JPH0239247Y2 - - Google Patents

Info

Publication number
JPH0239247Y2
JPH0239247Y2 JP8962486U JP8962486U JPH0239247Y2 JP H0239247 Y2 JPH0239247 Y2 JP H0239247Y2 JP 8962486 U JP8962486 U JP 8962486U JP 8962486 U JP8962486 U JP 8962486U JP H0239247 Y2 JPH0239247 Y2 JP H0239247Y2
Authority
JP
Japan
Prior art keywords
resistance
voltage
current
measuring
moisture content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8962486U
Other languages
Japanese (ja)
Other versions
JPS6249756U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8962486U priority Critical patent/JPH0239247Y2/ja
Publication of JPS6249756U publication Critical patent/JPS6249756U/ja
Application granted granted Critical
Publication of JPH0239247Y2 publication Critical patent/JPH0239247Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、材木、穀物、とくに麦等の被測定物
(以下試料と呼ぶ)に含有する水分を、試料の電
気抵抗値と相関関係を有することを利用して測定
するための電気抵抗式水分測定装置(以下水分計
と呼ぶ)に関し、とくに、試料の水分が40%にも
及ぶ高水分で、その電気抵抗値がほぼ指数関数的
に小さくなつても直線性の水分率表示が可能な広
帯域水分計に関する。
[Detailed description of the invention] (Industrial application field) The invention aims to calculate the correlation between the moisture contained in the object to be measured (hereinafter referred to as the sample), such as timber, grain, and especially wheat, and the electrical resistance value of the sample. Regarding electrical resistance moisture measuring devices (hereinafter referred to as moisture meters), the electrical resistance value is almost exponential when the moisture content of the sample is as high as 40%. This invention relates to a broadband moisture meter that can linearly display moisture content even if it is small.

(従来の技術) 従来の電気抵抗式穀物水分計では、穀物の水分
率が低水分域と高水分域で電気抵抗値との関係が
非直線性を呈するため、表示目盛を等分間隔にし
て読取り精度を向上させるための試みが提案され
ている。例えば、第2図に示されるような水分測
定回路が知られている。そこでは試料Rxに直列
にダイオードD1,D2を接続し、ダイオードの順
方向電圧の対数特性と穀物に含まれる水分対電気
抵抗の対数特性を合成した出力Voutを得、それ
によつて水分率表示を直線特性としている。しか
しながら、この方式では水分率が30%以上の高水
分域になると試料に電流が流れすぎて、その電流
を対数変換すると出力が飽和してしまうばかりで
なく、ダイオードD1,D2に流入する電流による
ジユール熱発生の影響が測定出力に及んでくる。
さらにダイオード、トランジスタなどの対数変換
素子による電圧降下が生じる。定電圧印加時、そ
の電圧降下分は流れる電流によつて変わるから直
列に接続された試料電極間の電圧も変化してしま
い、その結果対数変換に誤差を生じる。
(Prior art) In conventional electrical resistance grain moisture meters, the relationship between the electrical resistance value and the grain moisture content exhibits non-linearity in low and high moisture regions, so the display scale is set at equal intervals. Attempts have been proposed to improve reading accuracy. For example, a moisture measuring circuit as shown in FIG. 2 is known. Here, diodes D 1 and D 2 are connected in series with the sample R x to obtain an output Vout that combines the logarithmic characteristics of the forward voltage of the diodes and the logarithmic characteristics of the moisture contained in the grain versus the electrical resistance. The rate display is a linear characteristic. However, with this method, when the moisture content reaches a high moisture range of 30% or more, too much current flows through the sample, and when that current is converted logarithmically, not only does the output become saturated, but it also flows into the diodes D1 and D2. The measurement output is affected by the generation of Joule heat due to the current.
Furthermore, a voltage drop occurs due to logarithmic conversion elements such as diodes and transistors. When a constant voltage is applied, the voltage drop changes depending on the flowing current, so the voltage between the sample electrodes connected in series also changes, resulting in an error in logarithmic conversion.

第3図は、実開昭53−72586号による直線化電
流・電圧変換回路を示す。該回路には、演算増幅
器IC1と、その負帰還回路としてダイオードD1
D2と抵抗R3の直列回路をそなえ、演算増幅器IC1
を含む増幅回路に流れる電流は試料抵抗に依存
し、しかもその電流は殆んど負帰還回路に流れ、
出力電圧は、リニアライザとして働くD1,D2
抵抗と抵抗R3との和とのその電流の積で決まる。
従つて、試料にはほぼ定電圧が加わり、リニアラ
イザ用ダイオードD1,D2及び抵抗R3には試料に
流れる電流とほぼ同一の電流が流れる。このた
め、出力が高水分域でダイオードD1,D2にジユ
ール熱の影響が表われて出力が変動するという欠
点があつた。
FIG. 3 shows a linearized current/voltage conversion circuit according to Utility Model Application No. 53-72586. The circuit includes an operational amplifier IC 1 and a diode D 1 as its negative feedback circuit.
Equipped with a series circuit of D 2 and resistor R 3 , operational amplifier IC 1
The current flowing through the amplifier circuit including
The output voltage is determined by the product of that current and the sum of the resistances D 1 and D 2 , which act as linearizers, and the resistance R 3 .
Therefore, a substantially constant voltage is applied to the sample, and a current substantially the same as the current flowing through the sample flows through the linearizer diodes D 1 , D 2 and resistor R 3 . For this reason, there was a drawback that the output fluctuated due to the influence of Joule heat on the diodes D 1 and D 2 in the high moisture range.

(考案が解決しようとする問題点) 本考案は、水分対電気抵抗特性を高水分域にお
いても直線特性を保持することが出来るように
し、かつこの場合に高水分域で生ずる試料電流の
流れすぎに伴う出力の飽和等の不都合を解消する
ためになされたものである。
(Problems to be Solved by the Invention) The present invention makes it possible to maintain a linear characteristic of the moisture-to-electrical resistance characteristic even in a high moisture area, and in this case, the excessive flow of sample current that occurs in the high moisture area This was done to eliminate problems such as output saturation associated with this.

(問題点を解決するための手段) 本考案に係る電気抵抗式水分計によれば、高水
分域のときに流れる試料電流が大きくても、電流
と水分との相関関係において対数変換の直線性が
保てる範囲内で、試料電流を分流することにより
試料電流に比例した電流を取り出し、これを電
流・電圧対数変換することによつて広帯域の水分
率の測定を等間隔目盛りで表示できるようにして
いる。
(Means for Solving the Problems) According to the electrical resistance moisture meter according to the present invention, even if the sample current flowing in the high moisture range is large, the linearity of logarithmic transformation in the correlation between the current and the moisture content is maintained. By dividing the sample current within a range that maintains the current, a current proportional to the sample current is obtained, and by converting this into the current/voltage logarithm, it is possible to measure the moisture content over a wide range and display it on an equally spaced scale. There is.

即ち、本考案は、被測定物の電気抵抗を測定す
る手段I,Ea,Ebと、該抵抗測定手段に結合さ
れ、一定電圧印加時に被測定物に流れる定常状態
の電流変化を電圧変化に変換して、被測定物の電
気抵抗値に対応する含有水分率を表わす電圧変化
の信号に変換しかつ、水分率信号の指数関数的変
化特性をほぼ直線に近い特性に変換する電流・電
圧対数変換手段IC3,D1,D2と、該変換手段から
出力された変換信号を水分率として表示する表示
手段Mを有する広帯域電気抵抗式水分率測定装置
であつて、前記抵抗値測定手段と前記電流・電圧
対数変換手段との間に接続され、電流帰還路を有
する、入力電流を電圧値に変換するための演算増
幅回路IC2をそなえ、該演算増幅回路は負荷抵抗
R2と帰還抵抗R1を有し、両抵抗に所定の抵抗比
で被測定物に流れる電流を分流し、前記抵抗比に
比例して前記負荷抵抗に流れる分流電流を前記電
流・電圧対数変換手段に加えることを特徴とする
広帯域水分率測定装置を提供するものである。
That is, the present invention includes means I, E a , and E b for measuring the electrical resistance of an object to be measured, and a device that is coupled to the resistance measuring means and converts changes in steady state current flowing through the object when a constant voltage is applied to voltage changes. A current/voltage signal that converts into a voltage change signal representing the moisture content corresponding to the electrical resistance value of the object to be measured, and converts the exponential change characteristic of the moisture rate signal into a nearly linear characteristic. A broadband electrical resistance moisture content measuring device comprising logarithmic conversion means IC 3 , D 1 , D 2 and a display means M for displaying the conversion signal outputted from the conversion means as a moisture content, the resistance value measuring means and the current/voltage logarithmic conversion means, and includes an operational amplifier circuit IC 2 having a current feedback path and for converting an input current into a voltage value, and the operational amplifier circuit has a load resistance.
R 2 and a feedback resistor R 1 , the current flowing through the object to be measured is shunted through both resistors at a predetermined resistance ratio, and the shunt current flowing through the load resistor is converted into the current/voltage logarithm in proportion to the resistance ratio. The present invention provides a wide-band moisture content measuring device characterized in that it is added to a means for measuring moisture content.

(作用) 演算増幅器IC2とIC3は、その負入力端の電位は
ほぼ零であり、かつその入力インピーダンスは非
常に大きいから、試料に流れる電流は負帰還抵抗
に流れる電流と等しくなり、負荷抵抗R2に流れ
る電流I2は、(R1/R2)|I1|となるように分流さ
れる。従つて、電圧対数変換回路であるダイオー
ド回路D1,D2には分流された小さな電流が流れ
るので、高水分域でも直線性が保たれると共に、
ダイオード回路に過電流が流れないようにしてい
る。
(Function) Since the potential at the negative input terminal of operational amplifiers IC 2 and IC 3 is almost zero, and the input impedance is very large, the current flowing through the sample is equal to the current flowing through the negative feedback resistor, and the load The current I 2 flowing through the resistor R 2 is divided into (R 1 /R 2 )|I 1 |. Therefore, a small shunt current flows through the diode circuits D 1 and D 2 which are voltage logarithmic conversion circuits, so linearity is maintained even in a high moisture range, and
Prevents overcurrent from flowing in the diode circuit.

(実施例) 以下本考案の実施例を図面を参照して説明す
る。
(Example) Examples of the present invention will be described below with reference to the drawings.

第1図は、本考案による電気抵抗式水分計の測
定回路を示す。図中、発振器1は直流又は交流の
定電圧源であつて、例えば周波数80Hz、電圧E0
=8Vの電源を用いる。試料の穀物、例えば小麦
を圧砕して収容する対電極Ea,Ebは、それぞれ、
定電圧源の発振器1と演算増幅器IC2の反転入力
に接続されている。増幅器IC2の非反転入力は接
地されている。演算増幅器IC2の出力側には200Ω
の抵抗R1と20KΩの負荷抵抗R2が並列に接続さ
れ、抵抗R1は増幅器IC2の負帰還回路をつくり、
全体として、入力電流Iを抵抗R1とR2とにそれ
ぞれ電流I1,I2に分流する分流回路2を構成す
る。分流回路2の出力は負荷抵抗R2を結合抵抗
として用い、次段の対数変換回路3に入力され
る。対数変換回路3の構成は基本的には第2図又
は他の周知回路を採ることができる。例えば、第
1図のブロツク3において、電流・電圧変換用演
算増幅器IC3の1入力に結合抵抗R2を接続し、増
幅器IC3の帰還路に対数変換用ダイオード素子
D1,D2を接続して構成し、増幅器IC3の出力側
で、試料電流が電圧値に変換され、かつ対数変換
されてほぼ直線化された水分表示用出力が取り出
される。その出力はさらに直線化するため、リニ
アライザなどで構成する演算回路4を介して増幅
され、直流電流計(メータ)Mに等分目盛で表示
するか又はカウンタ表示器を用いてデイジタル表
示する。
FIG. 1 shows a measuring circuit of an electrical resistance moisture meter according to the present invention. In the figure, the oscillator 1 is a DC or AC constant voltage source, for example, with a frequency of 80Hz and a voltage E 0
= Use 8V power supply. Counter electrodes E a and E b that contain crushed sample grains, such as wheat, are each
It is connected to the oscillator 1 of the constant voltage source and the inverting input of the operational amplifier IC 2 . The non-inverting input of amplifier IC 2 is grounded. 200Ω on the output side of operational amplifier IC 2
A resistor R 1 and a load resistor R 2 of 20KΩ are connected in parallel, and the resistor R 1 creates a negative feedback circuit for the amplifier IC 2 .
As a whole, a shunt circuit 2 is constructed which shunts an input current I into currents I 1 and I 2 through resistors R 1 and R 2 , respectively. The output of the shunt circuit 2 is input to the logarithmic conversion circuit 3 at the next stage using the load resistance R 2 as a coupling resistance. The configuration of the logarithmic conversion circuit 3 can basically be the one shown in FIG. 2 or another known circuit. For example, in block 3 of Fig. 1, a coupling resistor R2 is connected to one input of the operational amplifier IC3 for current/voltage conversion, and a diode element for logarithmic conversion is connected to the feedback path of the amplifier IC3 .
D 1 and D 2 are connected to each other, and on the output side of the amplifier IC 3 , the sample current is converted into a voltage value, and logarithmically converted and approximately linearized output for moisture display is taken out. In order to further linearize the output, it is amplified via an arithmetic circuit 4 composed of a linearizer or the like, and is displayed on a DC ammeter M on an equal division scale or digitally displayed using a counter display.

上記回路の動作と原理を説明すると、試料の含
有水分に相関する電気抵抗値Rxとすると、試料
を流れる電流はI1=E0/Rxとなる。分流回路2の
抵抗R1,R2の値で定まる分流比は、ここでは
1/100で分流された電流I2が対数変換回路3に
加えられるが、その殆んどの電流が負帰還ダイオ
ードD1,D2に流れる。対数変換回路の出力電圧
をVとし、その理由を式で表わして説明すると、 |I2|=R1/R2|I1|=R1/R2・|E0|/Rx 従つて、V=−kT/q(lnI2−lnIconst)= kT/q(lnR1|E0|/R2−lnIconst−lnRx) =−kT/q(lnC−lnRx) ここで、qは電荷、kはボルツマン定数、Tは
温度、Iconst及びCは定数を表わす。また lnC=lnR1|E0|/R2lnIconstは一定であるから、 これを例えば演算回路4により零点調整を加える
ことにより、適当に0とすることができるから、
これを無視すると回路3の出力電圧Vは、試料抵
抗Rxの対数に比例していることがわかる。演算
回路4は、さらに測定誤差の要因となる温度依存
性を補正したり、出力を直線化するための演算動
作も行なう。
To explain the operation and principle of the above circuit, assuming that the electrical resistance value R x is correlated to the water content of the sample, the current flowing through the sample is I 1 =E 0 /R x . The shunt ratio is determined by the values of resistors R 1 and R 2 of the shunt circuit 2. Here, a current I 2 shunted at 1/100 is applied to the logarithmic conversion circuit 3, but most of the current is passed through the negative feedback diode D. 1 , flows to D2 . Letting the output voltage of the logarithmic conversion circuit be V, the reason for this can be expressed and explained using the formula: |I 2 |=R 1 /R 2 |I 1 |=R 1 /R 2・|E 0 |/R x Therefore , V = -kT/q (lnI 2 - lnIconst) = kT/q (lnR 1 | E 0 | /R 2 - lnIconst - lnR x ) = -kT/q (lnC - lnR x ) where q is the charge , k is Boltzmann's constant, T is temperature, and Iconst and C are constants. Also, since lnC=lnR 1 |E 0 |/R 2 lnIconst is constant, it can be set to 0 appropriately by, for example, adding zero point adjustment using the arithmetic circuit 4.
Ignoring this, it can be seen that the output voltage V of the circuit 3 is proportional to the logarithm of the sample resistance R x . The arithmetic circuit 4 also performs arithmetic operations to correct temperature dependence, which causes measurement errors, and to linearize the output.

第4図は、上記実施例による装置の電極Ea
Eb間に種々の標準抵抗を入れ、測定したときの
等価抵抗Rxとメータ指示出力との関係を示す。
第5図は、試料を小麦として乾燥させていつたと
き上記装置を用いて含有水分を測定した結果であ
り、直角座標において縦軸に水分率をパーセント
で横軸にメータ指示を100等分目盛として表示さ
れている。ここで、図示の特性の非直線部分は、
演算回路4により適当に演算することにより直線
的な関係に変換できることは当業者に自明であ
る。
FIG. 4 shows the electrodes E a ,
The relationship between the equivalent resistance R x and the meter output when measured by inserting various standard resistances between E and b is shown.
Figure 5 shows the results of measuring the moisture content using the above device when the sample was dried as wheat, and in rectangular coordinates, the vertical axis represents the moisture content, and the horizontal axis represents the meter reading in 100 equal divisions. Displayed. Here, the non-linear part of the characteristic shown is
It is obvious to those skilled in the art that the relationship can be converted into a linear relationship by performing appropriate calculations using the calculation circuit 4.

(考案の効果) 上述したように、従来、第3図のような演算増
幅器とダイオードを組合わせた対数変換回路は、
印加電圧を小さくとる必要があり、穀物のような
内部構造が非常に複雑で分極現象などの影響を考
慮しなければならないものでは、満足できる精度
が達せられない。増して、30%以上の水分域を測
定することは不可能であつた。事実、従来の水分
計では、水分測定の上限は30%程度であり、その
試料抵抗値は2〜3KΩである。ところが水分が
40%となると試料抵抗は200Ω程度と小さくなり、
抵抗の変化範囲がきわめて大となるので、単に定
電流源を用いたり、印加電圧を低くすることでは
所望の測定結果がえられなかつた。ところが、本
考案によれば、ほぼ従来の電流・電圧変換回路の
前段に、演算増幅器を設け、その帰還抵抗と負荷
抵抗とにより試料電流を分流させることにより、
40%以上に及ぶ広帯域の穀物水分率を高精度で測
定できる。さらに電流・電圧変換回路と表示装置
間にリニアライザを設けることにより、電気信号
に変換された水分率と表示目盛が直線的関係を有
するようにすることも可能である。なお、分流回
路2に演算増幅器を用いる代りに、電極Ea,Eb
に直列に抵抗の並列回路を用いた場合、試料電極
間の電圧を一定に保つ必要性から並列合成抵抗を
小さくする必要がある。そうすると次段の演算増
幅器IC3の影響が大となり、所望の分流測定電流
がえられないことがわかつた。本考案の装置は、
穀類以外の木材のような高水分の試料の測定も可
能であり、その有用性は大である。
(Effect of the invention) As mentioned above, conventionally, a logarithmic conversion circuit that combines an operational amplifier and a diode as shown in FIG.
It is necessary to keep the applied voltage low, and satisfactory accuracy cannot be achieved in materials such as grains, which have extremely complex internal structures and must take into account effects such as polarization phenomena. In addition, it was impossible to measure a moisture range of 30% or more. In fact, with conventional moisture meters, the upper limit of moisture measurement is about 30%, and the sample resistance value is 2 to 3 KΩ. However, moisture
At 40%, the sample resistance becomes as small as about 200Ω,
Since the range of resistance change is extremely large, the desired measurement results cannot be obtained simply by using a constant current source or lowering the applied voltage. However, according to the present invention, an operational amplifier is provided at the front stage of the conventional current/voltage conversion circuit, and the sample current is shunted by the feedback resistor and load resistor.
Grain moisture content over a wide range of 40% or more can be measured with high accuracy. Furthermore, by providing a linearizer between the current/voltage conversion circuit and the display device, it is also possible to have a linear relationship between the moisture content converted into an electric signal and the display scale. Note that instead of using an operational amplifier in the shunt circuit 2, the electrodes E a , E b
When using a parallel circuit of resistors in series with the sample electrode, it is necessary to keep the voltage between the sample electrodes constant, so it is necessary to reduce the parallel combined resistance. In this case, it was found that the influence of the next-stage operational amplifier IC 3 became large, and the desired shunt measurement current could not be obtained. The device of the present invention is
It is also possible to measure high moisture samples such as wood other than grains, and its usefulness is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す広帯域水分計装
置の回路図、第2図と第3図は、従来技術の電気
抵抗式水分計の原理を説明するための回路図、第
4図と第5図は、第1図の装置による測定特性図
である。 Rxは試料、D1,D2は対数変換用ダイオード素
子、IC1,IC2は演算増幅器、IC3はFET入力演算
増幅器、R1は帰還抵抗、R2は負荷抵抗、1は電
源発振器を表わす。
Fig. 1 is a circuit diagram of a broadband moisture meter device showing an embodiment of the present invention, Figs. 2 and 3 are circuit diagrams for explaining the principle of a conventional electrical resistance moisture meter, and Figs. FIG. 5 is a diagram of measurement characteristics by the apparatus of FIG. 1. R x is the sample, D 1 and D 2 are logarithmic conversion diode elements, IC 1 and IC 2 are operational amplifiers, IC 3 is FET input operational amplifier, R 1 is feedback resistance, R 2 is load resistance, and 1 is power supply oscillator. represents.

Claims (1)

【実用新案登録請求の範囲】 (1) 被測定物の電気抵抗を測定する手段と、該抵
抗測定手段に結合され、一定電圧印加時に被測
定物に流れる定常状態の電流変化を電圧変化に
変換して、被測定物の電気抵抗値に対応する含
有水分率を表わす電圧変化の信号に変換しか
つ、水分率信号の指数関数的変化特性をほぼ直
線に近い特性に変換する電流・電圧対数変換手
段と、該変換手段から出力された変換信号を水
分率として表示する表示手段を有する広帯域電
気抵抗式水分率測定装置であつて、前記抵抗値
測定手段と前記電流・電圧対数変換手段との間
に接続され、電流帰還路を有する、入力電流を
電圧値に変換するための演算増幅回路をそな
え、該演算増幅回路は負荷抵抗と帰還抵抗を有
し、両抵抗に所定の抵抗比で被測定物に流れる
電流を分流し、前記抵抗比に比例して前記負荷
抵抗に流れる分流電流を前記電流・電圧対数変
換手段に加えることを特徴とする広帯域水分率
測定装置。 (2) 実用新案登録請求の範囲第1項の測定装置に
おいて、前記一定電圧は直流又は交流の電源に
よつて供給することを特徴とする前記測定装
置。
[Claims for Utility Model Registration] (1) A means for measuring the electrical resistance of an object to be measured, and a device coupled to the resistance measuring means that converts changes in steady-state current flowing through the object to voltage when a constant voltage is applied. current/voltage logarithmic conversion to convert the exponential change characteristic of the moisture content signal into a nearly linear characteristic. and a display means for displaying a converted signal outputted from the converting means as a moisture content, the device comprising: a means for measuring a resistance value, and a display means for displaying a converted signal outputted from the converting means as a moisture content, the apparatus comprising: a means for measuring a resistance value; The operational amplifier circuit has a load resistance and a feedback resistance, and has a predetermined resistance ratio between the two resistances. A wide-band moisture content measuring device characterized in that a current flowing through an object is shunted and a shunted current flowing through the load resistor is applied to the current/voltage logarithm conversion means in proportion to the resistance ratio. (2) Utility Model Registration The measuring device according to claim 1, wherein the constant voltage is supplied by a DC or AC power source.
JP8962486U 1986-06-12 1986-06-12 Expired JPH0239247Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8962486U JPH0239247Y2 (en) 1986-06-12 1986-06-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8962486U JPH0239247Y2 (en) 1986-06-12 1986-06-12

Publications (2)

Publication Number Publication Date
JPS6249756U JPS6249756U (en) 1987-03-27
JPH0239247Y2 true JPH0239247Y2 (en) 1990-10-22

Family

ID=30948772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8962486U Expired JPH0239247Y2 (en) 1986-06-12 1986-06-12

Country Status (1)

Country Link
JP (1) JPH0239247Y2 (en)

Also Published As

Publication number Publication date
JPS6249756U (en) 1987-03-27

Similar Documents

Publication Publication Date Title
US3926052A (en) Relative humidity computer
US20160139187A1 (en) Current sense circuit that operates over a wide range of currents
US3961247A (en) Linear output moisture meter with temperature compensator
US4408128A (en) Electric resistance type wide range moisture meter
US4109196A (en) Resistance measuring circuit
US3906796A (en) Electronic temperature measuring apparatus
US3651696A (en) Linearized resistance bridge circuit operable in plurality from a common power supply
JPS61210965A (en) Measuring equipment for low resistance
JPH0239247Y2 (en)
KR100202589B1 (en) Temperature measuring device and temperature compensating method thereof
JPS6336447B2 (en)
JPS6135967Y2 (en)
JP3310479B2 (en) Grain moisture meter
US3331020A (en) Moisture detecting apparatus including a bias control for separately controlling the bias applied to the bases of at least one transistor relative to another
RU2251129C2 (en) Instrument for measuring air humidity
US3895221A (en) Measuring apparatus for two-variable function signal system
US3708755A (en) Usting bridge circuit with negative feedback
JPH039023Y2 (en)
JPH0624747Y2 (en) Temperature / voltage conversion circuit
JPH0516527Y2 (en)
JPS6142119Y2 (en)
SU898266A1 (en) Device for measuring temperature fields
JPS6319802Y2 (en)
JPS5540938A (en) Moisture measuring circuit
JPS6124922Y2 (en)