JPH0239050A - Method for forming positive type photoresist - Google Patents

Method for forming positive type photoresist

Info

Publication number
JPH0239050A
JPH0239050A JP63187031A JP18703188A JPH0239050A JP H0239050 A JPH0239050 A JP H0239050A JP 63187031 A JP63187031 A JP 63187031A JP 18703188 A JP18703188 A JP 18703188A JP H0239050 A JPH0239050 A JP H0239050A
Authority
JP
Japan
Prior art keywords
electrodeposition coating
film
water
parts
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63187031A
Other languages
Japanese (ja)
Other versions
JPH0721637B2 (en
Inventor
Masahiro Hoshino
星野 昌弘
Kenji Seko
健治 瀬古
Naozumi Iwazawa
直純 岩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Mitsubishi Electric Corp
Original Assignee
Kansai Paint Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd, Mitsubishi Electric Corp filed Critical Kansai Paint Co Ltd
Priority to JP18703188A priority Critical patent/JPH0721637B2/en
Priority to AU31735/89A priority patent/AU613463B2/en
Priority to KR1019890003940A priority patent/KR940008381B1/en
Priority to CA 594851 priority patent/CA1337864C/en
Priority to DE1989607101 priority patent/DE68907101T2/en
Priority to EP19890105457 priority patent/EP0335330B1/en
Priority to US07/329,636 priority patent/US4898656A/en
Publication of JPH0239050A publication Critical patent/JPH0239050A/en
Publication of JPH0721637B2 publication Critical patent/JPH0721637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a printed wiring board which does not generate entirely the defects about a picture due to a waterdrop mark at the time of washing the board with water by forming a positive type photoresist film on the board by subjecting the board to two times of electrodeposition coatings. CONSTITUTION:A positive type photoresist film is formed on a copper-plated laminate substrate by applying the electrodeposition coating on the substrate, and then the electrodeposition coating is subjected on the obtd. film by applying an electrodeposition coating composition contg. a water soluble or a water dispersible resin as a main component on the film. The usable positive type electrodeposition coating composition is mainly composed of a resin etc. contg. a polyoxymethylene polymer, O-nitrocarbinol ester, O-nitrophenyl acetal and a benzo (or naphtho)quinone diazide units which have a salt forming group or a photosensitive group to make the composition to the water soluble or the water dispersible. Thus, the defects about the printed wiring board due to the waterdrop mark which generates on the resist film, are prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポジ型フォトレジストの形成方法に関し、さら
に詳しくは、銅張積層板に2コ一ト電着塗装方法によっ
て表面粘着性のない平滑な且つポジマスクを通して紫外
線等の活性光線を照射することによって容易に画像を形
成することが可能なポジ型フォトレジスト被膜の形成方
法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for forming a positive photoresist, and more specifically, it relates to a method for forming a positive photoresist, and more specifically, to coat a copper-clad laminate with a two-coat electrodeposition coating method to form a smooth, non-tacky surface. The present invention also relates to a method for forming a positive photoresist film, which allows an image to be easily formed by irradiating actinic light such as ultraviolet rays through a positive mask.

[従来の技術1 従来、集積回路用などのスルーホールを有するプリント
配線板は、一般に、絶縁体に銅箔を張ったスルーホール
部を有する基板上に銅めっきを施してなる基板上に感光
性レジストフィルムをラミ不一トシ、さらに写真ネガを
重ねて露光および現像をしたのち、回路パターン以外の
不要の銅箔を工/チング処理し、しかる後感光性レジス
トフィルムを除去することからなるドライフィルム法と
呼ばれる方法で形成されている。しかし、この方法に用
いられる感光性レジストフィルムは、一般に、膜厚が5
0μmと比較的厚いために露光、現像して形成される回
路パターンがシャープでなく、しかも銅箔面に均一にラ
ミネートするのが困難であり、特にスルーホール部分を
被覆することは殆ど不可能である等の欠点がある。
[Prior art 1] Conventionally, printed wiring boards with through-holes for integrated circuits, etc., are generally made by applying copper plating to a substrate having through-holes covered with copper foil on an insulator. A dry film that consists of laminating resist film, overlapping a photographic negative, exposing and developing it, etching/etching unnecessary copper foil other than the circuit pattern, and then removing the photosensitive resist film. It is formed by a method called law. However, the photosensitive resist film used in this method generally has a film thickness of 5.
Because it is relatively thick at 0 μm, the circuit pattern formed by exposure and development is not sharp, and it is difficult to laminate it uniformly on the copper foil surface, and in particular, it is almost impossible to cover through-hole areas. There are some drawbacks.

また、スルーホール部を有する銅張基板上にエツチング
レジストインキをスクリーン印刷し、次にエツチングを
行なって印刷されていない部分の銅を除去し、さらに印
刷部のレジストインキを除去することからなるスクリー
ン印刷法と呼ばれる方法でプリント配線用回路パターン
を形成させる方法も知られている。しかしながら、該方
法ではスルーホール部に該インキを塗布することが困難
であるために、スルーホール部の銅がエツチング処理に
よって除去されてしまうことが多い。このため予めスル
ーホール部内に有機材料を埋込み、工・ソチング処理に
際してスルーホール部の銅に除去されないように保護し
たのち、最終的に該有機材料を除去することにより、回
路板を形成することも行われているが、該方法では最終
的に得られる回路板のコストが高くなるとともに回路パ
ターンのンヤーブ性にも劣るという欠点がある。
Another method is to screen print etching resist ink on a copper-clad substrate having through holes, then perform etching to remove the copper in the unprinted areas, and then remove the resist ink in the printed areas. A method of forming a circuit pattern for printed wiring by a method called a printing method is also known. However, in this method, it is difficult to apply the ink to the through-hole portions, so the copper in the through-hole portions is often removed by etching. For this reason, it is also possible to form a circuit board by embedding an organic material in the through-hole section in advance to protect it from being removed by the copper in the through-hole section during the machining/sawching process, and then finally removing the organic material. However, this method has disadvantages in that the cost of the circuit board finally obtained is high and the dyeability of the circuit pattern is poor.

これらの従来の欠点を改良する方法として、前記基板に
ポジ型感光性樹脂レジスト被膜を電着塗装によって形成
させ、その上にポジ型マスクを重ねて露光したのち、露
光部分をアルカリ水溶液で現像して除去することによっ
て工・クチングレジストを得る方法が提案されている(
特開昭60−207139号公報、特開昭61−206
293号公報など参照)。該方法は、電着塗装により容
易に小さな口径のスルーホール部分にもレジスト被膜を
形成させることができ、しかも未露光部分がレジスト被
膜として残るので、ネガ型7オトレジストの場合のよう
にスルーホール内のレジスト被膜を露光により硬化させ
る必要がなく、光源として完全な平行光線を使用するこ
とができるので、解像性が高く且つスルーホール内の銅
等の導体が完全に保護されるプリント配線基板を得るこ
とができるという利点がある。
As a method to improve these conventional drawbacks, a positive photosensitive resin resist film is formed on the substrate by electrodeposition coating, a positive mask is layered on top of the resist film, exposed to light, and then the exposed areas are developed with an alkaline aqueous solution. A method has been proposed in which a cutting resist is obtained by removing the cutting resist (
JP-A-60-207139, JP-A-61-206
(See Publication No. 293, etc.). With this method, a resist film can be easily formed even on small-diameter through-hole parts by electrodeposition coating, and since the unexposed parts remain as a resist film, it is possible to easily form a resist film inside the through-hole as in the case of negative type 7 photoresist. There is no need to cure the resist film by exposure to light, and a perfectly parallel light beam can be used as a light source, making it possible to create printed wiring boards that have high resolution and completely protect conductors such as copper in through holes. It has the advantage of being obtainable.

[発明が解決しようとする問題点] 前記した改良方法では、現像工程は、通常、露光部にお
けるポジ型フォトレジスト被膜の感光性基の光分解や被
膜形成ポリマー主鎖の切断等によるアルカリまたは酸水
溶液現像液に対する可溶化現像を利用して行なわれる。
[Problems to be Solved by the Invention] In the above-mentioned improved method, the development step usually involves photolysis of the photosensitive groups of the positive photoresist film in the exposed area, cleavage of the main chain of the film-forming polymer, etc. using alkali or acid. This is carried out using solubilization development in an aqueous developer.

しかしながら、電着塗装型のポジ型フォトレジスト被膜
の場合、未露光部分の被膜も、カルボキシル基又はアミ
ノ基等の極性基を有しているため、水溶性の性質を有し
ており、溶剤型のポジ型レジスト被膜に比較して露光部
と未露光部の現像液に対する溶解性の差が小さいという
問題がある。このため電着塗装型のポジ型フォトレジス
ト被膜を用いて良好なプリント配線基板を得るには、被
膜の現像液に対する溶解性を調整したり、膜厚を均一に
するなどフォトレジスト被膜の表面特性を厳密にコント
ロールする必要がある。
However, in the case of electrodeposited positive photoresist coatings, the unexposed areas of the coating also have polar groups such as carboxyl groups or amino groups, so they are water-soluble and solvent-based. There is a problem in that the difference in solubility in the developer between the exposed and unexposed areas is smaller than that of the positive resist film. Therefore, in order to obtain a good printed wiring board using an electrodeposited positive photoresist film, it is necessary to adjust the solubility of the film in the developer and to make the film thickness uniform. needs to be strictly controlled.

また、電着塗装によって7オトレジスト被膜を形成する
場合、電着塗装されたフォトレジスト被膜は通常水洗さ
れるので、その被膜上に水滴跡が残る。しかしながら、
実際の工業ラインでは工程上水滴跡を完全に除去するこ
とは困難である。このため、水滴跡の生じた部分の被膜
はそうでない部分に比較して膜厚が薄くなるため、レジ
スト被膜は現像、エツチング工程において十分な保護被
膜として作用せず、その結果プリント配線基板に線切れ
や画線が設置した巾より細くなる線細り等の欠陥が屡々
生じる。
Furthermore, when forming a photoresist film by electrodeposition, the electrodeposited photoresist film is usually washed with water, so water drop marks remain on the film. however,
In actual industrial lines, it is difficult to completely remove traces of water droplets during the process. For this reason, the film thickness in areas where water droplets have formed is thinner than in areas where there are no traces of water droplets, so the resist film does not act as a sufficient protective film during the development and etching processes, and as a result, there are no traces on the printed wiring board. Defects such as cuts and line thinning, where the drawing line becomes thinner than the installed width, often occur.

実際の工業ラインでは水滴跡防止のため、水洗後エアブ
ロ−を行なったり、搬送装置を工夫するなど種々の対策
がとられているが、完全なものではなく、また設備費用
、運転費用が高くなる等の問題がある。
On actual industrial lines, various measures are taken to prevent water drop marks, such as air blowing after washing and devising conveying devices, but they are not perfect and equipment and operating costs are high. There are other problems.

[問題点を解決するだめの手段1 本発明者らは、前記の問題点を解決するための技術手段
を見い出すべく鋭意研究を重ねた結果、今回、7オトレ
ジスト被膜の形成を2回の電着塗装によって行なうこと
によって前記の問題を兄事に解決できることを見い出し
、本発明を完成するに至りに。
[Means for Solving the Problem 1] As a result of intensive research to find a technical means to solve the above-mentioned problem, the present inventors have now decided to form a 7-otoresist film by two electrodeposition processes. It was discovered that the above problem could be solved by painting, and the present invention was completed.

かくして、本発明に従えば、銅張積層板上にポジ型7オ
トレジスト被膜を電着塗装によって形成し、さらにその
被膜上に水溶性または水分散性樹脂を主成分とする電着
塗料組成物を電着塗装することを特徴とするポジ型フォ
トレジストの形成方法が提供される。
Thus, according to the present invention, a positive type 7 photoresist film is formed on a copper clad laminate by electrodeposition coating, and an electrodeposition coating composition containing a water-soluble or water-dispersible resin as a main component is further applied on the film. Provided is a method for forming a positive photoresist characterized by electrodeposition coating.

本発明において、ポジ型フォトレジスト被膜を形成する
ために用いられるポジ型電着塗料組成物は、従来から当
該分野で既知のものであることができ、例えば、水溶性
もしくは水分散性にするための塩形成基及び感光性基を
有するポリオキシメチレンポリマー、○−ニトロカルビ
ノールエステル、O−ニトロフェニルアセタール、ベン
ツ(もしくはナツト)キノンジアジド単位を含む樹脂な
どを主成分とするものを挙げるとかできる(例えば、特
開昭60−207139号公報、特開昭61−2062
93号公報、特開昭63−6070号公報、特願昭62
−157841号、特願昭62−157842号、特願
昭62−245840号、特願昭62−279288号
など参照)。
In the present invention, the positive electrodeposition coating composition used to form the positive photoresist film can be one conventionally known in the art, for example, to make it water-soluble or water-dispersible. Polyoxymethylene polymers having salt-forming groups and photosensitive groups, ○-nitrocarbinol esters, O-nitrophenyl acetals, resins containing benz (or natu) quinone diazide units, etc. can be mentioned ( For example, JP-A No. 60-207139, JP-A No. 61-2062
Publication No. 93, Japanese Unexamined Patent Publication No. 63-6070, Patent Application No. 1983
(See Japanese Patent Application No. 157841, Japanese Patent Application No. 157842-1982, Japanese Patent Application No. 245840-1982, Japanese Patent Application No. 279288-1988, etc.).

また、電着塗装によって形成されたポジ型フォトレジス
ト被膜の上に、さらに2回目の電着塗装を施すために用
いられる電着塗料組成物としては、ポジ型フォトレジス
ト被膜の形成に用いられたものと同じものであることが
でき、また感光性基を有さない従来が既知の塩形成基含
有樹脂を主成分とするものを使用してもよい。なお、後
者の電着塗料組成物に用いられる樹脂のガラス転移温度
(Tg)は20°C以上、好ましくは30〜120°C
の範囲内にあることが好ましく、さらにTgが前者のポ
ジ型電着塗料組成物に用いられる樹脂のTgより少なく
とも5℃高くなるように設計することが好ましい。電着
塗料組成物に用いられる樹脂のTgを前記のように設計
するとフォトレジスト被膜とポジフィルムと密着露光す
る際、両者が粘着性を示しくっつくという問題を完全に
避けることができるので有利である。
In addition, the electrodeposition coating composition used for applying a second electrodeposition coating on the positive photoresist coating formed by electrodeposition coating includes the electrodeposition coating composition used for forming the positive photoresist coating. It is also possible to use a resin whose main component is a conventionally known salt-forming group-containing resin that does not have a photosensitive group. The glass transition temperature (Tg) of the resin used in the latter electrodeposition coating composition is 20°C or higher, preferably 30 to 120°C.
It is preferable that the Tg is within the range of , and more preferably designed so that the Tg is at least 5° C. higher than the Tg of the resin used in the former positive electrodeposition coating composition. Designing the Tg of the resin used in the electrodeposition coating composition as described above is advantageous because it is possible to completely avoid the problem of the photoresist film and positive film exhibiting stickiness and sticking together when they are exposed in close contact with each other. .

本発明において用いられる電着塗料組成物は、アニオン
型、カチオン型いずれのタイプのものであっても構わな
いが、一般には、1回目の電着塗装をアニオン型電着塗
料組成物を用いて行なえば、2回目の電着塗装もアニオ
ン型電着塗料組成物を用いて行ない、また前者1回目の
電着塗装をカチオン型電着塗料組成物を用いて行なえば
、2回目の電着塗装もカチオン型電着塗料組成物を用い
て行なうのが好都合である。
The electrodeposition coating composition used in the present invention may be either anionic or cationic, but generally the first electrodeposition coating is performed using an anionic electrodeposition coating composition. If this is done, the second electrodeposition coating is also carried out using an anionic electrodeposition coating composition, and if the former first electrodeposition coating is carried out using a cationic electrodeposition coating composition, the second electrodeposition coating is performed using a cationic electrodeposition coating composition. It is also convenient to carry out this process using a cationic electrodeposition coating composition.

本発明のポジ型フォトレジスト被膜の形成及びプリント
配線基板の製造は通常法のようにして行なわれる。
Formation of the positive photoresist coating of the present invention and manufacture of the printed wiring board are carried out in a conventional manner.

ポジ型電着塗料組成物からなる電着塗料浴をpH5〜l
O1浴濃度(固形分)3〜30重量%、好ましくは5〜
15重量%、及び浴温度15〜40°C1好適には15
〜30℃に管理する。ついで、この電着塗料浴に、銅箔
を張った絶縁体に銅メツキを施してなるプリント配線基
板を、電着塗料がアニオン型の場合には陽極として、ま
たカチオン型の場合には陰極として浸漬し、20〜40
0Vの直流電流を通電することによって電着塗装を行な
う。通電時間は通常30秒〜5分が適当であり、膜厚は
乾燥膜厚で一般に2〜50μm1好適には3〜20μm
の範囲内であることが望ましい。
An electrodeposition paint bath consisting of a positive electrodeposition paint composition has a pH of 5 to l.
O1 bath concentration (solid content) 3-30% by weight, preferably 5-30% by weight
15% by weight, and a bath temperature of 15-40°C, preferably 15
Control at ~30°C. Next, a printed wiring board made of an insulator covered with copper foil and plated with copper is placed in this electrodeposition paint bath as an anode if the electrodeposition paint is an anionic type, or as a cathode if the electrodeposition paint is a cationic type. Soak, 20-40
Electrodeposition coating is performed by applying a 0V direct current. The appropriate current application time is usually 30 seconds to 5 minutes, and the dry film thickness is generally 2 to 50 μm, preferably 3 to 20 μm.
It is desirable that it be within the range of .

電着塗装後、電着浴から被塗物を引き上げ水洗したのち
、そのまま、または要すればエアープロ、熱風などによ
り水切乾燥する。
After electrodeposition coating, the object to be coated is taken out of the electrodeposition bath, washed with water, and then dried as is or, if necessary, drained and dried using an air cleaner, hot air, or the like.

ついで、この被塗物を水溶性または水分散性樹脂を主成
分とする電着組成物を用いて前記と同じ条件で管理され
た電着塗装浴中に浸漬し、前記と同じ条件で2回目の電
着塗装を行なう。但し、電着時間は通常10秒から3分
間の範囲内が好ましい。電着浴から被塗物を引き上げ水
洗したのち、そのまま、または要すればエアーブロー、
熱風などにより水切乾燥する。かくして、基板上に本発
明によるポジ型フォトレジストが形成される。
Next, this object to be coated is immersed in an electrodeposition coating bath controlled under the same conditions as above using an electrodeposition composition containing a water-soluble or water-dispersible resin as a main component, and a second coat is applied under the same conditions as above. Perform electrodeposition coating. However, the electrodeposition time is usually preferably within the range of 10 seconds to 3 minutes. After removing the object to be coated from the electrodeposition bath and washing it with water, it can be left as is, or if necessary, it can be blown with air.
Drain and dry using hot air. Thus, a positive photoresist according to the present invention is formed on the substrate.

ついで、形成されたポジ型フォトレジスト被膜面にパタ
ーンマスク(写真ポジ)を重ねて導体回路(回路パター
ン)以外の不要部分のみに紫外線などの活性光線を照射
露光する。
Next, a pattern mask (photo positive) is placed on the surface of the formed positive photoresist film, and only unnecessary parts other than the conductor circuit (circuit pattern) are exposed to active light such as ultraviolet rays.

その後、該被塗物をそのまま又は表面温度lOO°O−
180°C1さらに好ましくは120℃〜160°Cの
温度で1秒〜30分間加熱処理を行ったのち、露光部分
をアルカリ水溶液などの現像液で現像処理することによ
り、高解像度の回路画像が形成される。
Thereafter, the object to be coated may be left as is or at a surface temperature of lOO°O-
After performing heat treatment at a temperature of 180°C1, more preferably 120°C to 160°C, for 1 second to 30 minutes, a high resolution circuit image is formed by developing the exposed area with a developer such as an alkaline aqueous solution. be done.

かくして出来上ったポジ型画像は最小線巾40μm(ラ
インアンドスペース)の高解像度が得られ Iこ 。
The positive image thus created has a high resolution with a minimum line width of 40 μm (line and space).

本発明において露光に使用する活性光線は3000〜4
500人の波長を有する光線がよい。該光線を含む光源
としては例えば太陽光、水銀灯、クセノンランプ、アー
ク灯などを用いることができる。活性光線の照射は通常
1秒〜20分の範囲で行なわれる。
In the present invention, the active light rays used for exposure are 3000 to 4
A light beam with a wavelength of 500 people is good. As a light source containing the light beam, for example, sunlight, a mercury lamp, a xenon lamp, an arc lamp, etc. can be used. Irradiation with actinic rays is usually carried out for a period of 1 second to 20 minutes.

また、加熱処理は、特に限定されるものではなく、従来
から既知の手段を用いて行なうことができ、例えば熱風
乾燥、赤外線乾燥、誘導加熱乾燥、マイクロウェーブに
よる乾燥等を単独もしくは適宜組合せて用いて行なうこ
とができる。
Furthermore, the heat treatment is not particularly limited and can be carried out using conventionally known means, such as hot air drying, infrared drying, induction heating drying, microwave drying, etc. alone or in appropriate combinations. It can be done.

また、現像処理は、アニオン型電着塗料を用いた場合に
は、塗膜面上にアルカリ水を吹きつけることIこよって
塗膜の感光部分を洗い流すことによって行なうことがで
きる。アルカリ水は通常pH8〜14のカセイソーダ、
炭酸ソーダ、カセイカリ、アンモニア水、メタケイ酸ソ
ーダ、有機アミン水溶液など塗膜中に存する遊離のカル
ボン酸と中和して水溶性を与えることのできるものが使
用可能である。他方、カチオン型電着塗料を用いた場合
には、現像処理はpH5以下の酸水溶液を用いて同様に
行なうことができる。
Further, when an anionic electrodeposition paint is used, the development treatment can be carried out by spraying alkaline water onto the surface of the paint film, thereby washing away the exposed areas of the paint film. Alkaline water is usually made of caustic soda with a pH of 8 to 14.
It is possible to use substances that can neutralize free carboxylic acids present in the coating film to impart water solubility, such as soda carbonate, caustic potash, aqueous ammonia, sodium metasilicate, and aqueous organic amine solutions. On the other hand, when a cationic electrodeposition coating material is used, development treatment can be carried out in the same manner using an acid aqueous solution having a pH of 5 or less.

ついで、現像処理によって基板上に露出しな銅箔部分(
非回路部分)は例えば、塩化第2鉄溶液等を用いた通常
のエツチング処理によって除去することができる。しか
る後、回路パターン上の未露光miをエチルセロソルブ
、エチルセロソルブアセテートなどのセロソルブ系溶剤
;トルエン、キシレンなどの芳香族炭化水素系溶剤;メ
チルエチルケトン、メチルイソブチルケトンなどのケト
ン系溶剤;酢酸エチル、酢酸ブチルなどの酢酸エステル
系溶剤ニトリクロルエチレンなどのクロル系溶剤または
3〜10%のカセイソーダ、カセイカリなどの水溶液(
カチオン型電着塗料の場合は酸水溶液)によって溶解除
去し基板上にプリント回路を形成することができる。
Next, the exposed copper foil portion (
Non-circuit portions) can be removed, for example, by a conventional etching process using a ferric chloride solution or the like. After that, the unexposed mi on the circuit pattern is treated with cellosolve solvents such as ethyl cellosolve and ethyl cellosolve acetate; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ethyl acetate and acetic acid. Acetate-based solvents such as butyl, chlorine-based solvents such as nitrichloroethylene, or 3-10% aqueous solutions such as caustic soda and caustic potash (
In the case of cationic electrodeposition paint, it can be dissolved and removed using an acid aqueous solution to form a printed circuit on the substrate.

[作用及び効果j 本発明のようにポジ型フォトレジスト被膜を2回の電着
塗装によって形成することにより、水洗時の水滴跡に起
因する画像欠陥を全く生じないプリント配線基板が得ら
れる作用については正確1こは明らかになっていないが
、2回目の電着塗装を行なう際に発生する熱により、1
回目の電着塗装によって形成されたポジ型)オドレジス
ト被膜が再流動し、水滴跡を修復するためと推測される
[Operations and Effects j Regarding the operation of obtaining a printed wiring board that does not produce any image defects caused by water drop marks during washing by forming a positive photoresist film by two electrodeposition coatings as in the present invention. It is not clear exactly 1, but due to the heat generated during the second electrodeposition coating, the 1
It is assumed that this is because the positive type odresist film formed by the second electrodeposition coating reflows and repairs the water drop marks.

しかして、本発明の方法に基づいてポジ型フォトレジス
ト被膜を形成すると、工業ラインで太きな問題となるレ
ジスト被膜上に生じた水滴跡に起因するプリント配線基
板の欠陥を完全に解決することができるという効果があ
る。
Therefore, by forming a positive photoresist film based on the method of the present invention, defects in printed wiring boards caused by water droplets formed on the resist film, which are a serious problem in industrial lines, can be completely solved. It has the effect of being able to.

また、本発明の方法により形成されるレジスト被膜の露
光部は、アルカリ水溶液等の現像液で短時間で現像する
ことができ、未露光部は耐エツチング性に優れ、且つ強
アルカリ等の剥離剤により短時間で容易に溶解除去する
ことができる。
Furthermore, the exposed areas of the resist film formed by the method of the present invention can be developed in a short time with a developer such as an alkaline aqueous solution, and the unexposed areas have excellent etching resistance and can be developed using a strong alkali or other remover. It can be easily dissolved and removed in a short time.

[実施例] 次に、本発明を実施例に基づいてさらに具体的に説明す
る。なお、実施例中r部」及び1%」はそれぞれ「重量
部」及び「重量%」を表す。
[Examples] Next, the present invention will be described in more detail based on Examples. In the examples, "part" and "1%" represent "part by weight" and "% by weight," respectively.

電着塗装浴の製造例1 4つロフラスコにジエチレングリコールジメチルエーテ
ル290部を入れ、撹拌しながら110℃に昇温しj;
後、n−ブチルメタアクリレート202部、アクリル酸
24部、m−インプロペニル−σ σ−ジメチルベンジ
ルイソシア不−ト92部及びアゾビスブチロバレロニト
リル20部の混合溶液を3時間かけて滴下し、1時間保
った後、メチルイソブチルケトン14部及びアゾビスブ
チロバレロニトリル3部の混合溶液を1時間かけて滴下
し、さらに2時間保った。その後、50℃に温度を下げ
下記の水酸基含有オルトキノンジアジド化合物142部
及びジブチルチンジアセテート4゜6部を添加し、3時
間保った後、赤外(TR,)スペクトルの250cm−
’付近のイソシアネート基の吸収が無くなったのを確認
し、ポジ型感光性樹脂(酸価40.7;粘度E;分子!
7,000)を得た(粘度はガードナー25°Cによる
。以下同様)。
Production Example 1 of Electrodeposition Coating Bath 290 parts of diethylene glycol dimethyl ether was placed in a four-bottle flask, and the temperature was raised to 110°C while stirring;
After that, a mixed solution of 202 parts of n-butyl methacrylate, 24 parts of acrylic acid, 92 parts of m-impropenyl-σσ-dimethylbenzylisocyanate, and 20 parts of azobisbutyloberonitrile was added dropwise over 3 hours. After the mixture was kept for 1 hour, a mixed solution of 14 parts of methyl isobutyl ketone and 3 parts of azobisbutyloberonitrile was added dropwise over 1 hour, and the mixture was kept for an additional 2 hours. Thereafter, the temperature was lowered to 50°C, 142 parts of the following hydroxyl group-containing orthoquinone diazide compound and 4.6 parts of dibutyltin diacetate were added, and after keeping it for 3 hours, the infrared (TR,) spectrum of 250 cm-
' Confirm that the absorption of the isocyanate group in the vicinity has disappeared, and confirm that the positive photosensitive resin (acid value 40.7; viscosity E; molecule!
7,000) (viscosity is based on Gardner at 25°C. The same applies hereinafter).

次いでこの感光性樹脂溶液にトリエチルアミン33部を
加えて十分に中和した後、固形分が10%になるように
脱イオン水を加えて電着塗装浴(pH08,0)とした
Next, 33 parts of triethylamine was added to this photosensitive resin solution to sufficiently neutralize it, and then deionized water was added so that the solid content was 10% to prepare an electrodeposition coating bath (pH 08.0).

水酸基含有オルトキノンジアジド化合物の製造4つロフ
ラスコにオルトナフトキノンジアジドスルホン酸クロラ
イド269部及びジオキサン1345部を入れ、室温で
撹拌しなからN−メチルエタノールアミン150部を1
時間で滴下した。
Preparation of hydroxyl group-containing orthoquinonediazide compound 269 parts of orthonaphthoquinonediazide sulfonic acid chloride and 1345 parts of dioxane were placed in a four-sided flask, and while stirring at room temperature, 150 parts of N-methylethanolamine was added in 1 cup.
It dripped in time.

滴下終了後、約3時間撹拌を継続し、IRスベクトルの
3300cm−’付近のアミノ基の吸収が無くなるのを
確認した後、反応を終了した。
After the dropwise addition was completed, stirring was continued for about 3 hours, and after confirming that the absorption of amino groups around 3300 cm-' of the IR spectrum disappeared, the reaction was terminated.

次にこの溶液を脱イオン水中に入れ、反応中発生した塩
酸をトラップした4級アミンを除去した。
This solution was then placed in deionized water to remove the quaternary amine that trapped the hydrochloric acid generated during the reaction.

次いで酢酸イソブチルで生成物を抽出した後、溶媒を留
去し、減圧乾燥器に入れ乾燥し、水酸基含有オルトキノ
ンジアジド化合物を得た。
Next, the product was extracted with isobutyl acetate, the solvent was distilled off, and the product was dried in a vacuum dryer to obtain a hydroxyl group-containing orthoquinonediazide compound.

電着塗装浴の製造例2 4つロフラスコにジエチレングリコールジメチルエーテ
ル290部を入れ、撹拌しながら60°Cに昇温した後
、n−ブチルアクリレート185部、アクリル酸41部
、下記の不飽和化合物233部及びアンビスメトキシジ
メチルバレロニトリル28部の混合溶液を3時間かけて
滴下し、1時間保った後、ジエチレングリコールジメチ
ルエーテル15部及びアンビスメトキシジメチルバレロ
ニトリル3部の混合溶液を1時間かけて滴下し、さらに
2時間保ちポジ型感光性樹脂(酸価69.6部粘度N;
分子量7,000)を得た。
Production Example 2 of Electrodeposition Coating Bath 290 parts of diethylene glycol dimethyl ether was placed in a four-loaf flask, and the temperature was raised to 60°C with stirring, followed by 185 parts of n-butyl acrylate, 41 parts of acrylic acid, and 233 parts of the following unsaturated compound. A mixed solution of 28 parts of ambismethoxydimethylvaleronitrile and 28 parts of ambismethoxydimethylvaleronitrile was added dropwise over 3 hours, kept for 1 hour, and a mixed solution of 15 parts of diethylene glycol dimethyl ether and 3 parts of ambismethoxydimethylvaleronitrile was added dropwise over 1 hour. Keep it for another 2 hours.Positive photosensitive resin (acid value: 69.6 parts, viscosity: N;
A molecular weight of 7,000) was obtained.

次いでこの感光性樹脂溶液にトリエチルアミン57部を
加えて、十分に中和した後、固形分が10%になるよう
に脱イオン水を加えて電着塗装浴(pH−8,2)とし
た。
Next, 57 parts of triethylamine was added to this photosensitive resin solution to sufficiently neutralize it, and then deionized water was added so that the solid content was 10% to prepare an electrodeposition coating bath (pH-8.2).

不飽和化合物の製造 4つロフラスコにメチルイソブチルケトン1535部及
び水酸基含有オルトキノンジアジド化合物307部入れ
、50℃に昇温した後、m−イソプロペニル−α、σ−
ジメチルベンジルイソシアネート201部を2時間かけ
て滴下し、そのまま8時間保ち不飽和化合物を得た。
Production of unsaturated compounds 1535 parts of methyl isobutyl ketone and 307 parts of a hydroxyl group-containing orthoquinonediazide compound were placed in a four-bottle flask, and after heating to 50°C, m-isopropenyl-α,σ-
201 parts of dimethylbenzyl isocyanate was added dropwise over 2 hours, and the mixture was kept as it was for 8 hours to obtain an unsaturated compound.

電着塗装浴の製造例3 4つロフラスコにエチレングリコールモノブチルエーテ
ル450部を仕込み、撹拌しなからIIOoCに昇温し
た後、メチルメタアクリレート350部、スチレン50
部、エチルメタアクリレ−1・53部、アクリル酸47
部及び(−ブチルパーオキシオクトエート30部の混合
液を3時間かけて滴下し、1時間110℃に保った後、
L−ブチルパーオキシオクトエート3部及びエチレング
リコールモノブチルエーテル50部の混合液を1時間か
けて滴下し、さらに2時間110°Cに保って高酸価ア
クリル樹脂溶液(樹脂酸価73;粘度U;分子量7,5
00)を得た。
Production Example 3 of Electrodeposition Coating Bath 450 parts of ethylene glycol monobutyl ether was charged in a four-bottle flask, and heated to IIOoC without stirring, followed by 350 parts of methyl methacrylate and 50 parts of styrene.
parts, 1.53 parts of ethyl methacrylate, 47 parts of acrylic acid
A mixture of 1 part and 30 parts of (-butylperoxyoctoate) was added dropwise over 3 hours, and after keeping at 110°C for 1 hour,
A mixed solution of 3 parts of L-butyl peroxyoctoate and 50 parts of ethylene glycol monobutyl ether was added dropwise over 1 hour, and kept at 110°C for another 2 hours to form a high acid value acrylic resin solution (resin acid value: 73; viscosity: U). ;Molecular weight 7.5
00) was obtained.

次いでこの溶液1000部にベンジルアルコール50部
及びトリエチルアミン36部を加えて十分中和した後、
固形分が10%になるように脱イオ〉・水を加えて電着
塗装浴(pH7,6)とした。
Next, 50 parts of benzyl alcohol and 36 parts of triethylamine were added to 1000 parts of this solution to sufficiently neutralize it, and then
Deionized water was added so that the solid content was 10% to prepare an electrodeposition coating bath (pH 7.6).

実施例1 製造例1で得た電着塗装浴にスルーホールのあるプリン
ト配線用銅張積層板(240X170X1.5mm)を
陽極として浸漬し浴温25°Cで100Vの直流電流を
3分間通電して電着塗装した。
Example 1 A copper-clad laminate for printed wiring (240 x 170 x 1.5 mm) with through holes was immersed as an anode in the electrodeposition coating bath obtained in Production Example 1, and a DC current of 100 V was applied for 3 minutes at a bath temperature of 25°C. It was electrodeposited.

得られた塗膜を水圧1 、5 kg/ Cm”のンヤワ
ーで10秒間水洗し、50°Cで5分間乾燥した後、塗
膜を観察し水滴跡部をマークした。
The resulting coating film was washed with water at a water pressure of 1.5 kg/cm'' for 10 seconds, dried at 50°C for 5 minutes, and then the coating film was observed and water drop traces were marked.

かくして得られた銅張積層板を陽極として、25°Cに
調節した製造例3で得た電着塗装浴に浸漬し、ll0V
の直流電流を3分間通電して2回目の電着塗装を行ない
、塗膜を上記と同様にして水洗及び乾燥した。
The copper-clad laminate thus obtained was used as an anode and immersed in the electrodeposition coating bath obtained in Production Example 3, which was adjusted to 25°C.
A second electrodeposition coating was carried out by applying a direct current of 3 minutes for 3 minutes, and the coating film was washed with water and dried in the same manner as above.

次いで、ポジフィルムを真空装置でこの電着塗面に密着
させ、3KWの超高圧水銀灯を用いて、両面とも150
mJ /am”ずつ照射した。次に露光部を1%メタ硅
酸ソーダ水溶液で洗い出し現像を行ない、水洗後(塩化
第2鉄溶液)で銅箔をエツチング処理して除去し、つい
で未露光部を苛性ソーダで取り除いてプリント印刷回路
板を得た。
Next, a positive film was brought into close contact with the electrodeposited surface using a vacuum device, and a 3KW ultra-high pressure mercury lamp was used to heat both sides to 150%
mJ/am". Next, the exposed areas were washed with a 1% sodium metasilicate aqueous solution and developed. After washing with water (ferric chloride solution), the copper foil was etched and removed, and then the unexposed areas were was removed with caustic soda to obtain a printed circuit board.

実施例2 製造例2の電着塗装浴を使用する以外、実施例1と同様
にして、銅張基板に1回目の電着塗装を行ない、水洗、
乾燥した。
Example 2 A first electrodeposition coating was performed on a copper-clad substrate in the same manner as in Example 1 except that the electrodeposition coating bath of Production Example 2 was used, followed by washing with water,
Dry.

ついで、同じ電着塗装浴を用いて130Vの電圧を用い
る以外実施例1と同様にして2回目の電着塗装を行ない
、水洗、乾燥した。かくして得られた基板を用いて実施
例1と同様の露光工程以下の工程を行なってプリント印
刷回路板を得た。
Then, a second electrodeposition coating was performed in the same manner as in Example 1 except that the same electrodeposition coating bath was used and a voltage of 130 V was used, followed by washing and drying. Using the thus obtained substrate, the same steps as in Example 1 including the exposure step were performed to obtain a printed circuit board.

比較例1 実施例1において2回目の電着塗装を行なわない以外は
同様にしてプリント印刷回路板を得た。
Comparative Example 1 A printed circuit board was obtained in the same manner as in Example 1 except that the second electrodeposition coating was not performed.

比較例2 実施例2において2回目の電着塗装を行なわなイ以外は
同様にしてプリトン印刷回路板を得た。
Comparative Example 2 A printed circuit board was obtained in the same manner as in Example 2, except that the second electrodeposition coating was not performed.

上記実施例及び比較例で得たプリント印刷回路板の性能
を後記表−1に示す。
The performance of the printed circuit boards obtained in the above Examples and Comparative Examples is shown in Table 1 below.

性能評価は、基板上に事前にマークした水滴跡部におけ
る画線の切れ、欠は等の発生する比率(水滴跡に起因す
る画線異常数/水滴跡数×100)によって行なった。
Performance evaluation was performed based on the ratio of occurrence of image breaks, defects, etc. in water droplet traces previously marked on the substrate (number of image abnormalities due to water droplet traces/number of waterdrop traces x 100).

各側において印刷回路板各20枚を試験に供した。Twenty printed circuit boards were tested on each side.

表−1Table-1

Claims (1)

【特許請求の範囲】[Claims]  銅張積層板上にポジ型フォトレジスト被膜を電着塗装
によって形成し、さらにその被膜上に水溶性または水分
散性樹脂を主成分とする電着塗料組成物を電着塗装する
ことを特徴とするポジ型フォトレジストの形成方法。
A positive photoresist film is formed on a copper-clad laminate by electrodeposition, and an electrodeposition coating composition containing a water-soluble or water-dispersible resin as a main component is further electrodeposited onto the film. A method for forming a positive photoresist.
JP18703188A 1988-03-28 1988-07-28 Method of forming positive photoresist Expired - Lifetime JPH0721637B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18703188A JPH0721637B2 (en) 1988-07-28 1988-07-28 Method of forming positive photoresist
AU31735/89A AU613463B2 (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
KR1019890003940A KR940008381B1 (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
CA 594851 CA1337864C (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
DE1989607101 DE68907101T2 (en) 1988-03-28 1989-03-28 Electroplating process for photoresists on printed circuits.
EP19890105457 EP0335330B1 (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
US07/329,636 US4898656A (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18703188A JPH0721637B2 (en) 1988-07-28 1988-07-28 Method of forming positive photoresist

Publications (2)

Publication Number Publication Date
JPH0239050A true JPH0239050A (en) 1990-02-08
JPH0721637B2 JPH0721637B2 (en) 1995-03-08

Family

ID=16198979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18703188A Expired - Lifetime JPH0721637B2 (en) 1988-03-28 1988-07-28 Method of forming positive photoresist

Country Status (1)

Country Link
JP (1) JPH0721637B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474666A (en) * 1992-11-25 1995-12-12 Nippon Paint Co., Ltd. Method of treating an electrodeposited photosensitive resist to reduce water spotting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474666A (en) * 1992-11-25 1995-12-12 Nippon Paint Co., Ltd. Method of treating an electrodeposited photosensitive resist to reduce water spotting

Also Published As

Publication number Publication date
JPH0721637B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
KR100299264B1 (en) Photopolymer composition
JPH0347493B2 (en)
KR940008381B1 (en) Electrodeposition coating process of photoresist for printed circuit board
JP2749646B2 (en) Positive photosensitive electrodeposition coating composition and method for producing circuit board using the same
TW201602188A (en) Resin insulation layer formation method, resin insulation layer and printed circuit board
US5112440A (en) Method for making metallic patterns
US4259421A (en) Improving etch-resistance of casein-based photoresist pattern
JPH0239050A (en) Method for forming positive type photoresist
JPH04146687A (en) Manufacture of solder masked circuit board
JPH05197156A (en) Method and apparatus for forming thin paint film which can be made to be optical picture on base material on which metal layer is provided
JP2865147B2 (en) Positive photosensitive electrodeposition coating composition
CA1333578C (en) Production of metallic patterns
JP3583455B2 (en) Circuit board manufacturing method
JPS62262855A (en) Electrodeposition paint composition for photoresist of printed circuit
JPH07115048A (en) Peeling method
DE3246403A1 (en) METHOD FOR DEVELOPING RELIEF STRUCTURES BASED ON RADIATION-CROSSLINKED POLYMER PRE-STAGES OF HIGH-HEAT-RESISTANT POLYMERS
JPS636070A (en) Positive photosensitive electrodeposition coating
JP2000156556A (en) Method for forming resist layer on substrate having through hole part and production of printed wiring board
EP0599308B1 (en) Surface treatment method of electrodeposition type photosensitive resin layer
US5236810A (en) Process for preparing printed-circuit board
JPH0636466B2 (en) Positive image forming method
JP4385241B2 (en) Aqueous developer for resist film pattern formation
JPH02302092A (en) Manufacture of printed wiring board
JP2916939B2 (en) Manufacturing method of printed wiring board
JPH0465185A (en) Coating formation method