the optical fiber obtained by the method of the present invention described in connection with FIG. 1 above will be described.

第3図は上述の方法によつて得られた光フアイ
バの断面図で11はコアでGeO2−SiO2ガラスか
らなりコア径8μmの円形である。12はクラツ
ドで、SiO2ガラスからなり、外径20μmの円形で
ある。13はジヤケツトでGeO2−B2O3−SiO2
ラスからなり、外周は楕円で、100μm、短軸は
35μmである。なおジヤケツトの屈折率はクラツ
ド12のそれとほぼ等しい。これはコア11に複
屈折を生ぜしめるためのものである。なお、上記
光フアイバを作る工程において、上記T型分岐1
に流したアルゴンガスの流量は1000c.c./minで、
減圧は大気圧に比べ−8mmH2Oである。
FIG. 3 is a cross-sectional view of the optical fiber obtained by the above method, and the core 11 is made of GeO 2 --SiO 2 glass and has a circular core diameter of 8 μm. The cladding 12 is made of SiO 2 glass and has a circular shape with an outer diameter of 20 μm. 13 is a jacket made of GeO 2 -B 2 O 3 -SiO 2 glass, the outer circumference is elliptical, 100 μm, and the short axis is
It is 35 μm. Note that the refractive index of the jacket is approximately equal to that of the cladding 12. This is to cause birefringence in the core 11. In addition, in the process of making the optical fiber, the T-shaped branch 1
The flow rate of argon gas was 1000c.c./min.
The reduced pressure is −8 mmH 2 O compared to atmospheric pressure.

第4図は上記実施例による光フアイバの伝送光
波長と伝送損失の関係を示す図である。波長
1.55μmでの伝送損失は0.8dB/Kmとなり、これ
は、第2図の減圧を原料ガスの出口側から行なつ
た場に比べ約1/5に減少している。なお、第4図
の結果より、光フアイバに含まれるOH基の量は
2.5ppm程度であり、これは第2図の方法の場合
によつて得られる光フアイバに含まれるOH基の
量の1/10に相当する。
FIG. 4 is a diagram showing the relationship between transmission light wavelength and transmission loss of the optical fiber according to the above embodiment. wavelength
The transmission loss at 1.55 μm is 0.8 dB/Km, which is approximately 1/5 less than that in the case shown in Fig. 2 where the pressure reduction was performed from the outlet side of the raw material gas. Furthermore, from the results shown in Figure 4, the amount of OH groups contained in the optical fiber is
The amount is about 2.5 ppm, which corresponds to 1/10 of the amount of OH groups contained in the optical fiber obtained in the case of the method shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、外気の混入を防ぎ、ガス流入口方向
から吸引して管内部を減圧する方法を示す図。第
2図は、ガス流出口方向から吸引して、管内部を
減圧する方法を示す図。第3図は、本発明によつ
て得られた偏波面保存光フアイバの断面構造を示
す図、第4図は、本発明によるガス流入口方向か
ら吸引して減圧する方法で作製した偏光波面保存
光フアイバの伝送損失と波長との関係を示す図で
ある。 1……T型分岐パイプ、2……ガラス管、3,
6……コツク。
FIG. 1 is a diagram showing a method of preventing outside air from entering and reducing the pressure inside the pipe by suctioning from the gas inlet direction. FIG. 2 is a diagram showing a method of reducing the pressure inside the pipe by suctioning from the direction of the gas outlet. FIG. 3 is a diagram showing the cross-sectional structure of a polarization-maintaining optical fiber obtained by the present invention, and FIG. 4 is a diagram showing a polarization-maintaining optical fiber manufactured by the method of sucking and depressurizing from the gas inlet direction according to the present invention. FIG. 2 is a diagram showing the relationship between optical fiber transmission loss and wavelength. 1...T-shaped branch pipe, 2...Glass tube, 3,
6...Kotuku.

Claims (1)

【特許請求の範囲】 1 以下の工程を有することを特徴とする光フア
イバの製造方法。 (1) 第1の開口部と、第2の開口部とを有する基
材管の内壁に上記第1の開口部より上記第2の
開口部へ反応ガスを導入して薄膜を形成する第
1の工程 (2) 上記基材管に加熱封止部を設ける第2の工程 (3) 上記加熱封止部に対して上記第1の開口部側
から吸収減圧しながら上記基材管の長手方向に
加熱源を移動することにより上記基材管を溶融
中実化してプレホームを形成する第3の工程 (4) 上記プレホームを加熱線引する第4の工程
[Claims] 1. A method for manufacturing an optical fiber, characterized by comprising the following steps. (1) A first method for forming a thin film on the inner wall of a base material tube having a first opening and a second opening by introducing a reactive gas from the first opening to the second opening. Step (2) A second step of providing a heat-sealed portion on the base tube (3) While absorbing and depressurizing the heat-sealed portion from the first opening side, the base tube is moved in the longitudinal direction. A third step of melting and solidifying the base material tube to form a preform by moving a heating source to (4) A fourth step of heating and drawing the preform.
JP7657081A 1981-05-22 1981-05-22 HIKARIFUAIBANOSEIZOHOHO Expired - Lifetime JPH0239459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7657081A JPH0239459B2 (en) 1981-05-22 1981-05-22 HIKARIFUAIBANOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7657081A JPH0239459B2 (en) 1981-05-22 1981-05-22 HIKARIFUAIBANOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS57191239A JPS57191239A (en) 1982-11-25
JPH0239459B2 true JPH0239459B2 (en) 1990-09-05

Family

ID=13608885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7657081A Expired - Lifetime JPH0239459B2 (en) 1981-05-22 1981-05-22 HIKARIFUAIBANOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0239459B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145751A (en) * 2003-11-14 2005-06-09 Toyo Glass Co Ltd Method for manufacturing grin lens, and grin lens

Also Published As

Publication number Publication date
JPS57191239A (en) 1982-11-25

Similar Documents

Publication Publication Date Title
US4668263A (en) Method for producing glass preform for optical fiber
CA1054795A (en) Optical fibres
JPS61155225A (en) Manufacture of optical wave guide tube
FI81209C (en) One-mode optical waveguide fiber and the method of producing its
EP2933239B1 (en) Apparatus for manufacturing depressed cladding ultra-low water peak optical fiber core rod and method thereof
JPH0680437A (en) Device and method for drawing optical waveguide fiber
CA1263550A (en) Glad optical waveguide
JPH0587455B2 (en)
JPH0425214B2 (en)
US4528009A (en) Method of forming optical fiber having laminated core
CA1260684A (en) Optical waveguide manufacture
US4734117A (en) Optical waveguide manufacture
EP1035083A1 (en) Method of collapsing preforms for optical fibers
JP2001510137A (en) Reduced H2 sensitivity in optical fiber
JPH0239459B2 (en) HIKARIFUAIBANOSEIZOHOHO
JPH01153551A (en) Production of optical fiber having definite polarization
SE7905617L (en) SET AND APPARATUS FOR PRODUCING GLASS FIBERS
JPH02160635A (en) Production of glass matrix for optical fiber
JPS6261543B2 (en)
KR950006186B1 (en) Process for the preparation of optical fiber preform
JPS63315530A (en) Production of optical fiber preform
JPS6096537A (en) Production of optical fiber preform
JPS63156032A (en) Formation of suit for preform
JPS6036343A (en) Production of glass material for optical transmission
JPS60145924A (en) Production of base material for optical fiber