JPH0239080B2 - - Google Patents

Info

Publication number
JPH0239080B2
JPH0239080B2 JP57108398A JP10839882A JPH0239080B2 JP H0239080 B2 JPH0239080 B2 JP H0239080B2 JP 57108398 A JP57108398 A JP 57108398A JP 10839882 A JP10839882 A JP 10839882A JP H0239080 B2 JPH0239080 B2 JP H0239080B2
Authority
JP
Japan
Prior art keywords
ion
electrodes
ions
electrode
charged object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57108398A
Other languages
Japanese (ja)
Other versions
JPS58225600A (en
Inventor
Norio Murazaki
Hidemi Nagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHISHIDO SHOKAI KK
Original Assignee
SHISHIDO SHOKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHISHIDO SHOKAI KK filed Critical SHISHIDO SHOKAI KK
Priority to JP10839882A priority Critical patent/JPS58225600A/en
Publication of JPS58225600A publication Critical patent/JPS58225600A/en
Publication of JPH0239080B2 publication Critical patent/JPH0239080B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は帯電物体にイオンを供給し帯電物体に
均一な電荷密度の帯電状態を創出するためのイオ
ン供給装置に関する。 帯電物体の電荷密度が不均一である場合には
種々の問題が生じる。例えば乾式複写機の如くト
ナーを電着して転写する場合に、紙表面の帯電状
態が不均一であると転写された線がシヤープに現
れず、特にカラー複写の場合のように各色が所望
に電着されず所望の色相が得られない。 この対策としては従来の如く帯電物体から除電
を行い電位をゼロにすることによつて均一化する
方法が考えられ、このため交流コロナ放電式静電
除去装置が広く用いられている。この種のコロナ
放電式静電除去装置は一般に単相交流を用いたも
ので、これにより除電を行い従来の帯電電位測定
器により測定した場合に測定値がゼロVであつて
も前記の問題は解消できない場合があつた。この
点について検討した結果、例えば、数V乃至10数
Vオーダーの精密な帯電電位測定器により測定す
るときは実は20〜30V以下の帯電が正又は負の帯
電領域として散在し残留していることが判明し
た。 従つて従来の単相交流を用いたコロナ放電式除
電装置では電位をゼロとすることによつて又はゼ
ロに近づけることによつて不均一なために生じる
悪影響を避けることができなかつた。 他方、帯電物体の電荷密度を均一化する方法と
しては、帯電物体に積極的にイオンを供給して均
一な電荷密度の帯電状態とすることが考えられ
る。このためにコロナ放電電極を用いて、帯電物
体にイオンを供給し均一な電荷密度の帯電状態を
創出することが試みられたが、均一な電荷密度の
帯電状態ちすることは困難であつた。それは第1
図に示すコロナ放電電極を用いた除電又は荷電に
あつては、イオンの供給のメカニズムからいずれ
の場合にも限界があるためである。即ち放電針a
とアース極bとの間でコロナ放電が生じ空気をイ
オン化して放電針に反撥するイオンcを帯電物体
Aに供給し、除電にあつては供給されたイオンc
により中和が行われ、荷電にあつては供給された
イオンcにより帯電が行われる。この場合帯電物
体Aには放電針aの先端に最も近接する領域によ
り多くのイオンcが供給され、先端から離反する
につれイオンcの供給量が少くなり帯電物体Aの
全面にイオンを均一にイオンを供給することがで
きない。 このため、コロナ放電電極として線状の放電電
極を用い放電領域を拡大することが行われている
が線状放電電極をより細径とし、多数本を用いて
均一にイオンを供給するにしても、印加電圧との
関係で線状放電電極を細径化するにも限度があ
り、また火花放電を避けるために放電電極間の距
離にも限界があり、従つて均一にイオンを帯電物
体に供給することにも限界がある。 本発明は、帯電物体にイオンを供給して除電又
は荷電により荷電物体に均一な荷電密度の帯電状
態を創出するためのイオン供給装置を提供するこ
とをその目的とするもので、本発明者等は、イオ
ンを帯電物体表面に沿つて移動させることによつ
て上記目的を達成できることを知見して本発明の
イオン供給装置を完成したものである。第1発明
は、イオン発生装置と、該イオン発生装置に並列
して配設された複数個のイオン搬送電極とからな
り、該複数個のイオン搬送電極は、多相交流電源
の端子に接続した各相の電極を位相遅れの小さい
順または大きい順に配列して一組とした複数組の
電極群であつて、走行する帯電物体に対向して列
状に配置し、該イオン発生装置は前記帯電物体の
イオン搬送電極の列への進入口に配置し、イオン
発生装置により生じたイオンを帯電物体の走行方
向に沿わせて移動させつつイオンを供給するよう
にしたことを特徴とする。 また第2発明は、第1発明におけるイオン発生
装置とイオン搬送電極とを兼用させた構造簡単な
イオン供給装置であつて、イオン発生装置とイオ
ン搬送電極とを兼用した複数個の放電電極からな
り、該複数個の放電電極は、多相交流電源の端子
に接続した各相の電極を位相遅れの小さい順また
は大きい順に配列して一組とした複数組の電極群
であつて、走行する帯電物体に対向して列状に配
置し、放電電極により生じたイオンを帯電物体の
走行方向に沿わせて移動させつつイオンを供給す
るようにしたことを特徴とする。 本発明の除電の実施の1例を示す第2図に従つ
て更に詳説すると1はイオン発生装置であり2は
イオン搬送電極であり3は対向電極である。イオ
ン発生装置1は、従来のコロナ放電電極、放射線
を用いたイオン発生装置など除電又は荷電の目的
に応じて適宜に選択される。イオン搬送電極2は
該イオン発生装置1に近接して、3本の線状電極
2を間隔を存して水平方向に併設して1組とし、
各電極2を多相交流例えば三相交流の2次側端子
に接続してU、V、Wの順で位相遅れの小さい順
に配列されるようにした。図示するものにあつて
は、この1組の電極2群を同様の順序で更に2組
を配列し電極2面を整えるためにU相の電極2を
追加した。 対向電極3は、イオン搬送電極群2と対面させ
て配設し、両電極2,3間に帯電物体Aの走行空
間を形成する。図示する対向電極3はイオン搬送
電極2と同様に線状電極を用い各イオン搬送電極
2と対向させ、いずれもアース電位とした。また
この対向電極3はイオン搬送電極2と同様に多相
交流を通電する場合であつてもよく、この場合に
は対向するイオン搬送電極と位相を相違させる。
そして帯電物体Aをイオン発生装置1側から両電
極2,3の間を走行させてイオンの供給を行う。 従つて例えば除電の場合にはイオン発生装置1
として従来の単相交流のコロナ放電電極を用い
正・負のイオンを交互に発生させる。このイオン
発生装置1から生じたイオンは対向電極3によつ
て帯電物体A側へ誘引されると共にイオン搬送電
極2において生じる電界が正負正弦波電界として
移動するので帯電物体Aの移動方向に沿つて誘引
されて強制的に移動し、帯電物体Aの全面に均一
にイオンが供給されて中和が生じ均一な除電が行
われる。 また、荷電の場合には帯電物体Aに帯電させる
電荷に応じて正又は負イオンを発生する直流電源
に接続したコロナ放電電極のイオン発生装置を用
いてイオンをイオン搬送電極2と対向電極3との
間の空間に供給し、両電極2,3間を走行する帯
電物体Aに対して対向電極3により帯電物体A側
にイオンを誘引し同時にイオン搬送電極2により
帯電物体Aに沿つてイオンを誘引して搬送し帯電
物体Aにイオンを供給することによつて均一な電
荷密度を有する帯電状態が得られる。 前記実施例では対向電極を設けた例を示したが
イオン供給の目的、イオン発生装置の種類等に応
じて対向電極を設けなくとも本発明の目的を妨げ
ない。 第3図は本発明の他の実施例を示すもので、こ
の実施例にあつては、前記したイオン発生装置1
とイオン搬送電極2とを兼用したもので、3本の
線状放電電極4a,4b,4cを間隔を存して配
設して1組とし、各放電電極4a,4b,4cを
三相交流の2次側端子に接続してU、V、Wの順
で位相遅れの小さい順に配列されるようにした。
また前記実施例と同様にこの1組の放電電極4群
を同様の順序で更に2組を配列し放電電極4面を
整えるため各組の放電電極4群の間に間隔を存し
てV相の放電電極4を追加した。そして例えば除
電にあつては、この放電電極4群の前記した配列
方向に沿つて帯電物体Aを走行させてイオンを供
給し除電を行う。更に詳説すれば各放電電極4は
前記の通り、U、V、Wの順で位相遅れの小さい
順の各相の電極であるため例えばV相の放電電極
4bの電位がゼロのときU相の放電電極4aが正
の高電位であつて正イオンを発生させ、その際V
相の放電電極4bは電位ゼロであるためイオンの
発生がなく、W相の放電電極4cにあつては負の
高電位にあるので負イオンを発生させ、これが各
相の位相差(120°)をもつて各放電電極4に移動
して行く。そして、このように同時に発生した正
負のイオンは対向する帯電物体Aへ放出されると
共に隣接する放電電極4の電界が正負正弦波電界
して移動して各イオンを誘引するように作用する
ため正負のイオンが混在した状態で移動する。こ
の場合各放電電極4群の各相の移動方向に沿つて
帯電物体Aを走行させるので帯電物体Aに同時に
正負のイオンが均一に供給されて帯電物体Aに分
散している正帯電領域αと負帯領域βとが同時に
全面域に亘つて中和されると共に中和されない各
イオンは各放電電極4によつて強制的に移動され
るので途中で空気中で中和される割合が少くより
帯電物体Aへの除電に寄与する。従つて帯電物体
A上に分散する正帯電領域αと負帯電領域βとが
同時に除電されるので電荷がゼロの領域を拡大す
るので絶対値的に帯電を少くし、残存電位もわず
かであるためその影響が極めて少くなる。 次に試験結果を示せば次の通りである。
The present invention relates to an ion supply device for supplying ions to a charged object and creating a charged state of uniform charge density on the charged object. Various problems arise when the charge density of a charged object is non-uniform. For example, when transferring toner by electrodeposition, as in a dry copying machine, if the electrical charge state of the paper surface is uneven, the transferred lines will not appear sharply, and each color will not appear as desired, especially in the case of color copying. It is not electrodeposited and the desired hue cannot be obtained. As a countermeasure to this problem, there is a conventional method of eliminating static electricity from a charged object and making the potential uniform by reducing it to zero, and for this reason, AC corona discharge type static electricity removal devices are widely used. This type of corona discharge type static eliminator generally uses single-phase alternating current, which eliminates static electricity, and even if the measured value is zero V when measured with a conventional charged potential measuring device, the above problem will not occur. There were cases where it could not be resolved. As a result of considering this point, we found that, for example, when measuring with a precision charged potential measuring device on the order of a few volts to several tens of volts, charges of 20 to 30 volts or less actually remain scattered as positive or negative charged areas. There was found. Therefore, in the conventional corona discharge type static eliminator using single-phase alternating current, it has not been possible to avoid the adverse effects caused by non-uniformity by reducing the potential to zero or approaching zero. On the other hand, as a method of making the charge density of a charged object uniform, it is possible to actively supply ions to the charged object to make it in a charged state with a uniform charge density. For this purpose, attempts were made to use a corona discharge electrode to supply ions to a charged object to create a charged state with a uniform charge density, but it was difficult to achieve a charged state with a uniform charge density. That's the first
This is because there are limits to static elimination or charging using the corona discharge electrode shown in the figure due to the mechanism of ion supply. That is, discharge needle a
A corona discharge occurs between the earth electrode b and the air, which ionizes the air and supplies ions c to the charged object A, which are repelled by the discharge needle.
Neutralization is performed by this, and charging is performed by the supplied ions c. In this case, more ions c are supplied to the charged object A in the area closest to the tip of the discharge needle a, and the amount of ions c supplied decreases as the area moves away from the tip, and the ions are uniformly distributed over the entire surface of the charged object A. cannot be supplied. For this reason, a linear discharge electrode is used as a corona discharge electrode to expand the discharge area, but even if the linear discharge electrode is made smaller in diameter and a large number of them are used to uniformly supply ions. There is a limit to the diameter of the linear discharge electrode due to the applied voltage, and there is also a limit to the distance between the discharge electrodes in order to avoid spark discharge, so it is difficult to uniformly supply ions to the charged object. There are limits to what you can do. An object of the present invention is to provide an ion supply device for supplying ions to a charged object to create a charged state with a uniform charge density on the charged object by neutralization or charging. discovered that the above object could be achieved by moving ions along the surface of a charged object, and completed the ion supply device of the present invention. The first invention includes an ion generator and a plurality of ion transport electrodes arranged in parallel to the ion generator, and the plurality of ion transport electrodes are connected to terminals of a multiphase AC power source. The ion generator is a plurality of sets of electrodes arranged in order of smallest or largest phase delay, arranged in a row facing a traveling charged object, It is characterized in that it is disposed at the entrance of the object to the row of ion transport electrodes, and supplies ions while moving the ions generated by the ion generator along the running direction of the charged object. Further, a second invention is an ion supply device with a simple structure that serves both as an ion generator and an ion transport electrode in the first invention, and is composed of a plurality of discharge electrodes that serve as an ion generator and an ion transport electrode. , the plurality of discharge electrodes are a plurality of electrode groups in which the electrodes of each phase connected to the terminals of the multiphase AC power source are arranged in order of smallest or largest phase delay, and the plurality of discharge electrodes are a set of electrodes connected to the terminals of a multiphase AC power source, and are arranged in order of decreasing phase delay or increasing phase delay. It is characterized in that it is arranged in a row facing the object and supplies ions while moving the ions generated by the discharge electrode along the running direction of the charged object. To explain in more detail with reference to FIG. 2 which shows an example of the implementation of static elimination according to the present invention, 1 is an ion generator, 2 is an ion transport electrode, and 3 is a counter electrode. The ion generator 1 is appropriately selected from a conventional corona discharge electrode, an ion generator using radiation, etc. depending on the purpose of static elimination or charging. The ion transport electrode 2 is close to the ion generator 1, and three linear electrodes 2 are arranged horizontally at intervals to form a set.
Each electrode 2 was connected to a secondary terminal of a multi-phase alternating current, for example, a three-phase alternating current, so that U, V, and W were arranged in the order of decreasing phase delay. In the case shown in the figure, two more sets of two groups of electrodes were arranged in the same order, and a U-phase electrode 2 was added to prepare the two electrode surfaces. The counter electrode 3 is arranged to face the ion transport electrode group 2, and forms a running space for the charged object A between the electrodes 2 and 3. The illustrated counter electrode 3 is a linear electrode similar to the ion transport electrode 2, and is opposed to each ion transport electrode 2, and both electrodes are at ground potential. Further, this counter electrode 3 may be configured to conduct multiphase alternating current similarly to the ion transport electrode 2, and in this case, the phase thereof is different from that of the opposing ion transport electrode.
Then, the charged object A is caused to travel between the electrodes 2 and 3 from the ion generator 1 side to supply ions. Therefore, for example, in the case of static elimination, the ion generator 1
A conventional single-phase AC corona discharge electrode is used to generate positive and negative ions alternately. Ions generated from this ion generator 1 are attracted to the charged object A side by the counter electrode 3, and the electric field generated at the ion transport electrode 2 moves as a positive and negative sine wave electric field, so that the ions are attracted along the moving direction of the charged object A. The ions are attracted and forcibly moved, and ions are uniformly supplied to the entire surface of the charged object A, resulting in neutralization and uniform static elimination. In addition, in the case of charging, ions are transferred to the ion transport electrode 2 and the counter electrode 3 using an ion generator of a corona discharge electrode connected to a DC power source that generates positive or negative ions depending on the charge to be charged to the charged object A. The ions are supplied to the space between the electrodes 2 and 3, and the counter electrode 3 attracts ions to the charged object A side, while the ion transport electrode 2 attracts ions along the charged object A. By attracting, transporting, and supplying ions to the charged object A, a charged state having a uniform charge density can be obtained. In the above embodiment, an example in which a counter electrode was provided was shown, but the object of the present invention may not be impeded depending on the purpose of ion supply, the type of ion generator, etc. FIG. 3 shows another embodiment of the present invention, in which the ion generator 1 described above is used.
It also serves as the ion transport electrode 2. Three linear discharge electrodes 4a, 4b, 4c are arranged at intervals to form a set, and each discharge electrode 4a, 4b, 4c is connected to a three-phase AC They were connected to the secondary side terminals of U, V, and W so that they were arranged in order of decreasing phase delay.
In addition, as in the above embodiment, two more sets of the four discharge electrodes in one set are arranged in the same order, and in order to arrange the four surfaces of the discharge electrodes, a gap is left between the four discharge electrodes in each set, and the V phase is arranged. A discharge electrode 4 was added. For example, in the case of static elimination, the charged object A is moved along the above-mentioned arrangement direction of the 4 groups of discharge electrodes to supply ions and perform static elimination. More specifically, as described above, each discharge electrode 4 is an electrode for each phase in the order of U, V, and W with the smallest phase delay, so for example, when the potential of the V-phase discharge electrode 4b is zero, the U-phase The discharge electrode 4a is at a positive high potential and generates positive ions, at which time V
Since the phase discharge electrode 4b has zero potential, no ions are generated, and the W phase discharge electrode 4c has a negative high potential, so it generates negative ions, which causes the phase difference (120°) between each phase. It moves to each discharge electrode 4 with the following. The positive and negative ions generated simultaneously in this way are emitted to the opposing charged object A, and the electric field of the adjacent discharge electrode 4 moves as a positive and negative sine wave electric field and acts to attract each ion. ions move in a mixed state. In this case, since the charged object A is moved along the moving direction of each phase of each of the 4 groups of discharge electrodes, positive and negative ions are uniformly supplied to the charged object A at the same time, resulting in a positively charged area α dispersed in the charged object A. The negative band region β is simultaneously neutralized over the entire area, and each unneutralized ion is forcibly moved by each discharge electrode 4, so that the proportion of ions that are neutralized in the air on the way is smaller. Contributes to neutralizing the charged object A. Therefore, since the positively charged area α and the negatively charged area β distributed on the charged object A are simultaneously neutralized, the area where the charge is zero is expanded, so the charge is reduced in absolute value, and the residual potential is also small. The impact will be extremely small. Next, the test results are as follows.

【表】 以上の結果から明らなように従来の単相交流の
コロナ放電式であつては除電効果が少い数100V
の印加電圧においても前記実施例にあつては残存
電位がゼロに近くなるまで除電することができ
た。 第3図示の実施例では第2図示の実施例の如く
格別に対向電極を設けなかつたが、必要に応じて
配設してもよい。以上の2実施例にあつてはイオ
ン搬送電極及び放電電極として線状電極を使用し
たが、本発明によるときはイオンが均一に移動さ
れるので、多数の針状電極を配設した場合であつ
ても同様の効果がある。 以上の説明から明らかなように、本発明の第1
発明によるときは、イオン発生装置から生じたイ
オンをイオン搬送電極により強制的に帯電物体の
表面に沿わせて移動させることにより均一にイオ
ンを供給することができ、従つて除電又は荷電に
おいて均一な電荷密度の帯電状態を得ることがで
き、またイオン発生装置とイオン搬送電極とを別
体にしたのでイオン搬送電極への印加電圧を低く
おさえることができ、これにより各電極間の距離
も小さくすることができるので装置を小型化する
のに適するイオン供給装置を提供する効果があ
る。 また、本発明の第2発明によるときは、第1発
明と同様の目的とイオン供給装置とイオン搬送電
極とを兼用した放電電極を用いることによつてイ
オン供給装置を提供するの効果がある。
[Table] As is clear from the above results, with the conventional single-phase AC corona discharge method, the static elimination effect is small at several 100V.
Even at an applied voltage of , static electricity could be removed until the residual potential approached zero in the above example. In the embodiment shown in the third figure, unlike the embodiment shown in the second figure, a counter electrode is not provided, but it may be provided if necessary. In the above two embodiments, linear electrodes were used as the ion transport electrode and the discharge electrode, but in the present invention, ions are moved uniformly, so even if a large number of needle-shaped electrodes are arranged. has the same effect. As is clear from the above explanation, the first aspect of the present invention
According to the invention, the ions generated from the ion generator are forcibly moved along the surface of the charged object by the ion transport electrode, so that the ions can be uniformly supplied. Since the ion generator and the ion transport electrode are separate, the voltage applied to the ion transport electrode can be kept low, thereby reducing the distance between each electrode. This has the effect of providing an ion supply device suitable for downsizing the device. Further, according to the second aspect of the present invention, there is an effect of providing an ion supply device by using a discharge electrode that has the same purpose as the first invention and serves both as an ion supply device and an ion transport electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単相交流式のイオン供給装置の
模式図、第2図は本発明の実施装置の模式図、第
3図は他の実施装置の模式図である。 1……イオン発生装置、2……イオン搬送電
極、4……放電電極。
FIG. 1 is a schematic diagram of a conventional single-phase AC type ion supply apparatus, FIG. 2 is a schematic diagram of an apparatus for implementing the present invention, and FIG. 3 is a schematic diagram of another apparatus for implementing the present invention. 1... Ion generator, 2... Ion transport electrode, 4... Discharge electrode.

Claims (1)

【特許請求の範囲】 1 イオン発生装置と、該イオン発生装置に並列
して配設された複数個のイオン搬送電極とからな
り、該複数個のイオン搬送電極は、多相交流電源
の端子に接続した各相の電極を位相遅れの小さい
順または大きい順に配列して一組とした複数組の
電極群であつて、走行する帯電物体に対向して列
状に配置し、該イオン発生装置は前記帯電物体の
イオン搬送電極の列への進入口に配置し、イオン
発生装置により生じたイオンを帯電物体の走行方
向に沿わせて移動させつつイオンを供給するよう
にしたことを特徴とするイオン供給装置。 2 イオン発生装置とイオン搬送電極とを兼用し
た複数個の放電電極からなり、該複数個の放電電
極は、多相交流電源の端子に接続した各相の電極
を位相遅れの小さい順または大きい順に配列して
一組とした複数組の電極群であつて、走行する帯
電物体に対向して列状に配置し、放電電極により
生じたイオンを帯電物体の走行方向に沿わせて移
動させつつイオンを供給するようにしたことを特
徴とするイオン供給装置。
[Claims] 1. Consisting of an ion generator and a plurality of ion transport electrodes arranged in parallel with the ion generator, the plurality of ion transport electrodes are connected to terminals of a multiphase AC power source. The ion generator comprises a plurality of electrode groups in which connected electrodes of each phase are arranged in ascending order of phase delay or in ascending order of phase delay, and are arranged in a row facing a traveling charged object. The ion is disposed at the entrance of the charged object to the row of ion transport electrodes, and is configured to supply ions while moving the ions generated by the ion generator along the traveling direction of the charged object. Feeding device. 2 Consists of a plurality of discharge electrodes that serve both as an ion generator and an ion transport electrode, and the plurality of discharge electrodes are arranged in the order of the smallest or largest phase delay between the electrodes of each phase connected to the terminals of the multiphase AC power supply. A group of multiple electrodes arranged in a row facing a moving charged object, which discharge ions while moving the ions generated by the discharge electrodes along the running direction of the charged object. An ion supply device characterized by supplying.
JP10839882A 1982-06-25 1982-06-25 Ion supplying device Granted JPS58225600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10839882A JPS58225600A (en) 1982-06-25 1982-06-25 Ion supplying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10839882A JPS58225600A (en) 1982-06-25 1982-06-25 Ion supplying device

Publications (2)

Publication Number Publication Date
JPS58225600A JPS58225600A (en) 1983-12-27
JPH0239080B2 true JPH0239080B2 (en) 1990-09-04

Family

ID=14483740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10839882A Granted JPS58225600A (en) 1982-06-25 1982-06-25 Ion supplying device

Country Status (1)

Country Link
JP (1) JPS58225600A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478698A (en) * 1977-12-05 1979-06-22 Senichi Masuda Antistatic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478698A (en) * 1977-12-05 1979-06-22 Senichi Masuda Antistatic device

Also Published As

Publication number Publication date
JPS58225600A (en) 1983-12-27

Similar Documents

Publication Publication Date Title
US2879395A (en) Charging device
JPS59113458A (en) Apparatus for evenly charging moving web
IT8348714A0 (en) HIGH VOLTAGE AC CURRENT POWER SUPPLY FOR STATIC CHARGE ELIMINATORS
JP2008004397A (en) Destaticizing method and static eliminator
US3792312A (en) Device for creating electrostatic charge or discharge
JPH0239080B2 (en)
JPS5896570A (en) Image recorder
GB1030383A (en) Improvements in or relating to electrostatic printing processes
JPS6219033B2 (en)
US2883606A (en) Charging systems for inductionconduction charged belt electrostatic generators
JPH0319551B2 (en)
JP2004039421A (en) Method and device for manufacturing electric insulating sheet
US2858501A (en) High current electrostatic generator
JP2651476B2 (en) Method and device for removing static electricity from films
CN101112131A (en) Neutralizing device, neutralizing method and production method of electric-insulating sheet
JPH0443897Y2 (en)
SU966935A1 (en) Neutralizer of static electric charges
JPH09180893A (en) Static eliminating method
JPS58108559A (en) Charging device for electronic copying machine or the like
JPS6046517B2 (en) particle charging device
JPS6342753A (en) Electrifying method for material and device therefor
JPS5923499A (en) Static electricity removing method
JPH0536490A (en) Static eliminator
JP2007115559A (en) Static charge eliminator of electrical insulation sheet and manufacturing method of the same
EP0051624A4 (en) Charger for electrophotographic surfaces.