JPH0238493Y2 - - Google Patents

Info

Publication number
JPH0238493Y2
JPH0238493Y2 JP5482980U JP5482980U JPH0238493Y2 JP H0238493 Y2 JPH0238493 Y2 JP H0238493Y2 JP 5482980 U JP5482980 U JP 5482980U JP 5482980 U JP5482980 U JP 5482980U JP H0238493 Y2 JPH0238493 Y2 JP H0238493Y2
Authority
JP
Japan
Prior art keywords
electrode
group
common ground
electrodes
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5482980U
Other languages
Japanese (ja)
Other versions
JPS56157830U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5482980U priority Critical patent/JPH0238493Y2/ja
Publication of JPS56157830U publication Critical patent/JPS56157830U/ja
Application granted granted Critical
Publication of JPH0238493Y2 publication Critical patent/JPH0238493Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【考案の詳細な説明】 本考案は弾性表面波用電気機械変換器に係り、
特に二相型一方向の弾性表面波用電気機械変換器
の重み付け構造に関する。
[Detailed description of the invention] The invention relates to an electromechanical transducer for surface acoustic waves.
In particular, the present invention relates to a weighting structure for a two-phase unidirectional surface acoustic wave electromechanical transducer.

弾性表面波を用いた遅延線、フイルタ等は現在
通信機器、テレビジヨンセツト等に組み入れられ
ており、数10MHzから数GHz帯の周波数にわたり
幅広い応用が考えられている。しかしながら実際
に使用されている弾性表面波素子の特性は挿入損
失が大きく、又帯域内リツプルが大きい問題点が
あつた。
Delay lines, filters, etc. using surface acoustic waves are currently being incorporated into communication equipment, television sets, etc., and a wide range of applications are being considered over frequencies from several tens of MHz to several GHz. However, the characteristics of the surface acoustic wave elements actually used are that they have a large insertion loss and a large in-band ripple.

このような問題点を改善するため、最近二相型
一方向性電極変換器が開発されている。この二相
型一方向性電極変換器によれば挿入損失の低減と
帯域内リツプルの低減において相当の効果を奏す
ることができ極めて有効である。
In order to solve these problems, two-phase unidirectional electrode transducers have recently been developed. This two-phase unidirectional electrode converter is extremely effective in reducing insertion loss and in-band ripple.

この二相型一方向の弾性表面波用電気機械変換
器は、基準信号を与えられる第1の電極と、基準
信号と位相が90゜異なる信号を与えられる第2の
電極と、共通接地電極とを1グループとして有
し、複数のグループを各第1、第2の電極がすだ
れ状電極を形成するように接続すると共に、各グ
ループの第1及び第2の電極から発生する表面波
が進行方向に同相で、反対方向に逆相となるよう
にジグザグ状の前記共通接地電極の幅を決定して
配設している。
This two-phase unidirectional surface acoustic wave electromechanical transducer has a first electrode to which a reference signal is applied, a second electrode to which a signal whose phase differs from the reference signal by 90° is applied, and a common ground electrode. The plurality of groups are connected so that the first and second electrodes form interdigital electrodes, and the surface waves generated from the first and second electrodes of each group are directed in the traveling direction. The width of the zigzag-shaped common ground electrode is determined and arranged so that the common ground electrodes are in phase in the same direction and out of phase in the opposite direction.

第1図はかゝる従来の二相型一方向の弾性表面
波用電気機械変換器の正面図である。図中1はニ
オブ酸リチウム(LiNbO3)などの圧電結晶から
なる圧電基板で、該圧電基板上には電極指群2が
配設されている。これら電極指群2は電極指数N
本の基準信号を与える0゜側すだれ状電極2aと、
それより90゜位相の異なる信号を与えるための同
一電極指数の90゜側すだれ状電極2bと、0゜側す
だれ状電極及び90゜側すだれ状電極を構成するN
本の各電極指を覆うようにジグザグ状に配設され
た共通接地電極2cとを有している。上記電極指
群2は、共通接地電極2cを挟んで形成される0゜
側すだれ状電極2aから90゜側すだれ状電極2b
までの中心間の距離lを、 l=λ0/4・{2(N+1)+1} として、その両側の共通接地電極2cの中央間に
配置された各電極を1グループとし、これら複数
のグループG1,G2,G3…を接続して構成されて
いる。但し、λ0は波長、Nはそれぞれ0゜側、90゜
側のすだれ状電極の本数(第1図の例では、N=
1)である。そして0゜側から90゜側のすだれ状電
極までの間に挟まれた共通接地電極2cの幅を
λ0/2、それ以外の両側に位置する共通接地電極
2cの幅をλ0とした場合が図示されている。そし
て、1グループ毎に交叉指長を変えて、各グルー
プ毎に励振される弾性表面波のビーム幅を変えて
重み付けする(アポダイズ型の重み付けという)
と共に、各グループG1,G2…の0゜側電極指及び
90゜側電極指から発生する表面波がその進行方向
に同相で、反対方向に逆相となるように共通接地
電極2cの幅を考慮している。
FIG. 1 is a front view of such a conventional two-phase unidirectional surface acoustic wave electromechanical transducer. In the figure, reference numeral 1 denotes a piezoelectric substrate made of piezoelectric crystal such as lithium niobate (LiNbO 3 ), and a group of electrode fingers 2 are disposed on the piezoelectric substrate. These electrode finger group 2 have an electrode index N
a 0° side interdigital electrode 2a that provides a reference signal;
A 90° side interdigital electrode 2b with the same electrode index for giving signals with a phase difference of 90°, a 0° side interdigital electrode, and a 90° side interdigital electrode N
It has a common ground electrode 2c arranged in a zigzag pattern so as to cover each electrode finger of the book. The electrode finger group 2 is formed from a 0° side interdigital electrode 2a to a 90° side interdigital electrode 2b formed on both sides of the common ground electrode 2c.
The distance l between the centers of the two electrodes is defined as l=λ 0 /4·{2(N+1)+1}, and each electrode placed between the centers of the common ground electrodes 2c on both sides is defined as one group, and these multiple groups It is constructed by connecting G 1 , G 2 , G 3 . However, λ 0 is the wavelength, and N is the number of interdigital electrodes on the 0° side and 90° side (in the example in Figure 1, N =
1). If the width of the common ground electrode 2c sandwiched between the 0° side and the interdigital electrode on the 90° side is λ 0 /2, and the width of the common ground electrode 2c located on the other sides is λ 0 . is illustrated. Then, the length of the intersecting fingers is changed for each group, and the beam width of the surface acoustic wave excited for each group is changed and weighted (referred to as apodized weighting).
In addition, the 0° side electrode fingers of each group G 1 , G 2 ...
The width of the common ground electrode 2c is taken into consideration so that the surface waves generated from the electrode fingers on the 90° side are in phase in the direction of propagation and out of phase in the opposite direction.

さて、かゝるアポダイズ型の重み付けをした従
来の二相型一方向性電極変換器においては、各グ
ループの0゜側電極指と90゜側電極指がそれぞれ共
通接地電極2cにより覆われる長さl1i,l2i(i=
1,2…)が等しくないため、換言すれば各グル
ープの0゜側電極指と90゜側電極指で消費される音
響パワーが等しくないため表面波の方向性が劣化
して損失が増大すると共に、通過帯域内のリツプ
ルの増大を招来していた。このため、二相型一方
向性電極変換器は通常の変換器に比らべ挿入損失
の低減並びに通過帯域内リツプルの低減が相当図
れるものゝ、その効果が十分でなかつた。
Now, in the conventional two-phase type unidirectional electrode transducer with such apodized weighting, the length of each group's 0° side electrode fingers and 90° side electrode fingers covered by the common ground electrode 2c is l 1 i, l 2 i (i=
1, 2...) are not equal, in other words, the acoustic power consumed by the 0° side electrode finger and the 90° side electrode finger of each group is not equal, so the directionality of the surface wave deteriorates and the loss increases. At the same time, ripples within the passband also increase. Therefore, although the two-phase unidirectional electrode transducer can significantly reduce insertion loss and ripple within the passband compared to a normal transducer, its effects have not been sufficient.

従つて、本考案はアポダイズ型の重み付け等種
種の重み付けにおいて、各グループの0゜側電極指
と90゜側電極指において消費される音響パワーを
等しくして、損失、通過帯域内リツプルを低減す
ることを目的とする。
Therefore, in various types of weighting such as apodized weighting, the present invention equalizes the acoustic power consumed at the 0° side electrode finger and the 90° side electrode finger of each group, thereby reducing loss and ripple within the passband. The purpose is to

以下、本考案の実施例を図面に従つて詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本考案の一実施例に係る弾性表面波用
電気機械変換器の正面図で、アポダイズ型の重み
付けを施した実施例で、第1図の従来例と同一部
分には同一符号を付しその詳細な説明は省略す
る。
Fig. 2 is a front view of an electromechanical transducer for surface acoustic waves according to an embodiment of the present invention, which is an embodiment in which apodized weighting is applied. A detailed explanation thereof will be omitted.

第1図の従来例と異なる点は、共通接地電極2
cの一部に突片21a〜21eを設け、該共通接
地電極により覆われる各グループの0゜側電極指の
長さl1i(i=1,2…)と90゜側電極指の長さl2i
(i=1,2,…)を互いに等しくした点である。
これにより各グループの0゜側電極指で消費される
音響パワーと90゜側電極指で消費される音響パワ
ーとが互いに等しくなると共に、表面波の方向性
の劣化がなくなり、損失の低減及び通過帯域内で
のリツプルの低減が図れる。
The difference from the conventional example shown in Fig. 1 is that the common ground electrode 2
Protrusions 21a to 21e are provided on a part of c, and the length of the 0° side electrode finger l 1 i (i = 1, 2...) and the length of the 90° side electrode finger of each group covered by the common ground electrode is determined. s l 2 i
This is the point where (i=1, 2,...) are made equal to each other.
This makes the acoustic power consumed by the 0° side electrode finger and the acoustic power consumed by the 90° side electrode finger of each group equal to each other, eliminates deterioration of the directionality of surface waves, reduces loss, and improves transmission. Ripples within the band can be reduced.

第3図はアポダイズ型の重み付けを施した本考
案の別の実施例で、第2図と同一部分には同一符
号を付している。第3図の実施例において、第2
図と異なる点はアポダイズ型の重み付け法を異な
らせた点だけであり、突片21a〜21eを設
け、共通接地電極2cにより覆われる各グループ
の0゜側電極指の長さl1i(i=1,2…)と90゜側電
極指の長さl2i(i=1,2,…)を互いに等しく
している点は同一である。
FIG. 3 shows another embodiment of the present invention in which apodized weighting is applied, and the same parts as in FIG. 2 are given the same reference numerals. In the embodiment of FIG.
The only difference from the figure is that the weighting method of the apodization type is different, and the protrusions 21a to 21e are provided, and the length of the 0° side electrode finger of each group covered by the common ground electrode 2c is l 1 i (i =1, 2...) and the length l 2 i (i=1, 2,...) of the 90° side electrode fingers are the same.

第4図、第5図、第6図はそれぞれ中心周波数
197.6MHz,372.8MHz,531MHzのフイルタに第
2図の本考案及び第1図の従来例に係る二相型一
方向性電極変換器をそれぞれ適用した場合の挿入
損失一周波数特性図で、実線は本考案によるも
の、一点鎖線は従来例によるものである。
Figures 4, 5, and 6 are center frequencies, respectively.
This is an insertion loss vs. frequency characteristic diagram when the two-phase unidirectional electrode converter according to the present invention shown in Fig. 2 and the conventional example shown in Fig. 1 are applied to filters of 197.6 MHz, 372.8 MHz, and 531 MHz, respectively, and the solid line is The one according to the present invention and the one-dot chain line are according to the conventional example.

これより明らかなように、挿入損失が約1dB改
善され、帯域内リツプルが極めて少なくなつてい
る。
As is clear from this, the insertion loss has been improved by approximately 1 dB, and the in-band ripple has become extremely small.

第7図は参考図であつて、消費される放射パワ
ーを等しくするために容量重み付けを施した例で
ある。
FIG. 7 is a reference diagram, and is an example in which capacitance weighting is applied to equalize the consumed radiation power.

図中、31はニオブ酸リチウムなどの圧電結晶
からなる圧電基板で、該基板上に電極指数N本の
基準信号を与えるすだれ状電31aと、それより
90゜位相の異なる信号を与えるための同一電極指
数の90゜側すだれ状電極31bと、0゜側すだれ状
電極31a及び90゜側すだれ状電極31bをそれ
ぞれ覆うようにジグザグ状に配設された共通接地
電極31cとが形成されている。すだれ状電極3
1a,31bを形成する各電極指の端部31a′,
31b′は所定の大きさに広げられ、その上に誘電
体膜32a,32b(一点鎖線)が被着され、更
にその上に基準信号入力用の入力信号電極33a
(点線)と、基準信号から90゜位相の異なる信号を
入力するための入力信号電極33b(点線)とが
それぞれ被着されている。
In the figure, numeral 31 is a piezoelectric substrate made of piezoelectric crystal such as lithium niobate, and there are interdigital transducers 31a on which a reference signal is provided with an electrode number N on the substrate, and
They are arranged in a zigzag pattern so as to cover the 90° side interdigital electrode 31b, the 0° side interdigital electrode 31a, and the 90° side interdigital electrode 31b, which have the same electrode index for giving signals with 90° different phases. A common ground electrode 31c is formed. Interdigital electrode 3
The ends 31a' of each electrode finger forming 1a and 31b,
31b' is expanded to a predetermined size, dielectric films 32a and 32b (dotted chain lines) are deposited thereon, and an input signal electrode 33a for inputting a reference signal is further applied thereon.
(dotted line) and an input signal electrode 33b (dotted line) for inputting a signal having a phase different by 90 degrees from the reference signal are respectively deposited.

この構成の等価電気回路は第7図A,B,C,
Dの部分のみに注目すると第8図aのようにな
る。尚、図中C2は第7図におけるDの部分によ
る容量、C1はAB間およびAC間の容量、Rは放
射抵抗であり、この放射抵抗Rで消費される電力
が表面波エネルギ、換言すれば放射パワーとな
る。さて、放射抵抗Rの両端に現われる電圧E、
即ち第7図の0゜側電極指Aの電位は、 E=Y2・Ein/(Y1+Y2) (1) ただし、Y1=1/R+jwC1,Y2=jwC2 となり、第7図Dの部分の容量C2を変えること
によつて、即ち入力信号電極33aと電極指の端
部で広くなつた部分31a′との交叉面積を調整す
ることによつて各電極指の電位を変えることがで
き、この方法による重み付けは容量重み付けと呼
ばれる。
The equivalent electric circuit of this configuration is shown in Figure 7 A, B, C,
If we focus only on part D, we will see something like Figure 8a. In the figure, C 2 is the capacitance due to the part D in Figure 7, C 1 is the capacitance between AB and AC, and R is the radiation resistance, and the power consumed by this radiation resistance R is the surface wave energy, in other words. Then it becomes radiant power. Now, the voltage E appearing across the radiation resistance R,
That is, the potential of the 0° side electrode finger A in Fig. 7 is E=Y 2 · Ein/(Y 1 + Y 2 ) (1) where, Y 1 = 1/R + jwC 1 , Y 2 = jwC 2 , and the 7th The potential of each electrode finger can be adjusted by changing the capacitance C 2 of the part shown in figure D, that is, by adjusting the intersection area between the input signal electrode 33a and the part 31a' which is widened at the end of the electrode finger. weighting in this way is called capacity weighting.

一方、第7図A′,B′,C′,D′の部分のみに注
目するとその等価電気回路は同様に第8図bのよ
うになり、90゜側電極指A′の電位は、 E=Y2′・Ein/(Y1′+Y2′) (2) ただし、Y1′=1/R+jwC1,Y2′=jwC2′ となる。
On the other hand, if we focus only on the parts A', B', C', and D' in Fig. 7, the equivalent electric circuit will be as shown in Fig. 8b, and the potential of the electrode finger A' on the 90° side is E. =Y 2 ′・Ein/(Y 1 ′+Y 2 ′) (2) However, Y 1 ′=1/R+jwC 1 , Y 2 ′=jwC 2 ′.

従つて、(1),(2)式よりY2=Y2′(C2=C2′)とす
れば各グループの0゜側電極により消費される放射
パワーと、90゜側電極により消費される放射パワ
ーとを等しくすることができる。
Therefore, from equations (1) and (2), if Y 2 = Y 2 ′ (C 2 = C 2 ′), the radiation power consumed by the 0° side electrode and the 90° side electrode of each group are The radiated power can be made equal to the radiated power.

従つて、基準信号入力用の電極33aとグルー
プGi(i=1,2…)の0゜側電極指間の静電容量
C2と、基準信号から90゜位相が異なる信号入力用
の電極33bとグループGi(i=1,2,…)の
90゜側電極指間の静電容量C2′とを互いに等しくし
ている。そして、このために、信号入力用電極3
3aとグループGiの0゜側電極指の交叉面積と、信
号入力用電極33bとグループGiの90゜側電極指
の交叉面積とを互いに一致させている。
Therefore, the capacitance between the reference signal input electrode 33a and the 0° side electrode finger of group Gi (i=1, 2...)
C 2 , a signal input electrode 33b with a phase difference of 90° from the reference signal, and a group Gi (i=1, 2,...).
The capacitance C 2 ' between the electrode fingers on the 90° side is made equal to each other. For this purpose, the signal input electrode 3
The intersection area between the electrode 3a and the electrode finger on the 0° side of group Gi is made to match the intersection area between the signal input electrode 33b and the electrode finger on the 90° side of group Gi.

第9図は参考図であつて、各グループGi(i=
1,2,…)の浮き電極数を変えて軸方向重み付
けを施した例であり、図中第2図と同一部分には
同一符号を付しその詳細な説明は省略する。第9
図において、第2図と異なる点は各電極指長を一
致させると共に、各グループに浮き電極を挿入し
た点である。
Figure 9 is a reference diagram and shows each group Gi (i=
This is an example in which axial weighting is applied by changing the number of floating electrodes (1, 2, . . . ), and the same parts as in FIG. 9th
The difference between the figure and FIG. 2 is that the lengths of the electrode fingers are made the same and that floating electrodes are inserted in each group.

図中、41a,41b,42a,42a′,42
b,42b′はそれぞれ同一形状の浮き電極であ
る。尚、これら浮き電極は次のように作成され
る。即ち、各グループGiの0゜側電極指或は90゜側
電極指の一対(数対でもよい)を切りはなし、該
切りはなされた端部を互いに接続することにより
作成される。43はジグザグ状に配設された共通
接地電極であり、各グループGiの1つの0゜側電極
指と所定数の浮き電極とを組とすると共に、各グ
ループGiの1つの90゜側電極指と所定数の浮き電
極とを組としたとき、これら組を交互に覆うよう
に配設されている。
In the figure, 41a, 41b, 42a, 42a', 42
b and 42b' are floating electrodes having the same shape. Note that these floating electrodes are created as follows. That is, it is created by cutting off a pair (or several pairs) of the 0° side electrode fingers or the 90° side electrode fingers of each group Gi, and connecting the cut ends to each other. Reference numeral 43 denotes a common ground electrode arranged in a zigzag pattern, which includes one 0° side electrode finger of each group Gi and a predetermined number of floating electrodes, and one 90° side electrode finger of each group Gi. and a predetermined number of floating electrodes are arranged so as to alternately cover these sets.

さて、各グループG1,G2…に挿入する浮き電
極数を変えてやれば各グループにおける励振強度
を変化させることが可能となり、軸方向の重み付
けをすることができる。
Now, by changing the number of floating electrodes inserted into each group G 1 , G 2 . . . , it is possible to change the excitation intensity in each group, and it is possible to perform weighting in the axial direction.

ところで、各グループの0゜側電極指と90゜側電
極指の消費パワーは、前記1つの0゜側電極指又は
90゜側電極指と組をなす浮き電極数に依存する。
By the way, the power consumption of the 0° side electrode finger and the 90° side electrode finger of each group is equal to the power consumption of the 0° side electrode finger or the 90° side electrode finger of each group.
It depends on the number of floating electrodes paired with the 90° side electrode finger.

従つて、グループG1,G2,G3…に挿入する浮
き電極数をそれぞれ0,2,41a,41b,
4,42a,42a′,42b,42b′…として軸
方向の重み付けをすると共に、各グループの0゜側
電極指と組をなす浮き電極数と90゜側電極指と組
をなす浮き電極数とをそれぞれ一致させている。
Therefore, the number of floating electrodes to be inserted into groups G 1 , G 2 , G 3 . . . is 0, 2, 41a, 41b,
4, 42a, 42a', 42b, 42b'... and the number of floating electrodes paired with the 0° side electrode finger and the number of floating electrodes paired with the 90° side electrode finger of each group. are matched with each other.

以上、本考案によれば二相型一方向性電極変換
器において、各グループの0゜側電極指で消費され
る音響パワーと、90゜側電極指で消費される音響
パワーとを一致させたから従来のものに比らべ挿
入損失の低減及び帯域内のリツプルの低減が可能
となつた。
As described above, according to the present invention, in a two-phase unidirectional electrode transducer, the acoustic power consumed by the 0° side electrode fingers of each group is made equal to the acoustic power consumed by the 90° side electrode fingers. It has become possible to reduce insertion loss and ripple within the band compared to conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の二相型一方向の電気機械変換器
の正面図、第2図は本考案に係る弾性表面波用電
気機械変換器の正面図、第3図はアポダイズ型の
重み付けをした本考案の別の実施例説明図、第4
図、第5図及び第6図は本考案による効果を説明
する挿入損失一周波数特性図、第7図は容量重み
付けに適用した参考図、第8図a,bは同等価電
気回路図、第9図は軸方向重み付けに適用した参
考図である。 1……圧電基板、2……電極指群、2a,31
a……0゜側すだれ状電極、2b,31b……90゜
側すだれ状電極、2c,31c……共通接地電
極、21a〜21e……突片、31a′,31b′…
…端部、32a,32b……誘電体膜、33a,
33b……入力信号電極、41a,41b,42
a,42a′,42b,42b′,……浮き電極。
Figure 1 is a front view of a conventional two-phase unidirectional electromechanical converter, Figure 2 is a front view of a surface acoustic wave electromechanical converter according to the present invention, and Figure 3 is an apodized type weighted electromechanical converter. Another embodiment explanatory diagram of the present invention, No. 4
Figures 5 and 6 are insertion loss vs. frequency characteristics diagrams explaining the effects of the present invention, Figure 7 is a reference diagram applied to capacitance weighting, Figures 8a and b are equivalent electrical circuit diagrams, and Figures 8a and 6b are equivalent electrical circuit diagrams. Figure 9 is a reference diagram applied to axial weighting. 1... Piezoelectric substrate, 2... Electrode finger group, 2a, 31
a...0° side interdigital electrode, 2b, 31b...90° side interdigital electrode, 2c, 31c...common ground electrode, 21a to 21e...projection, 31a', 31b'...
...End portion, 32a, 32b...Dielectric film, 33a,
33b...Input signal electrode, 41a, 41b, 42
a, 42a', 42b, 42b', ... floating electrodes.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 基準信号を与えられる第1の電極と、基準信号
と位相が90゜異なる信号を与えられる第2の電極
と、共通接地電極とを1グループとし、複数のグ
ループを各第1、第2の電極がすだれ状電極を形
成するように接続すると共に、各グループの第1
及び第2の電極から発生する表面波が進行方向に
同相で、反対方向に逆相となるように前記アース
電極を形成して成る二相型一方向の弾性表面波用
電気機械変換器において、1グループ毎に第1の
電極と第2の電極との交叉指長を変えて重み付け
すると共に、各グループの第1、第2の電極を覆
うようにジグザグ状に前記共通接地電極を配設
し、各グループの第1電極と第2電極で消費され
る音響パワーを等しくするように、前記共通接地
電極により覆われる各グループの第1電極と第2
電極の長さを一致させて該共通接地電極を形成し
たことを特徴とする弾性表面波用電気機械変換
器。
A first electrode to which a reference signal is applied, a second electrode to which a signal whose phase differs from the reference signal by 90 degrees, and a common ground electrode are defined as one group, and the plurality of groups are connected to each of the first and second electrodes. are connected to form interdigital electrodes, and the first electrode of each group
and a two-phase unidirectional surface acoustic wave electromechanical transducer in which the ground electrode is formed so that the surface waves generated from the second electrode are in phase in the traveling direction and out of phase in the opposite direction, The intersecting finger length of the first electrode and the second electrode is changed and weighted for each group, and the common ground electrode is arranged in a zigzag pattern so as to cover the first and second electrodes of each group. , the first electrode and the second electrode of each group covered by the common ground electrode so as to equalize the acoustic power consumed by the first electrode and the second electrode of each group.
An electromechanical transducer for surface acoustic waves, characterized in that the common ground electrode is formed by matching the length of the electrodes.
JP5482980U 1980-04-22 1980-04-22 Expired JPH0238493Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5482980U JPH0238493Y2 (en) 1980-04-22 1980-04-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5482980U JPH0238493Y2 (en) 1980-04-22 1980-04-22

Publications (2)

Publication Number Publication Date
JPS56157830U JPS56157830U (en) 1981-11-25
JPH0238493Y2 true JPH0238493Y2 (en) 1990-10-17

Family

ID=29649535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5482980U Expired JPH0238493Y2 (en) 1980-04-22 1980-04-22

Country Status (1)

Country Link
JP (1) JPH0238493Y2 (en)

Also Published As

Publication number Publication date
JPS56157830U (en) 1981-11-25

Similar Documents

Publication Publication Date Title
US4910839A (en) Method of making a single phase unidirectional surface acoustic wave transducer
US3961293A (en) Multi-resonant surface wave resonator
Tanaka et al. Narrow bandpass filter using double-mode SAW resonators on quartz
US3970970A (en) Multiple acoustically coupled surface acoustic wave resonators
US7728699B2 (en) Acoustic wave filter
KR940009395B1 (en) Saw filter having plural electrode
JPS6223490B2 (en)
US6462633B1 (en) Surface acoustic wave device including parallel connected main and sub-filters
US4075582A (en) Surface acoustic wave device
US3983517A (en) Surface acoustic wave multi-channel filter
EP0782256B1 (en) Surface acoustic wave resonator filter apparatus
KR100308220B1 (en) Acoustic wave resonator and filter with double reflective gratings
US5021699A (en) Interdigital transducer for surface acoustic wave filter
US4365220A (en) Surface wave circuit device
EP0063839B1 (en) Acoustic wave bandpass electrical filters
JPH0238493Y2 (en)
JPH04132409A (en) Surface acoustic wave resonator
JP2001053581A (en) Surface acoustic wave filter
JPH0261806B2 (en)
US5781083A (en) Surface wave resonator having a plurality of resonance frequencies
JP3106924B2 (en) Surface wave resonator
JPH03204212A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter
JPH09107269A (en) Acoustic wave filter with filter shaping element, and its manufacture
JPH05129872A (en) Surface wave resonator, surface wave filter, branching filter and mobile radio equipment
JP3068035B2 (en) Surface acoustic wave device