JPH0239085Y2 - - Google Patents

Info

Publication number
JPH0239085Y2
JPH0239085Y2 JP4832186U JP4832186U JPH0239085Y2 JP H0239085 Y2 JPH0239085 Y2 JP H0239085Y2 JP 4832186 U JP4832186 U JP 4832186U JP 4832186 U JP4832186 U JP 4832186U JP H0239085 Y2 JPH0239085 Y2 JP H0239085Y2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic fluid
fluid
diameter chamber
rotating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4832186U
Other languages
Japanese (ja)
Other versions
JPS62163367U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4832186U priority Critical patent/JPH0239085Y2/ja
Publication of JPS62163367U publication Critical patent/JPS62163367U/ja
Application granted granted Critical
Publication of JPH0239085Y2 publication Critical patent/JPH0239085Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、回転部材と固定部材との間の微小間
隙を、磁性流体(Fe3O4等の磁性体の微粒子を
油、水、有機溶媒などの中にコロイド状に分散さ
せたもの)にてシールし、該微小間隙を介して気
体等の流体が高圧側から低圧側へ漏れるのを防止
する磁性流体シール装置に関する。
[Detailed description of the invention] (Industrial application field) The present invention is designed to fill a minute gap between a rotating member and a stationary member by using magnetic fluid (Fe 3 O 4, etc.) with fine particles of magnetic material such as oil, water, or organic The present invention relates to a magnetic fluid sealing device that prevents fluid such as gas from leaking from a high pressure side to a low pressure side through the micro gap.

(従来の技術) 従来この種の磁性流体シール装置としては、た
とえば第9図に示すようなものがある。すなわち
100はハウジングであり、このハウジング10
0内に回転部材としての磁性体の軸101が回転
自在に支承されている。ハウジング100内周に
はハウジング100内を軸方向に区分する一対の
磁極102,103が設けられ、各磁極102,
103内周と軸101との間に微小間隙104,
105が形成されている。また各磁極102,1
03間の外周側には永久磁石106が介在され、
この永久磁石106、各磁極102,103およ
び軸101の組合せにより磁気回路107が形成
されている。而して微小間隙104,105内に
磁性流体Fを磁気吸着させて低圧側と高圧側を密
封し、高圧側流体Hの低圧側流体Lへの漏れを防
止していた。
(Prior Art) As a conventional magnetic fluid seal device of this type, there is one shown in FIG. 9, for example. That is, 100 is a housing, and this housing 10
A shaft 101 of a magnetic material serving as a rotating member is rotatably supported within the shaft 10 . A pair of magnetic poles 102 and 103 are provided on the inner periphery of the housing 100 to divide the inside of the housing 100 in the axial direction.
A minute gap 104 between the inner circumference of 103 and the shaft 101,
105 is formed. Also, each magnetic pole 102,1
A permanent magnet 106 is interposed on the outer peripheral side between 03,
A magnetic circuit 107 is formed by the combination of the permanent magnet 106, each magnetic pole 102, 103, and the shaft 101. The magnetic fluid F is magnetically attracted within the minute gaps 104 and 105 to seal the low pressure side and the high pressure side, thereby preventing leakage of the high pressure side fluid H to the low pressure side fluid L.

上記微小間隙104,105内への磁性流体F
の充填作業は次のようにしてなされていた。まず
第10図に示すようにハウジング100内への軸
101挿入前に、磁性流体Fを磁極102,10
3間の永久磁石106内周側に磁気吸着させてお
く。つぎに軸101をハウジング100内に挿入
する。而して軸101の先端がハウジング100
内に配設された磁極102,103のうち軸10
1の挿入方向奥端側の磁極103まで達すると、
永久磁石106、各磁極102,103および軸
101によつて磁気回路107が形成され、微小
間隙104,105内を通る磁束密度が高くな
る。その結果永久磁石106側に磁気吸着されて
いた磁性流体Fが微小間隙104,105側の磁
気吸引力によつて微小間隙104,105内に磁
気吸着されて、微小間隙104,105内に磁性
流体Fが充填される。
Magnetic fluid F into the minute gaps 104 and 105
The filling work was done as follows. First, as shown in FIG. 10, before inserting the shaft 101 into the housing 100, apply a magnetic fluid F to the magnetic poles 102, 10.
3, the permanent magnet 106 is magnetically attracted to the inner peripheral side. Next, the shaft 101 is inserted into the housing 100. Therefore, the tip of the shaft 101 is the housing 100.
Of the magnetic poles 102 and 103 arranged within the shaft 10
When it reaches the magnetic pole 103 on the far end side in the insertion direction of 1,
A magnetic circuit 107 is formed by the permanent magnet 106, each magnetic pole 102, 103, and the shaft 101, and the magnetic flux density passing through the minute gaps 104, 105 becomes high. As a result, the magnetic fluid F that was magnetically attracted to the permanent magnet 106 side is magnetically attracted within the minute gaps 104, 105 by the magnetic attraction force on the minute gaps 104, 105 side, and the magnetic fluid F is magnetically attracted within the minute gaps 104, 105. F is filled.

(考案が解決しようとする問題点) しかしながら斯かる従来例の場合には、微小間
隙104,105内への磁性流体Fの充填の際
に、軸101の先端がハウジング100内に配設
された磁極102,103のうち軸101の挿入
方向奥端側の磁極103に達して磁気回路107
が形成されると同時に磁性流体Fが微小間隙10
4,105内に磁気吸着されていた。ところが軸
101はその先端を上記軸挿入方向奥端側の磁極
103を通り越してさらに奥まで移動させてハウ
ジング100に組付けられる。その際、微小間隙
104,105内に充填された磁性流体Fが軸1
01表面に接触した状態で軸101が移動され、
磁性流体Fは磁気吸引力によつて微小間隙10
4,105内に保持されようとするが、磁性流体
Fはぬれ性が高いので、軸101表面との付着力
が微小間隙104,105内の磁気吸引力に打ち
勝つて磁性流体の一部F′が軸101の磁極10
2,103を通過した磁極通過領域101Aの周
面に付着してしまう。そのため微小間隙104,
105内への磁性流体Fの充填量が少なくなつて
シール性能が低下するという問題があつた。そこ
で上記軸101の磁極通過領域101Aに付着す
る磁性流体F′の損失分を見込んで、予じめ永久磁
石106側に吸着させておく磁性流体Fの量を多
めにしておけばよいが、損失分の量は一定せず、
微小間隙104,105内への磁性流体Fの充填
量を均一にすることができない。また軸101の
磁極通過領域101A周面に付着した磁性流体
F′をそのまま残しておくと、軸101の回転によ
り軸101の磁極通過領域101Aに付着した磁
性流体F′に加わる遠心力が軸101との付着力に
打ち勝つて飛び散り、飛び散つた磁性流体が各磁
極102,103の永久磁石106との当接部側
に付着すると、付着した磁性流体によつて磁気回
路107の磁束が漏れて微小間隙104,105
を通る磁束密度が低下し、微小間隙104,10
5内の磁性流体Fの磁気吸引力が弱まつてシール
性能が低下してしまう。そのため軸101の磁極
通過領域101Aに付着した磁性流体F′を拭き取
る必要があり、作業工程が煩雑になるという問題
があつた。さらにハウジング100内に軸101
を挿入する前に各磁極102,103間の永久磁
石106側に磁気吸着された磁性流体Fは低圧側
および高圧側流体L,Hと接触しているので、磁
性流体Fの汚染、劣化を招きシール性能が低下す
るという問題もあつた。
(Problem to be Solved by the Invention) However, in the case of such a conventional example, the tip of the shaft 101 is disposed within the housing 100 when the magnetic fluid F is filled into the minute gaps 104 and 105. Among the magnetic poles 102 and 103, the magnetic pole 103 on the far end side in the insertion direction of the shaft 101 is reached and the magnetic circuit 107
is formed, and at the same time the magnetic fluid F fills the minute gap 10
4,105 was magnetically adsorbed. However, the shaft 101 is assembled into the housing 100 by moving its tip further inward past the magnetic pole 103 on the rear end side in the shaft insertion direction. At that time, the magnetic fluid F filled in the minute gaps 104 and 105 is
The shaft 101 is moved while in contact with the 01 surface,
The magnetic fluid F closes the minute gap 10 due to the magnetic attraction force.
However, since the magnetic fluid F has high wettability, the adhesion force with the surface of the shaft 101 overcomes the magnetic attraction force in the minute gaps 104 and 105, and a part of the magnetic fluid F' is the magnetic pole 10 of the axis 101
2,103 and adheres to the circumferential surface of the magnetic pole passing region 101A. Therefore, the minute gap 104,
There was a problem in that the amount of magnetic fluid F filled into 105 decreased and sealing performance deteriorated. Therefore, in order to account for the loss of the magnetic fluid F' adhering to the magnetic pole passage area 101A of the shaft 101, it is better to increase the amount of magnetic fluid F that is attracted to the permanent magnet 106 in advance. The amount of minutes is not constant,
The amount of magnetic fluid F filled into the minute gaps 104 and 105 cannot be made uniform. In addition, magnetic fluid attached to the circumferential surface of the magnetic pole passage area 101A of the shaft 101
If F' is left as it is, the centrifugal force applied to the magnetic fluid F' adhering to the magnetic pole passage area 101A of the shaft 101 due to the rotation of the shaft 101 will overcome the adhesion force with the shaft 101 and cause the scattered magnetic fluid to scatter. When it adheres to the contact portion of each magnetic pole 102, 103 with the permanent magnet 106, the magnetic flux of the magnetic circuit 107 leaks due to the attached magnetic fluid, causing the small gap 104, 105 to leak.
The magnetic flux density passing through the micro gaps 104, 10 decreases.
The magnetic attraction force of the magnetic fluid F in 5 is weakened, and the sealing performance is deteriorated. Therefore, it is necessary to wipe off the magnetic fluid F' adhering to the magnetic pole passage area 101A of the shaft 101, resulting in a problem that the work process becomes complicated. Furthermore, a shaft 101 is provided within the housing 100.
Before inserting the magnetic fluid F, which is magnetically attracted to the permanent magnet 106 side between the magnetic poles 102 and 103, it is in contact with the low-pressure side and high-pressure side fluids L and H, which may cause contamination and deterioration of the magnetic fluid F. There was also the problem that sealing performance deteriorated.

本考案は上記した従来技術の問題点を解決する
ためになされたもので、その目的とするところ
は、ハウジング内に回転部材を挿入する際に、回
転部材の挿入途中において磁気回路が構成されて
も各磁極間に磁性流体を密封保持し、かつ回転部
材の挿入完了後において回転部材と各磁極間の微
小間隙内に磁性流体を充填することができる磁性
流体シール装置を提供し、もつて微小間隙内に充
填される磁性流体の充填量を均一化すると共に磁
性流体の拭き取り作業を不要にし、さらに磁性流
体の汚染劣化を防止することにある。
The present invention was made to solve the problems of the prior art described above, and its purpose is to prevent a magnetic circuit from being formed during the insertion of the rotating member into the housing when the rotating member is inserted into the housing. The present invention also provides a magnetic fluid sealing device capable of sealing and holding a magnetic fluid between each magnetic pole, and filling a minute gap between the rotating member and each magnetic pole with the magnetic fluid after the rotating member is inserted. The object of the present invention is to equalize the amount of magnetic fluid filled in the gap, eliminate the need for wiping off the magnetic fluid, and prevent deterioration of the magnetic fluid due to contamination.

(問題点を解決するための手段) 上記目的を達成するために、本考案にあつて
は、ハウジング内で回転自在に支承される回転部
材と、該回転部材との間に微小間隙を形成して上
記ハウジング内を軸方向に区分する一対の磁極
と、該各磁極間の外周側に介在して前記回転部材
と磁極との組合せにより磁気回路を形成する磁力
源と、前記回転部材と磁極との間に形成される微
小間隙内に磁気吸着される磁性流体とから成る磁
性流体シール装置において、前記一対の磁極間で
あつて磁力源の半径方向内方に形成される空室を
大径室と小径室の二室によつて構成し、上記大径
室と小径室の境界に磁性流体を磁力源側に密封保
持するリング状の密封部材を配置すると共に、該
密封部材の半径方向一方側には加熱時に該密封部
材を大径室側へ付勢せしめて連通路を形成する無
端状の形状記憶合金を添設した。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a minute gap is formed between the rotating member rotatably supported within the housing and the rotating member. a pair of magnetic poles that divide the inside of the housing in the axial direction; a magnetic force source that is interposed on the outer periphery between the magnetic poles and forms a magnetic circuit by the combination of the rotating member and the magnetic poles; In a magnetic fluid sealing device comprising a magnetic fluid that is magnetically attracted within a minute gap formed between the pair of magnetic poles, the cavity formed between the pair of magnetic poles and radially inward of the magnetic force source is called a large diameter chamber. and a small-diameter chamber, and a ring-shaped sealing member for sealingly holding the magnetic fluid toward the magnetic force source is arranged at the boundary between the large-diameter chamber and the small-diameter chamber, and a ring-shaped sealing member is arranged on one side in the radial direction of the sealing member. An endless shape memory alloy was attached to the chamber to urge the sealing member toward the large-diameter chamber when heated to form a communication path.

(作用) 而して回転部材と軸極間の微小間隙への磁性流
体の充填は、まず常温状態でのハウジング内への
回転部材挿入前に、事前に磁力源の半径方向内方
に形成される空室内において大径室あるいは小径
室内の磁力源内周側に磁性流体を磁気吸着させ、
磁力源内周側に磁気吸着された磁性流体を密封部
材によつて密封保持しておく。ハウジング内への
回転部材挿入途中において回転部材の先端がハウ
ジング内に配設された磁極のうち挿入方向奥端側
の磁極まで達すると磁力源、各磁極および回転部
材との組合せによつて磁気回路が構成され、各磁
極と回転部材間に形成された微小間隙の磁束密度
が高くなつて磁力源内周に磁気吸着されていた磁
性流体が微小間隙側の磁気吸引力によつて吸引さ
れようとするが、密封部材によつて微小間隙側と
遮断されているため、磁力源側の小径室あるいは
大径室側に密封保持される。回転部材の挿入完了
後、形状記憶合金を加熱して密封部材を大径室側
に付勢して連通路を形成すると、この連通路を介
して磁力源内周に磁気吸着されていた磁性流体が
回転部材側に移動して微小間隙内に磁気吸着さ
れ、微小間隙内に磁性流体が充填保持される。
(Function) The minute gap between the rotating member and the shaft pole is filled with magnetic fluid by first forming the magnetic fluid radially inward of the magnetic source before inserting the rotating member into the housing at room temperature. The magnetic fluid is magnetically attracted to the inner circumferential side of the magnetic force source in the large-diameter chamber or the small-diameter chamber in the empty chamber.
The magnetic fluid magnetically attracted to the inner peripheral side of the magnetic force source is sealed and held by a sealing member. During the insertion of the rotating member into the housing, when the tip of the rotating member reaches the far end of the magnetic poles in the insertion direction among the magnetic poles arranged inside the housing, a magnetic circuit is formed due to the combination of the magnetic force source, each magnetic pole, and the rotating member. is formed, and the magnetic flux density in the microgap formed between each magnetic pole and the rotating member increases, and the magnetic fluid that was magnetically attracted to the inner circumference of the magnetic force source attempts to be attracted by the magnetic attraction force on the microgap side. is isolated from the small gap side by the sealing member, so it is sealed and held on the small diameter chamber or large diameter chamber side on the magnetic force source side. After the rotation member is inserted, the shape memory alloy is heated to urge the sealing member toward the large diameter chamber to form a communication path, and the magnetic fluid that was magnetically attracted to the inner circumference of the magnetic force source is released through the communication path. The rotating member moves to the side of the rotating member and is magnetically attracted into the minute gap, so that the minute gap is filled and held with magnetic fluid.

(実施例) 以下に本考案を図示の実施例に基づいて説明す
る。本考案の第一実施例に係る磁性流体シール装
置を示す第1図乃至第4図において、1はハウジ
ングであり、このハウジング1内に回転部材とし
ての軸2がハウジング1と同心的に回転自在に支
承されている。ハウジング1内周には、ハウジン
グ1内を軸方向に区分する一対のリング状の磁極
3,4が設けられている。この磁極3,4は軸方
向に所定間隔でもつて互いに平行に対向配置され
ている。磁極3,4の外周はハウジング1内周に
嵌合され、磁極3,4の内周と軸2との間に微小
間隙5,6が形成されている。一方磁極3,4間
の外周側(すなわち半径方向外方側)には磁力源
としてのリング状の永久磁石7が介在され、永久
磁石7の両側面が各磁極3,4と密接されてい
る。磁力源としては永久磁石に限らず電磁石でも
よい。永久磁石7の半径方向内方には各磁極3,
4および軸2によつて囲まれる空室Aが形成され
ている。上記各磁極3,4の対向面31,41に
はそれぞれ環状の段差部32,42が形成され、
磁極3,4間の間隔はこの段差部32,41を境
界として外周側が狭く、内周側が広くなつてお
り、上記空室Aが段差部32,42を境界として
外周側の小径室Bと内周側の大径室Cとの二室に
区分されている。この小径室Bと大径室Cとの境
界には、段差部32,42に全周に亘つて密接し
て磁石側の小径室Bに注入された磁性流体Fを密
封保持する密封部材としてのゴム状弾性体製のO
リング9が配置されている。Oリング9の円形断
面の直径は少なくとも小径室Bの幅よりも大き
く、大径室Cの幅よりも小さい。またOリング9
の外径はOリング9が段差部32,42に全周に
亘つて密接するように設定される。もつとも密封
部材としては上記Oリング9に限るものではな
く、段差部32,42に密接して小径室Bを密封
するものであればよく、たとえば角リング、Vリ
ング等の成形パツキンを用いてもよい。
(Example) The present invention will be explained below based on the illustrated example. In FIGS. 1 to 4 showing a magnetic fluid sealing device according to a first embodiment of the present invention, 1 is a housing, and within this housing 1, a shaft 2 as a rotating member is rotatable concentrically with the housing 1. is supported by. A pair of ring-shaped magnetic poles 3 and 4 are provided on the inner periphery of the housing 1 to divide the inside of the housing 1 in the axial direction. The magnetic poles 3 and 4 are arranged parallel to each other and facing each other at a predetermined interval in the axial direction. The outer circumferences of the magnetic poles 3 and 4 are fitted into the inner circumference of the housing 1, and minute gaps 5 and 6 are formed between the inner circumferences of the magnetic poles 3 and 4 and the shaft 2. On the other hand, a ring-shaped permanent magnet 7 as a magnetic force source is interposed between the magnetic poles 3 and 4 on the outer peripheral side (that is, on the radially outer side), and both sides of the permanent magnet 7 are in close contact with each magnetic pole 3 and 4. . The magnetic force source is not limited to permanent magnets, but may also be electromagnets. Each magnetic pole 3,
4 and axis 2 is formed. Annular step portions 32 and 42 are formed on the opposing surfaces 31 and 41 of each of the magnetic poles 3 and 4, respectively,
The interval between the magnetic poles 3 and 4 is narrower on the outer circumferential side and wider on the inner circumferential side with the stepped portions 32 and 41 as boundaries, and the above-mentioned cavity A is separated from the small diameter chamber B on the outer circumferential side and the inner circumferential side with the stepped portions 32 and 42 as boundaries. It is divided into two chambers, a large diameter chamber C on the circumferential side. At the boundary between the small-diameter chamber B and the large-diameter chamber C, there is a sealing member that closely contacts the stepped portions 32 and 42 over the entire circumference and seals and holds the magnetic fluid F injected into the small-diameter chamber B on the magnet side. O made of rubber-like elastic material
A ring 9 is arranged. The diameter of the circular cross section of the O-ring 9 is at least larger than the width of the small diameter chamber B and smaller than the width of the large diameter chamber C. Also O ring 9
The outer diameter of the O-ring 9 is set so that the O-ring 9 is in close contact with the step portions 32 and 42 over the entire circumference. Of course, the sealing member is not limited to the above-mentioned O-ring 9, but may be any member that closely seals the small-diameter chamber B by the stepped portions 32, 42. For example, a molded packing such as a square ring or a V-ring may be used. good.

また本実施例においては一方の磁極4に上記小
径室B内に磁性流体Fを注入するための注入孔1
0が穿設されている。この注入孔10は小径室B
内に磁性流体Fを注入した後に図示しない閉塞部
材によつて閉塞されるようになつている。
Further, in this embodiment, an injection hole 1 for injecting the magnetic fluid F into the small diameter chamber B in one of the magnetic poles 4 is used.
0 is provided. This injection hole 10 is a small diameter chamber B.
After the magnetic fluid F is injected into the opening, it is closed by a closing member (not shown).

一方、上記Oリング9の半径方向の一方、本実
施例では半径方向外方の小径室側に、加熱時にO
リング9を半径方向内方の大径室側に付勢して小
径室Bと大径室Cとを連通せしめる無端状の形状
記憶合金11が添設されている。形状記憶合金1
1は、第2図に示すように常温ではOリング9の
外周面に内接する正多角形状で、変態点以上に加
熱すると第4図に示すようにOリング9外周面に
内接する多角形の各辺11a,…が半径方向内方
に三角形状に折曲されて折曲部11b,…を有す
る形状に復帰するように成形されている。而して
加熱時において上記各折曲部11b,…に沿つて
Oリング9が半径方向内方に撓み、第3図に示す
ようにOリング9の撓み部91と大径室Cの両側
壁との隙間によつて小径室Bと大径室Cとを連通
する連通路12が形成されるようになつている。
On the other hand, on one side of the O-ring 9 in the radial direction, in this embodiment, on the radially outer side of the small-diameter chamber, an O-ring is placed at the time of heating.
An endless shape memory alloy 11 is attached that urges the ring 9 toward the large diameter chamber radially inward to connect the small diameter chamber B and the large diameter chamber C. shape memory alloy 1
1 is a regular polygon inscribed in the outer circumferential surface of the O-ring 9 at room temperature, as shown in FIG. Each side 11a, . . . is bent inward in the radial direction into a triangular shape to return to a shape having bent portions 11b, . During heating, the O-ring 9 is bent radially inward along each of the bent portions 11b, . . . , and as shown in FIG. A communication passage 12 that communicates the small-diameter chamber B and the large-diameter chamber C is formed by the gap between the two.

上記構成の磁性流体シール装置にあつては、微
小間隙5,6への磁性流体Fの充填は次のように
してなされる。まず常温において小径室B内に注
入孔10から所定量の磁性流体Fが注入され、注
入後注入孔10を塞いでおく。注入された磁性流
体Fは、外部から遮断された状態となり、磁束密
度の高い永久磁石7の内側に磁気吸着する。つぎ
に磁極3,4の間に軸2を挿入する。軸2の先端
が軸挿入方向奥端側の磁極4まで達すると、永久
磁石7、各磁極3,4および軸2の間に磁気回路
13が構成され、磁極3,4と軸2との間の微小
間隙5,6の磁束密度が高くなる。その結果磁性
流体Fは微小間隙5,6側の磁気吸引力により大
径室C側に移動しようとするがOリング9によつ
てその移動が規制され、磁性流体Fは小径室B内
に密封保持される。つぎに軸2を所定位置まで挿
入し、アライメント調整等の必要な工程が完了し
た後、形状記憶合金11を加熱すると、第4図に
示すように、形状記憶合金11は形状記憶効果に
より元の形に戻る。すなわちOリング9外周に内
接していた形状記憶合金11の各辺11a,…が
半径方向内方に折曲され、その折曲部11bによ
つてOリング9が半径方向内方に付勢されて撓
み、この撓み部91,…において小径室Bと大径
室Cを連通する連通路12が形成される。而して
磁性流体Fは磁気吸引力により連通路12を介し
て小径室Bから大径室Cに流出し、磁束密度の高
い微小間隙5,6内に充填保持され、微小間隙,
6が閉塞されて高圧側流体Hの低圧側流体L側へ
の漏れが防止される。尚、本実施例にあつては、
磁極4に注入孔10を設けているが、注入孔10
を設けないで、あらかじめ磁性流体Fを永久磁石
7の内側に吸着させた後、Oリング9を組付ける
ようにしてもよい。
In the magnetic fluid sealing device having the above configuration, the minute gaps 5 and 6 are filled with the magnetic fluid F in the following manner. First, a predetermined amount of magnetic fluid F is injected into the small diameter chamber B from the injection hole 10 at room temperature, and the injection hole 10 is closed after injection. The injected magnetic fluid F is cut off from the outside and is magnetically attracted to the inside of the permanent magnet 7, which has a high magnetic flux density. Next, the shaft 2 is inserted between the magnetic poles 3 and 4. When the tip of the shaft 2 reaches the magnetic pole 4 on the far end side in the shaft insertion direction, a magnetic circuit 13 is formed between the permanent magnet 7, each magnetic pole 3, 4, and the shaft 2, and a magnetic circuit 13 is formed between the magnetic poles 3, 4 and the shaft 2. The magnetic flux density in the minute gaps 5 and 6 increases. As a result, the magnetic fluid F attempts to move toward the large-diameter chamber C due to the magnetic attraction force of the micro gaps 5 and 6, but its movement is restricted by the O-ring 9, and the magnetic fluid F is sealed inside the small-diameter chamber B. Retained. Next, after inserting the shaft 2 to a predetermined position and completing necessary processes such as alignment adjustment, when the shape memory alloy 11 is heated, the shape memory alloy 11 returns to its original state due to the shape memory effect, as shown in FIG. Return to shape. That is, each side 11a of the shape memory alloy 11 inscribed in the outer periphery of the O-ring 9 is bent radially inward, and the O-ring 9 is urged radially inward by the bent portion 11b. A communication passage 12 that communicates the small-diameter chamber B and the large-diameter chamber C is formed at the bent portions 91, . . . . The magnetic fluid F flows out from the small-diameter chamber B to the large-diameter chamber C through the communication path 12 due to the magnetic attraction force, and is filled and held in the micro-gaps 5 and 6 with high magnetic flux density.
6 is closed to prevent the high pressure side fluid H from leaking to the low pressure side fluid L side. In addition, in this example,
Although the injection hole 10 is provided in the magnetic pole 4, the injection hole 10
Instead, the O-ring 9 may be assembled after the magnetic fluid F is attracted to the inside of the permanent magnet 7 in advance.

つぎに第5図乃至第8図には本考案に係る磁性
流体シール装置の第二実施例が示されており、第
一実施例と同一の構成部分については同一の符号
を付して説明すると、その第二実施例にあつて
は、各磁極3,4の対向面31,41に設けられ
た段差部32,42は半径方向内側が半径方向外
側より狭くなつており、空室Aが段差部32,4
2を境界にして永久磁石7側が大径室C′に、軸2
側が小径室B′に区分されている。Oリング9は
永久磁石7側の大径室C′に配設され、Oリング9
によつて大径室C′に密封されている。
Next, FIGS. 5 to 8 show a second embodiment of the magnetic fluid sealing device according to the present invention, and the same components as in the first embodiment will be described with the same reference numerals. In the second embodiment, the stepped portions 32, 42 provided on the opposing surfaces 31, 41 of the respective magnetic poles 3, 4 are narrower on the radially inner side than on the radially outer side, and the empty space A is formed on the stepped portion. Part 32, 4
2 as the boundary, the permanent magnet 7 side is in the large diameter chamber C', and the shaft 2
The side is divided into a small diameter chamber B'. The O-ring 9 is arranged in the large-diameter chamber C' on the side of the permanent magnet 7.
The large-diameter chamber C′ is sealed by

さらに形状記憶合金14は第5図および第6図
に示すようにOリング9の内周側に添設されてお
り、その形状は常温においてその角部14a,…
がOリング9内周に内接する多角形状になつてお
り、加熱時に第8図に示すように各角部14a,
…が一つおきに直線上に戻つて他の角部14b,
…が半径方向外方に突出してOリング9を半径方
向外方に付勢するようになつている。すなわちO
リング9を部分的に半径方向外方に撓ませて、第
7図に示すよう撓み部91において大径室C′と小
径室B′を連通する連通路12′を形成するように
なつている。
Furthermore, the shape memory alloy 14 is attached to the inner peripheral side of the O-ring 9 as shown in FIGS. 5 and 6, and its shape is the corner portion 14a,...
has a polygonal shape inscribed in the inner periphery of the O-ring 9, and as shown in FIG. 8 during heating, each corner 14a,
... returns to the straight line every other corner, and the other corners 14b,
... project radially outward to bias the O-ring 9 radially outward. That is, O
The ring 9 is partially bent radially outward to form a communication passage 12' that communicates the large diameter chamber C' and the small diameter chamber B' at the deflected portion 91, as shown in FIG. .

また磁極3,4には第一実施例のように磁性流
体F注入用の注入孔10を設けておらず、磁性流
体Fを永久磁石7の内側に吸着させた後にOリン
グ9によつて磁性流体Fを密封するようになつて
いる。もつとも第一実施例と同様に注入孔を設け
ておいてもよい。その他の構成および作用につい
ては、第一実施例と同様であるのでその説明を省
略する。
Furthermore, unlike the first embodiment, the magnetic poles 3 and 4 are not provided with an injection hole 10 for injecting the magnetic fluid F, and after the magnetic fluid F is attracted to the inside of the permanent magnet 7, it is magnetically It is designed to seal the fluid F. Of course, an injection hole may be provided as in the first embodiment. The other configurations and operations are the same as those in the first embodiment, so their explanations will be omitted.

(考案の効果) 本考案は以上の構成および作用から成るもの
で、ハウジング内への回転部材挿入途中において
は磁力源内周に磁気吸着された磁性流体を密封部
材によつて密封保持すると共に、回転部材挿入完
了後において形状記憶合金を加熱して元の記憶形
状に戻すことにより密封部材を付勢して連通路を
形成し、この連通路を介して磁性流体を微小間隙
内に磁気吸着させるようにしたので、ハウジング
内への回転部材挿入途中において磁力源、各磁極
および回転部材間に磁気回路が形成されても従来
のように磁性流体が回転部材側に付着することは
なく、回転部材の磁極通過領域に磁性流体が付着
することによる磁性流体の損失が防止され、これ
によつて微小間隙内の磁性流体の充填量を均一化
することができ、シール性能を向上することがで
きる。また従来のように回転部材の磁極通過領域
に付着した磁性流体を払拭する手間が省けて作業
工程を短縮することができる。さらに密封部材に
よつて磁力源内周に磁気吸着された磁性流体を密
封保持することによつて外部から遮断したので、
磁性流体の汚染劣化を防止することができる。
(Effects of the invention) The present invention has the above-described structure and operation. During insertion of the rotating member into the housing, the magnetic fluid magnetically attracted to the inner periphery of the magnetic force source is sealed and held by the sealing member, and the rotating member is rotated. After the insertion of the member is completed, the shape memory alloy is heated to return to its original memorized shape, thereby energizing the sealing member and forming a communication path, through which the magnetic fluid is magnetically attracted within the minute gap. Therefore, even if a magnetic circuit is formed between the magnetic force source, each magnetic pole, and the rotating member during insertion of the rotating member into the housing, the magnetic fluid will not adhere to the rotating member as in the conventional case, and the rotating member Loss of the magnetic fluid due to adhesion of the magnetic fluid to the magnetic pole passage area is prevented, thereby making it possible to equalize the amount of magnetic fluid filled in the minute gap and improving sealing performance. Further, unlike the conventional method, it is not necessary to wipe off the magnetic fluid adhering to the magnetic pole passing region of the rotating member, and the work process can be shortened. Furthermore, the magnetic fluid magnetically attracted to the inner periphery of the magnetic force source is sealed and held by the sealing member, thereby shielding it from the outside.
Contamination and deterioration of the magnetic fluid can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の第一実施例に係る磁性流体シ
ール装置の加熱前の状態を示す要部縦断面図、第
2図は第1図の−線断面図、第3図は第1図
の装置の加熱後の状態を示す要部縦断面図、第4
図は第3図の−線断面図、第5図は本考案の
第二実施例に係る磁性流体シール装置の加熱前の
状態を示す要部縦断面図、第6図は第5図の−
線断面図、第7図は第5図に装置の加熱後の状
態を示す要部縦断面図、第8図は第7図の−
線断面図、第9図は従来の磁性流体シール装置の
要部縦断面図、第10図は第9図の磁性流体シー
ル装置の軸挿入前の状態を示す要部縦断面図、第
11図は同シール装置の軸挿入後の状態を示す要
部縦断面図である。 符号の説明、1……ハウジング、2……軸(回
転部材)、3,4……磁極、32,42……段差
部、5,6……微小間隙、7……永久磁石(磁力
源)、9……Oリング(密封部材)、11,14…
…形状記憶合金、91……撓み部、10……注入
口、12,12′……連通路、13……磁気回路、
A……空室、B,B′……小径室、C,C′……大径
室。
FIG. 1 is a vertical cross-sectional view of the main part of the magnetic fluid sealing device according to the first embodiment of the present invention, showing the state before heating, FIG. 2 is a cross-sectional view taken along the line -- in FIG. 1, and FIG. Fig. 4 is a vertical cross-sectional view of main parts showing the state of the device after heating.
The figures are a cross-sectional view taken along the line - - in Fig. 3, Fig. 5 is a vertical cross-sectional view of main parts showing the state before heating of the magnetic fluid sealing device according to the second embodiment of the present invention, and Fig. 6 is a - line sectional view taken along the - line in Fig. 5.
7 is a longitudinal sectional view of the main part showing the state of the device after heating, and FIG. 8 is a line sectional view of FIG. 7.
9 is a longitudinal sectional view of the main part of a conventional magnetic fluid sealing device, FIG. 10 is a longitudinal sectional view of the main part showing the state of the magnetic fluid sealing device of FIG. 9 before the shaft is inserted, and FIG. 11 FIG. 2 is a vertical cross-sectional view of a main part of the sealing device after the shaft is inserted. Explanation of symbols, 1... Housing, 2... Shaft (rotating member), 3, 4... Magnetic pole, 32, 42... Step portion, 5, 6... Minute gap, 7... Permanent magnet (magnetic force source) , 9... O-ring (sealing member), 11, 14...
... Shape memory alloy, 91 ... Flexible part, 10 ... Inlet, 12, 12' ... Communication path, 13 ... Magnetic circuit,
A...vacant room, B, B'...small diameter room, C, C'...large diameter room.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ハウジング内で回転自在に支承される回転部材
と、該回転部材との間に微小間隙を形成して上記
ハウジング内を軸方向に区分する一対の磁極と、
該各磁極間の外周側に介在して前記回転部材と磁
極との組合せにより磁気回路を形成する磁力源
と、前記回転部材と磁極との間に形成される微小
間隙内に磁気吸着される磁性流体とから成る磁性
流体シール装置において、前記一対の磁極間であ
つて磁力源の半径方向内方に形成される空室を大
径室と小径室の二室によつて構成し、上記大径室
と小径室の境界に磁性流体を磁力源側に密封保持
するリング状の密封部材を配置すると共に、該密
封部材の半径方向一方側には加熱時に該密封部材
を大径室側へ付勢せしめて連通路を形成する無端
状の形状記憶合金を添設して成ることを特徴とす
る磁性流体シール装置。
a rotating member rotatably supported within a housing; a pair of magnetic poles forming a minute gap between the rotating member and dividing the inside of the housing in the axial direction;
a magnetic force source that is interposed on the outer circumferential side between the magnetic poles and forms a magnetic circuit by the combination of the rotating member and the magnetic pole; and a magnetic force that is magnetically attracted within a minute gap formed between the rotating member and the magnetic pole. In a magnetic fluid sealing device comprising a fluid, a cavity formed between the pair of magnetic poles and radially inward of the magnetic force source is composed of two chambers, a large-diameter chamber and a small-diameter chamber, and the large-diameter A ring-shaped sealing member is disposed at the boundary between the chamber and the small-diameter chamber to seal and hold the magnetic fluid toward the magnetic force source, and a ring-shaped sealing member is arranged on one radial side of the sealing member to urge the sealing member toward the large-diameter chamber when heated. A magnetic fluid sealing device characterized in that an endless shape memory alloy is attached to form a communication path.
JP4832186U 1986-04-01 1986-04-01 Expired JPH0239085Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4832186U JPH0239085Y2 (en) 1986-04-01 1986-04-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4832186U JPH0239085Y2 (en) 1986-04-01 1986-04-01

Publications (2)

Publication Number Publication Date
JPS62163367U JPS62163367U (en) 1987-10-17
JPH0239085Y2 true JPH0239085Y2 (en) 1990-10-19

Family

ID=30869739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4832186U Expired JPH0239085Y2 (en) 1986-04-01 1986-04-01

Country Status (1)

Country Link
JP (1) JPH0239085Y2 (en)

Also Published As

Publication number Publication date
JPS62163367U (en) 1987-10-17

Similar Documents

Publication Publication Date Title
JPS5942185B2 (en) Magnetic fluid seal device
US5152539A (en) Ferrofluid seal apparatus
JPS6174973A (en) Automatic actuating magnetic fluid sealing device and usage thereof
WO2001004521A1 (en) Magnetic fluid seal
JPH04101868U (en) Magnetic fluid seal device
EP0210527B1 (en) Magnetic liquid seal
US5623957A (en) Valve for controlling a gas or liquid flow
JPH0280866A (en) Seal assembly
JPH0239085Y2 (en)
US6290233B1 (en) Sealing apparatus
JPS61109976A (en) Glass precision valve and manufacture thereof
JPH0239086Y2 (en)
JP2524315Y2 (en) solenoid
JPS6040871A (en) Sealing mechanism employing magnetic fluid
JPH0518494Y2 (en)
JPS61215864A (en) Magnetic fluid sealing device
IE830112L (en) Mechanical seal for valve spindle
JP2002349718A (en) Magnetic fluid seal device
JPH07110031A (en) Fluid bearing device
JPS5958271A (en) Method for supplying magnetic fluid for magnetic fluid seal
JPS63214578A (en) Magnetic fluid seal unit
JPH0472109B2 (en)
JP2000283299A (en) Sealing device
JPS58131474A (en) Sealing device
JPS623579Y2 (en)