JPH0239300B2 - - Google Patents

Info

Publication number
JPH0239300B2
JPH0239300B2 JP56027408A JP2740881A JPH0239300B2 JP H0239300 B2 JPH0239300 B2 JP H0239300B2 JP 56027408 A JP56027408 A JP 56027408A JP 2740881 A JP2740881 A JP 2740881A JP H0239300 B2 JPH0239300 B2 JP H0239300B2
Authority
JP
Japan
Prior art keywords
gases
gas
membrane
thin layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56027408A
Other languages
Japanese (ja)
Other versions
JPS57140608A (en
Inventor
Minoru Ezoe
Jun Nakazawa
Keiji Nakamoto
Masatoshi Maeda
Masao Abe
Takashi Ichinose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2740881A priority Critical patent/JPS57140608A/en
Publication of JPS57140608A publication Critical patent/JPS57140608A/en
Publication of JPH0239300B2 publication Critical patent/JPH0239300B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は気体分離膜に関する。 既に種々の重合体からなる多孔性膜及び緻密膜
が混合気体の分離に効果があることが知られてい
るが、一般にこのような性質を有する気体分離膜
においては透過性と選択分離性が両立し難い。即
ち、一般に異なる気体に対して透過性の高い気体
分離膜は選択性に乏しく、反対に異なる気体間の
選択分離性にすぐれる気体分離膜は透過性に乏し
い。これらのことが気体分離膜による実用的な気
体分離の障害となつている。このため、従来より
気体分離膜の透過性や選択分離性を高める方法が
提案されているが、尚製造面、膜物性面からみて
実用的な気体分離膜が得られるには至つていな
い。 例えば特開昭47−16574号には重合体の緻密で
均質なフイルムからなる気体分離膜に低エネルギ
ーの電子線を照射して、気体混合物間の選択分離
性を高める方法が開示されている。しかしなが
ら、電子線照射によれば、重合体フイルムが厚さ
方向全体に物理的、化学的変化を受けるので、選
択分離性は改善されるものの、多くの場合、気体
の透過性は低下する傾向があり、更に、重合体緻
密フイルムが本来、低い気体透過性しか有さない
こともあつて、透過性と選択分離性のいずれにも
すぐれる実用性の高い気体分離膜を得ることは困
難である。一方、重合体の緻密フイルムに比べ
て、表面に気体の選択分離性を有する薄層を備
え、この薄層が多孔性の重合体で支持された所謂
非対称膜は一般に気体の透過性にすぐれるが、電
子線照射は非対称膜の場合にも実質的に全膜厚方
向にわたつて物理的、化学的変化を与えるので、
気体透過性は低下する傾向がある。 本発明は気体分離膜における上記した種々の問
題を解決するためになされたものであり、本発明
の目的は、ポリスルホンからなる非対称膜におい
て気体の選択分離性を有する薄層のみが実質的に
改質され、かくして高い気体透過性を保持しつ
つ、選択分離性が改善された気体分離膜を提供す
ることを目的とする。 本発明によるポリスルホンからなる気体分離膜
の製造方法は、表面に少なくとも1種の気体と他
の気体との間に異なる透過流束を有する緻密な薄
層を備え、多孔度が1〜90%である多孔性非対称
ポリスルホン膜の上記の表面の薄層を0.0005〜
1Torrの雰囲気圧下に処理電力密度と処理時間の
積である処理量が1〜1×103W・sec/cm2である
ようにスパツタエツチング処理して、水素及びヘ
リウムについては、実質的にその透過流束を変化
させることなく、これらよりも分子量が大きい
か、又は極性の高い気体について、その透過流束
を低減させることを特徴とする。 本発明において用いるポリスルホンからなる非
対称膜は、表面に少なくとも1種の気体と他の気
体との間に異なる透過流束を有する緻密な薄層、
所謂スキン層を備え、多孔度が1〜90%、好まし
くは40〜80%である。 一般に多孔性膜は、その微孔が比較的大きいと
きは、第1図に線Aで示すように、気体の分子量
に対してその透過速度をプロツトするとほぼ直線
となるが、多孔性膜の微孔が小さくなるにつれて
分子量の大きい酸素や、極性の高い分子構造を有
する一酸化炭素、二酸化炭素等は上記直線からは
ずれるようになる。本発明において特に好ましく
用いられる多孔性非対称ポリスルホン膜は、大き
い分子量を有する気体又は極性の高い構造を有す
る気体について、上記直線関係からのずれが発現
する孔径以下の孔径を有する多孔性又は緻密な薄
層を備えたものである。薄層の微孔孔径を数量化
することは困難であるが、例えば、窒素に対する
ヘリウムの分離係数を孔径選択の一つの指標とす
ることができ、本発明においては上記分離係数が
3以上である多孔性非対称ポリスルホン膜を用い
ると良好な結果が得られる。 本発明によれば、分離係数の制御は、膜表面の
緻密な薄層の厚み、微孔の孔径、密度等を制御す
ることによつてなされる。これらは例えば湿式法
により製膜する場合に製膜液の濃度や粘度、基材
上に流延する際の厚み、温度、湿度等の流延条
件、流延後の溶剤蒸発量、凝固溶剤や凝固温度等
の後処理条件により制御できることが知られてい
る。 本発明の方法によれば、上記のような薄層を備
えた多孔性非対称ポリスルホン膜を放電域中のイ
オンエネルギーが極めて大きい陰極暗部に曝して
スパツタエツツチング、即ち、放電の結果、生じ
た陽イオンを薄層の表面層に加速して衝突させる
ことにより、実質的に薄層の表面層のみを物理
的、化学的に変化させると共に、上記表面層を超
薄膜状に架橋させるものである。 スパツタエツチング処理の技術自体は、例えば
特公昭53−31827号公報にも記載されているよう
に既に知られている。 本発明においてスパツタエツチング処理は通
常、常温で0.0005〜1Torrの雰囲気圧、好ましく
は0.001〜0.1Torrの雰囲気圧下に行なわれる。雰
囲気圧が0.0005Torrより小さいときは放電が持
続的に行なわれず、また、1Torrより大きいとき
はスパツタエツチング速度が著しく低下すると共
に、放電が不安定となつて、特に連続的にスパツ
タエツチング処理を行なう場合に均質な処理表面
層を得ることができないからである。 スパツタエツチングによる薄層の処理層は処理
電力密度と処理時間の積で表わされ、最適の処理
量は薄層における孔径や薄層の厚み等、によつて
適宜に決定されるが、通常、1〜1×103W・
sec/cm2である。放電処理量が1W・seo/cm2より
小さいときは処理効果が小さく、分離係数を十分
に高めることができないからであり、一方、放電
処理量が1×103W・sec/cm2より大きいときは一
般に分離係数は高くなるが、反面、気体分離膜が
変形、収縮するおそれがあると共に、各気体の透
過速度が小さくなつて好ましくないからである。
明らかに処理電力密度が小さくなる程、処理時間
を長くする必要があるが、実用的には処理電力密
度を大きくして、処理時間を短かくするのが望ま
しい。 電源としては数百KHz乃至数十MHzの高周波電
源を用いることができるが、実用上は13.56MHz
の工業用割当周波数を用いるのが便利である。必
要な電極間距離は雰囲気圧をPとするとき1/√
Pに比例し、例えばPが0.005Torrのときは電極
間距離は30mm以上とすることが必要であり、普通
40mm程度に調整される。また、陰極用電極とシー
ルド用電極との間には、両電極間に放電が生じな
いように間隙が設けられるが、例えば雰囲気圧が
0.005Torrの場合、間隙は通常4mm程度である。 スパツタエツチング処理する際の雰囲気ガスは
実用上はアルゴン、窒素等の不活性ガス、空気、
炭酸ガス、水蒸気が用いられる。このようにして
処理された多孔製造非対称ポリスルホン膜は、予
期しないことに、ヘリウムや水素のように分子量
の小さい気体については透過速度が実質的に変化
しないが、一方、窒素、酸素、二酸化炭素等のよ
うに分子量の大きい気体又は極性の高い構造を有
する気体の透過速度が低下する。その結果、本発
明に従つて得られる気体分離膜は分子量の小さい
気体について大きい透過速度を維持しつつ、分子
量の大きい気体又は極性の大きい構造の気体に対
する分離係数が高められる。また、分子量の大き
い気体及び極性構造の気体間においても透過速度
が変化し、分離係数が高められる。 第2図に薄層1が粗な多孔質層2に一体的に支
持されている非対称膜において、薄層の一部がス
パツタエツチング処理されたモデル図を示す。ス
パツタエツチング処理された表面層を電子顕微鏡
にて観察すると、陽イオンによる表面エツチング
の結果、凹凸や織毛状物が表面に認められると共
に、架橋層3が超薄膜状に生じている。分子量の
大きい気体や極性構造の気体の透過速度が低下す
るのはこの架橋層の形成が寄与しているとみられ
る。 以上のように、本発明の気体分離膜は、スパツ
タエツチング処理により、気体の選択分離性を有
する薄層の表面層のみがエツチングされると共
に、化学反応を伴つて架橋層が超薄膜状に形成さ
れ、従つて、ヘリウムのような小さい分子量の気
体に対してはスパツタエツチング処理の前後を通
じて透過性を高く維持しつつ、異種の気体間の選
択性が高められている。 以下に本発明の実施例を挙げるが、本発明はこ
れらに限定されるものではない。 実施例 ポリスルホン(ユニオン・カーバイド社製P−
1700)をN−メチル−2−ピロリドンに溶解して
製膜液を調製し、ガラス板上に流延、凝固浴に浸
漬、風乾して多孔度56%の非対称膜を得た。この
膜のスキン層側を常温、0.1Torrのアルゴン雰囲
気圧下、放電電力密度0.5W/cm2にて種々の時間、
スパツタエツチング処理した。第3図に処理量に
対する透過率の変化、第4図に分離係数の変化を
示す。因みに処理前と処理量600W・sec/cm2のと
きの各気体の透過速度(単位はcc(STP)/cm2
sec・cmHg)及び分離係数を下表に示す。
The present invention relates to gas separation membranes. It is already known that porous membranes and dense membranes made of various polymers are effective in separating mixed gases, but in general, gas separation membranes with these properties are not able to achieve both permeability and selective separation. It's difficult. That is, gas separation membranes that are highly permeable to different gases generally have poor selectivity, and conversely, gas separation membranes that are excellent in selectively separating different gases have poor permeability. These are obstacles to practical gas separation using gas separation membranes. For this reason, methods for increasing the permeability and selective separation properties of gas separation membranes have been proposed, but a practical gas separation membrane has not yet been obtained from the viewpoint of production and membrane properties. For example, JP-A-47-16574 discloses a method of improving selective separation between gas mixtures by irradiating a gas separation membrane made of a dense and homogeneous polymer film with a low-energy electron beam. However, with electron beam irradiation, the polymer film undergoes physical and chemical changes throughout its thickness, so although selective separation is improved, gas permeability tends to decrease in many cases. Moreover, since the dense polymer film inherently has low gas permeability, it is difficult to obtain a highly practical gas separation membrane with excellent permeability and selective separation properties. . On the other hand, so-called asymmetric membranes, which have a thin layer on the surface that selectively separates gases and this thin layer is supported by a porous polymer, generally have better gas permeability than dense polymer films. However, even in the case of asymmetric films, electron beam irradiation causes physical and chemical changes throughout the entire film thickness.
Gas permeability tends to decrease. The present invention has been made in order to solve the above-mentioned various problems in gas separation membranes, and an object of the present invention is to substantially improve only the thin layer having gas selective separation properties in an asymmetric membrane made of polysulfone. It is an object of the present invention to provide a gas separation membrane having improved selective separation properties while maintaining high gas permeability. The method for manufacturing a gas separation membrane made of polysulfone according to the present invention comprises a dense thin layer on the surface having different permeation fluxes between at least one gas and other gases, and a porosity of 1 to 90%. The above surface thin layer of porous asymmetric polysulfone membrane is 0.0005 ~
Sputter etching is performed under an atmospheric pressure of 1 Torr so that the processing amount, which is the product of processing power density and processing time, is 1 to 1 × 10 3 W・sec/cm 2 , and hydrogen and helium are substantially eliminated. It is characterized by reducing the permeation flux of gases having a larger molecular weight or higher polarity than these without changing the permeation flux. The asymmetric membrane made of polysulfone used in the present invention has a dense thin layer on the surface having different permeation fluxes between at least one type of gas and other gases;
It has a so-called skin layer and has a porosity of 1 to 90%, preferably 40 to 80%. In general, when the pores of a porous membrane are relatively large, the permeation rate is almost a straight line when plotted against the molecular weight of the gas, as shown by line A in Figure 1. As the pores become smaller, oxygen with a large molecular weight, carbon monoxide, carbon dioxide, etc. with a highly polar molecular structure deviate from the above straight line. The porous asymmetric polysulfone membrane that is particularly preferably used in the present invention is a porous or dense thin film having a pore diameter smaller than that at which deviation from the above linear relationship occurs for gases having a large molecular weight or gases having a highly polar structure. It has layers. Although it is difficult to quantify the diameter of micropores in a thin layer, for example, the separation coefficient of helium to nitrogen can be used as one index for selecting the pore diameter, and in the present invention, the separation coefficient is 3 or more. Good results are obtained using porous asymmetric polysulfone membranes. According to the present invention, the separation coefficient is controlled by controlling the thickness of the dense thin layer on the surface of the membrane, the diameter of the micropores, the density, etc. These include, for example, the concentration and viscosity of the film-forming liquid when forming a film by a wet method, the thickness when casting onto a base material, the casting conditions such as temperature and humidity, the amount of solvent evaporated after casting, the coagulation solvent, etc. It is known that this can be controlled by post-processing conditions such as coagulation temperature. According to the method of the present invention, a porous asymmetric polysulfone membrane having a thin layer as described above is exposed to a cathode dark region in which the ion energy in the discharge region is extremely high, resulting in sputter etching, that is, as a result of discharge. By accelerating cations and causing them to collide with the thin surface layer, only the thin surface layer is physically and chemically changed, and the surface layer is cross-linked into an ultra-thin film. . The sputter etching technique itself is already known, as described in, for example, Japanese Patent Publication No. 53-31827. In the present invention, the sputter etching process is usually carried out at room temperature and under an atmospheric pressure of 0.0005 to 1 Torr, preferably 0.001 to 0.1 Torr. When the atmospheric pressure is less than 0.0005 Torr, the discharge is not sustained, and when it is greater than 1 Torr, the sputter etching speed decreases markedly and the discharge becomes unstable, making it particularly difficult to continuously perform the sputter etching process. This is because it is not possible to obtain a homogeneous treated surface layer when carrying out such treatment. A thin layer processed by sputter etching is expressed as the product of processing power density and processing time, and the optimum processing amount is determined appropriately depending on the pore diameter in the thin layer, the thickness of the thin layer, etc. , 1~1×10 3 W・
sec/ cm2 . This is because when the discharge treatment amount is smaller than 1 W・seo/cm 2 , the treatment effect is small and the separation coefficient cannot be sufficiently increased, whereas on the other hand, the discharge treatment amount is larger than 1×10 3 W・sec/cm 2 This is because, although the separation coefficient generally becomes high when using a gas separation membrane, there is a risk that the gas separation membrane may be deformed or contracted, and the permeation rate of each gas decreases, which is undesirable.
Obviously, the lower the processing power density, the longer the processing time needs to be, but it is practically desirable to increase the processing power density and shorten the processing time. As a power source, a high frequency power source of several hundred KHz to several tens of MHz can be used, but in practice 13.56MHz is used.
It is convenient to use the industrially allocated frequencies of The required distance between electrodes is 1/√ when the atmospheric pressure is P
For example, when P is 0.005 Torr, the distance between the electrodes must be 30 mm or more, and normally
Adjusted to about 40mm. In addition, a gap is provided between the cathode electrode and the shield electrode to prevent discharge between the two electrodes.
In the case of 0.005 Torr, the gap is usually about 4 mm. In practice, the atmospheric gas used during sputter etching treatment is inert gas such as argon or nitrogen, air,
Carbon dioxide gas and water vapor are used. Porous fabricated asymmetric polysulfone membranes treated in this way unexpectedly show virtually no change in permeation rate for low molecular weight gases such as helium and hydrogen, whereas nitrogen, oxygen, carbon dioxide, etc. The permeation rate of gases with large molecular weights or gases with highly polar structures, such as, decreases. As a result, the gas separation membrane obtained according to the present invention maintains a high permeation rate for gases with a low molecular weight, while increasing the separation coefficient for gases with a high molecular weight or gases with a highly polar structure. Furthermore, the permeation rate changes between gases with large molecular weights and gases with polar structures, and the separation coefficient is increased. FIG. 2 shows a model diagram of an asymmetric membrane in which a thin layer 1 is integrally supported by a rough porous layer 2, in which a portion of the thin layer has been subjected to sputter etching. When the sputter-etched surface layer is observed under an electron microscope, as a result of surface etching by cations, unevenness and woven hair-like substances are observed on the surface, and the crosslinked layer 3 is formed in the form of an ultra-thin film. It is believed that the formation of this crosslinked layer contributes to the decrease in the permeation rate of gases with large molecular weights and gases with a polar structure. As described above, in the gas separation membrane of the present invention, only the thin surface layer that has gas selective separation properties is etched by the sputter etching process, and the crosslinked layer is formed into an ultra-thin film through a chemical reaction. Therefore, the selectivity between different gases is enhanced while maintaining high permeability to small molecular weight gases such as helium before and after the sputter etching process. Examples of the present invention are listed below, but the present invention is not limited thereto. Example Polysulfone (Union Carbide P-
1700) in N-methyl-2-pyrrolidone to prepare a membrane-forming solution, which was cast onto a glass plate, immersed in a coagulation bath, and air-dried to obtain an asymmetric membrane with a porosity of 56%. The skin layer side of this film was heated at room temperature, under an argon atmosphere pressure of 0.1 Torr, and at a discharge power density of 0.5 W/cm 2 for various times.
Sputter etching treatment. FIG. 3 shows changes in transmittance with respect to throughput, and FIG. 4 shows changes in separation coefficient. Incidentally, the permeation rate of each gas (unit: cc (STP)/cm 2 ) before treatment and when the processing amount is 600 W sec/cm 2
sec・cmHg) and separation factors are shown in the table below.

【表】 次に、スパツタエツチング処理によつてポリス
ルホン膜の薄層の表面層が架橋すると共に、その
重量が減少することが確認された。第5図に処理
量と重量減少率との関係及び処理量と推定される
架橋層厚みとの関係を示す。重量減少率は処理前
後の膜を秤量することによつて求め、架橋層厚み
は処理後の膜をジメチルホルムアミドに浸漬し、
不溶物を金網にてすくい上げ、乾燥重量から厚み
に換算して求めた。因みに処理量が600W・sec/
cm2のとき、重量減少率は2%であり、架橋層厚み
は約1000Åと推定された。尚、処理膜の表面の化
学構造を経時的にX線光電子分析装置
(ESCA650−B、デユポン社製)で調べたとこ
ろ、第6図に示すように、処理量に伴つてS2p/
C1s比が減少すると共に、O1s/C1s比が増加する
ことから、膜の表面層ではスルホン基が分解する
一方で酸素が与えられ、これらを通じて架橋が進
行するものとみられる。
[Table] Next, it was confirmed that the thin surface layer of the polysulfone film was crosslinked by the sputter etching treatment, and its weight was reduced. FIG. 5 shows the relationship between the amount of treatment and the weight reduction rate and the relationship between the amount of treatment and the estimated thickness of the crosslinked layer. The weight loss rate was determined by weighing the membrane before and after treatment, and the crosslinked layer thickness was determined by immersing the membrane after treatment in dimethylformamide.
The insoluble matter was scooped up with a wire mesh, and the thickness was calculated from the dry weight. Incidentally, the processing amount is 600W・sec/
cm 2 , the weight loss rate was 2%, and the crosslinked layer thickness was estimated to be about 1000 Å. In addition, when the chemical structure of the surface of the treated film was examined over time using an X-ray photoelectron analyzer (ESCA650-B, manufactured by Dupont), as shown in Figure 6, S 2 p /
Since the O 1 s /C 1 s ratio increases as the C 1 s ratio decreases, it seems that the sulfone groups in the surface layer of the membrane are decomposed while oxygen is provided, and crosslinking progresses through them.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は種々の孔径の微孔を有する多孔性膜に
ついて、気体の分子量と透過速度との関係を示す
グラフであり、A,B,Cの順に孔径が大きくな
る。第2図は未処理の気体分離膜と本発明による
気体分離膜の断面を示すモデル図、第3図はポリ
スルホンからなる多孔性非対称膜についてスパツ
タエツチング処理量と種々の気体に対する気体透
過率との関係を示すグラフ、第4図は同様に処理
量と窒素に対する種々の気体の分離係数との関係
を示すグラフ、第5図は処理量と架橋層厚みの関
係を示すグラフ、第6図は処理量と表面層におけ
る原子比を示すグラフである。
FIG. 1 is a graph showing the relationship between gas molecular weight and permeation rate for porous membranes having micropores of various pore sizes, with the pore sizes increasing in the order of A, B, and C. Figure 2 is a model diagram showing the cross sections of an untreated gas separation membrane and a gas separation membrane according to the present invention, and Figure 3 shows the sputter etching throughput and gas permeability for various gases for a porous asymmetric membrane made of polysulfone. 4 is a graph showing the relationship between the throughput and the separation coefficient of various gases for nitrogen. FIG. 5 is a graph showing the relationship between the throughput and the thickness of the crosslinked layer. It is a graph showing the processing amount and the atomic ratio in the surface layer.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に少なくとも1種の気体と他の気体との
間に異なる透過流束を有する緻密な薄層を備え、
多孔度が1〜90%である多孔性非対称ポリスルホ
ン膜の上記の表面の薄層を0.0005〜1Torrの雰囲
気圧下に処理電力密度と処理時間の積である処理
量が1〜1×103W・sec/cm2であるようにスパツ
タエツチング処理して、水素及びヘリウムについ
ては、実質的にその透過流束を変化させることな
く、これらよりも分子量が大きいか、又は極性の
高い気体について、その透過流束を低減させるこ
とを特徴とする非対称ポリスルホンからなる気体
分離膜の製造方法。
1. A dense thin layer having different permeation fluxes between at least one gas and other gases on the surface,
A thin layer on the above surface of a porous asymmetric polysulfone membrane with a porosity of 1 to 90% is processed under an atmospheric pressure of 0.0005 to 1 Torr.The processing amount, which is the product of power density and processing time, is 1 to 1 × 10 3 W. sec/cm 2 for hydrogen and helium without substantially changing their permeation fluxes, and for gases with larger molecular weights or more polarity than these. A method for producing a gas separation membrane made of asymmetric polysulfone, characterized by reducing permeation flux.
JP2740881A 1981-02-25 1981-02-25 Gas separation film Granted JPS57140608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2740881A JPS57140608A (en) 1981-02-25 1981-02-25 Gas separation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2740881A JPS57140608A (en) 1981-02-25 1981-02-25 Gas separation film

Publications (2)

Publication Number Publication Date
JPS57140608A JPS57140608A (en) 1982-08-31
JPH0239300B2 true JPH0239300B2 (en) 1990-09-05

Family

ID=12220250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2740881A Granted JPS57140608A (en) 1981-02-25 1981-02-25 Gas separation film

Country Status (1)

Country Link
JP (1) JPS57140608A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180625A (en) * 1989-01-06 1990-07-13 Sumitomo Electric Ind Ltd Porous polymer membrane
JPH02180624A (en) * 1989-01-06 1990-07-13 Sumitomo Electric Ind Ltd Manufacture of porous polymer membrane
JPH09122463A (en) * 1995-10-31 1997-05-13 Nitto Denko Corp Polysulfone semipermeable membrane and manufacture thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127878A (en) * 1974-09-02 1976-03-09 Sumitomo Chemical Co BUTSUSHITSUBUNRYONOHAKUMAKUO SEIZOSURUHOHO
JPS5133873A (en) * 1974-09-14 1976-03-23 Daiko Electric SHARYOYOMUSETSUTENTOJIMESUITSUCHI NO KENSHITS UKAIRO
JPS5318552A (en) * 1976-08-03 1978-02-20 Givaudan & Cie Sa Production of tricyclo *6*2*2*03*8* dodecene derivatives
JPS53112288A (en) * 1977-03-11 1978-09-30 Sumitomo Chem Co Ltd Controlling method for substance permeability of semipermeable membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127878A (en) * 1974-09-02 1976-03-09 Sumitomo Chemical Co BUTSUSHITSUBUNRYONOHAKUMAKUO SEIZOSURUHOHO
JPS5133873A (en) * 1974-09-14 1976-03-23 Daiko Electric SHARYOYOMUSETSUTENTOJIMESUITSUCHI NO KENSHITS UKAIRO
JPS5318552A (en) * 1976-08-03 1978-02-20 Givaudan & Cie Sa Production of tricyclo *6*2*2*03*8* dodecene derivatives
JPS53112288A (en) * 1977-03-11 1978-09-30 Sumitomo Chem Co Ltd Controlling method for substance permeability of semipermeable membrane

Also Published As

Publication number Publication date
JPS57140608A (en) 1982-08-31

Similar Documents

Publication Publication Date Title
US4163725A (en) Process for preparing of semipermeable membranes
KR102422732B1 (en) Reinforced separator for alkaline hydrolysis
US4272378A (en) Semipermeable membrane
CA1316311C (en) Anisotropic membranes for gas separation
US4107049A (en) Process for producing semipermeable membranes
JPH0532090B2 (en)
JPH0457372B2 (en)
Kim et al. Fabrication of reverse osmosis membrane via low temperature plasma polymerization
KR20040031177A (en) Preparation of the silica composite membranes with thermal stability by Soaking-Rolling method
Ruaan et al. Oxygen/nitrogen separation by polybutadiene/polycarbonate composite membranes modified by ethylenediamine plasma
CN109647222B (en) Method for preparing high-flux high-rejection-rate aromatic polyamide composite reverse osmosis membrane by using tannic acid modified base membrane
JPS62115043A (en) Production of porous membrane
CN113648853B (en) Composite forward osmosis membrane with electrospun nanofiber membrane as supporting layer and preparation method and application thereof
JPH0239300B2 (en)
EP1808876B1 (en) Electrodes, membranes, printing plate precursors and other articles including multi-strata porous coatings, and method for their manufacture
JPS63171617A (en) Composite membrane excellent in permselectivity of hydrogen and its production
JP3746236B2 (en) Ion conductive ceramic membrane and surface treatment
EP0242209B1 (en) Composite membranes
Inagaki et al. Gas separation membranes made by plasma polymerization of perfluorobenzene/cf4 and pentafluorobenzene/cf4 mixtures
Chen et al. Oxygen/nitrogen separation by plasma chlorinated polybutadiene/polycarbonate composite membrane
JPS60232205A (en) Gas separating molded body
Cho et al. Effects of surface modification of the membrane in the ultrafiltration of waste water
JPS6152175B2 (en)
JP2000117077A (en) Semipermeable membrane and its production
JPS61149226A (en) Gas permselective composite membrane and preparation thereof