JPH0237907B2 - TANSANESUTERUNOSEIZOHOHO - Google Patents

TANSANESUTERUNOSEIZOHOHO

Info

Publication number
JPH0237907B2
JPH0237907B2 JP21892182A JP21892182A JPH0237907B2 JP H0237907 B2 JPH0237907 B2 JP H0237907B2 JP 21892182 A JP21892182 A JP 21892182A JP 21892182 A JP21892182 A JP 21892182A JP H0237907 B2 JPH0237907 B2 JP H0237907B2
Authority
JP
Japan
Prior art keywords
group
urea
reaction
carbon monoxide
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21892182A
Other languages
Japanese (ja)
Other versions
JPS59130239A (en
Inventor
Mikio Yoneoka
Kazuo Takada
Kumiko Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP21892182A priority Critical patent/JPH0237907B2/en
Publication of JPS59130239A publication Critical patent/JPS59130239A/en
Publication of JPH0237907B2 publication Critical patent/JPH0237907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は炭酞゚ステルの補造方法に関し、さら
に詳现には、䞀酞化炭玠ずアルコヌルおよびた
たはギ酞゚ステルず尿玠たたは−眮換尿玠ずを
反応させるこずにより、炭酞゚ステルを補造する
方法に関するものである。 炭酞゚ステルは、たずえばポリカヌボネヌトの
原料であるこずから、ポリカヌボネヌトがすぐれ
たプラスチツクずしお着目されるに䌎な぀おその
重芁性が認識されおいる。 ずころで、炭酞゚ステルの埓来の補造方法ずし
おは、アルコヌルずホスゲンを反応させる方法、
貎金属を觊媒ずしおアルコヌルず䞀酞化炭玠ずを
反応させる方法およびアルコヌルずメチルクロロ
ホヌメヌトずを反応させる方法などが知られおい
る。しかし、これらの方法では原料物質が猛毒で
あ぀たりあるいは高䟡な觊媒を甚いなければなら
ないなどの理由により工業的には満足すべきもの
ずはいえない。 たた、本発明者らの発明にかかわる特開昭55−
15154号公報においお、ギ酞゚ステルず尿玠ずを、
銅亜鉛鉄コバルトおよびニツケルなどの重
金属のそれぞれの酢酞塩ハロゲン化物硝酞塩
などを觊媒ずしお甚いるこずにより、たたは觊媒
を甚いずに反応させおカルバミン酞゚ステルずホ
ルムアミドずを補造しおいるが、この発明では炭
酞゚ステルは党く埗られなか぀た。 本発明者らは、原料および觊媒がそれぞれ安䟡
なものを䜿甚しお、工業的に有利にか぀容易に炭
酞゚ステルを補造する方法を芋い出すべく研究を
重ねた結果、ギ酞゚ステルず尿玠たたは−眮換
尿玠ずを特異な觊媒を甚いお反応させるず、効率
よく炭酞゚ステルが埗られるずいう事実を芋い出
しこの新事実に基づき発明を完成し、さきに特願
昭56−177952号特公昭60−140145号公報参照
を出願した。この特願昭56−177952号の発明はギ
酞゚ステルず、尿玠たたは−眮換尿玠ずを(ã‚€)å‘š
期埋衚
もしくは族の元玠の化合物たたはアク
チナむド族元玠の化合物および(ロ)窒玠含有有機化
合物りん含有有機化合物たたは族元玠の有
機化合物の存圚䞋で反応させるこずを特城ずする
炭酞゚ステルの補造法である。 本発明者らは、この先願発明を改良すべくさら
に鋭意怜蚎を重ねた結果、この先願発明における
反応系にさらに゚ポキシドを存圚させるこずによ
り、先願発明におけるよりも30℃以䞊も䜎い反応
枩床で、しかも短い時間でも反応は円滑に進行
し、か぀䞀酞化炭玠ずアルコヌルずを原料ずしお
䜿甚しおも炭酞゚ステルが工業的に有利に補造し
うるずの新知芋を埗、この新知芋に基づいお本発
芋に到達した。 すなわち、本発明は(i)䞀酞化炭玠ずアルコヌル
およびたたはギ酞゚ステルず(ii)尿玠およびた
たは−眮換尿玠ずを、(ã‚€)゚ポキシドならびに(ロ)
呚期埋衚
もしくは族の元玠の化合物たたはア
クチナむド族元玠の化合物以䞋第䞀成分ず蚘
すおよび(ハ)窒玠含有有機化合物リン含有有機
化合物たたは族元玠の有機化合物以䞋第二
成分ず蚘すの存圚䞋で反応させるこずを特城ず
する炭酞゚ステルの補造方法である。 本発明に䜿甚されるアルコヌルは特に制限はな
いが、実甚䞊、通垞は䞀般匏(1)ROHで瀺される
脂肪族アルコヌルである。なお、この䞀般匏(1)に
おいおはアルキル基をあらわし、たずえばメチ
ル゚チルプロピルむ゜プロピルブチル
む゜ブチルタヌシダリヌブチルアミルヘキ
シルおよびオクチルなどの炭玠数〜のアルキ
ル基である。これらのアルコヌルのうち、メタノ
ヌル゚タノヌルが実甚䞊奜たしい。 本発明に䜿甚される䞀酞化炭玠は、氎玠炭酞
ガス窒玠ネオンヘリりおよびアルゎンなど
の他のガスを少量ならば含有しおもさし぀かえな
いが、有機化合物の含有量は䜎い皋奜たしい。 本発明においお䜿甚されるギ酞゚ステルには特
に制限はないが、実甚䞊通垞は、䞀般匏(2)
HCOORで瀺されるギ酞゚ステルが䜿甚される。
なお、この䞀般匏(2)における䞀般匏(1)における
ず同様である。すなわち、はたずえばメチル
゚チルプロピルむ゜プロピルブチルタヌ
シダリヌブチルアミルヘキシルおよびオクチ
ルなどの炭玠数〜のアルキル基である。な
お、ギ酞゚ステルはそのアルキル基が䜿甚される
アルコヌルず同䞀であるものが遞択される。これ
らのギ酞゚ステルのうちギ酞メチルたたはギ酞゚
チルが実甚䞊奜たしい。本発明では、尿玠のほか
に−眮換尿玠が䜿甚される。本発明で䜿甚され
る−眮換尿玠には特に制限はないが、実甚䞊、
通垞は䞀般匏(3)
The present invention relates to a method for producing a carbonic ester, and more particularly, to a method for producing a carbonic ester by reacting carbon monoxide with an alcohol and/or a formic ester with urea or N-substituted urea. Since carbonate ester is a raw material for polycarbonate, for example, its importance has been recognized as polycarbonate has attracted attention as an excellent plastic. By the way, conventional methods for producing carbonate ester include a method of reacting alcohol and phosgene;
A method of reacting an alcohol with carbon monoxide using a noble metal as a catalyst, a method of reacting an alcohol with methyl chloroformate, etc. are known. However, these methods are not industrially satisfactory because the raw materials are highly toxic or require the use of expensive catalysts. In addition, Japanese Patent Application Laid-Open No. 1986-55 related to the invention of the present inventors
In Publication No. 15154, formic acid ester and urea are
Carbamate esters and formamide are produced by reacting heavy metals such as copper, zinc, iron, cobalt, and nickel with their respective acetates, halides, and nitrates as catalysts or without using catalysts. However, in this invention, no carbonate ester was obtained at all. The present inventors have conducted extensive research to find a method for industrially advantageous and easy production of carbonate esters using inexpensive raw materials and catalysts, and have found that formate esters and urea or N-substituted He discovered that carbonic acid esters can be obtained efficiently by reacting with urea using a specific catalyst, and based on this new fact, he completed his invention and published Japanese Patent Application No. 177952-1983 (Japanese Patent Application No. 140145-1983). (see official bulletin)
has been applied for. The invention of this Japanese Patent Application No. 177952/1986 is based on the combination of formic acid ester and urea or N-substituted urea (a) b, a, b, b, a, b of the periodic table.
Production of a carbonate ester, characterized in that the reaction is carried out in the presence of a compound of an element of group a, group a, or an element of actinide group, and (b) a nitrogen-containing organic compound, a phosphorus-containing organic compound, or an organic compound of group a element. It is the law. As a result of further intensive studies aimed at improving this earlier invention, the present inventors discovered that by further adding an epoxide to the reaction system in this earlier invention, the reaction temperature was 30°C or more lower than that in the earlier invention. Moreover, we obtained new knowledge that the reaction proceeds smoothly even in a short period of time, and that carbonic acid esters can be produced industrially advantageously even when carbon monoxide and alcohol are used as raw materials. Based on this new knowledge, we I have made this discovery. That is, the present invention combines (i) carbon monoxide, alcohol and/or formate, (ii) urea and/or N-substituted urea, (a) epoxide, and (b)
Periodic table b, a, b, b, a, b,
(c) a nitrogen-containing organic compound, a phosphorus-containing organic compound, or an organic compound of a group a element (hereinafter referred to as the second component); ) is a method for producing a carbonate ester, characterized in that the reaction is carried out in the presence of a carbonic acid ester. The alcohol used in the present invention is not particularly limited, but in practice it is usually an aliphatic alcohol represented by the general formula (1) ROH. In addition, in this general formula (1), R represents an alkyl group, such as methyl, ethyl, propyl, isopropyl, butyl,
It is an alkyl group having 1 to 8 carbon atoms such as isobutyl, tert-butyl, amyl, hexyl and octyl. Among these alcohols, methanol and ethanol are practically preferred. Although the carbon monoxide used in the present invention may contain small amounts of other gases such as hydrogen, carbon dioxide, nitrogen, neon, helium, and argon, it is preferable that the content of organic compounds be as low as possible. There are no particular restrictions on the formic acid ester used in the present invention, but in practice, it is usually represented by the general formula (2).
Formate esters designated HCOOR are used.
In addition, R in general formula (1) in this general formula (2)
It is similar to That is, R is, for example, methyl,
It is an alkyl group having 1 to 8 carbon atoms such as ethyl, propyl, isopropyl, butyl, tert-butyl, amyl, hexyl and octyl. Note that the formic acid ester is selected so that its alkyl group is the same as the alcohol used. Among these formic acid esters, methyl formate or ethyl formate is practically preferred. In addition to urea, N-substituted ureas are used in the present invention. Although there are no particular limitations on the N-substituted urea used in the present invention, practically,
Usually general formula (3)

【匏】であらわされ る−眮換尿玠が䜿甚される。なお、この䞀般匏
(3)においおR1〜R4は炭化氎玠基たたは氎玠原子
である。なお、R1〜R4は互いに同䞀であ぀おも
よいし異な぀おもよい。炭化氎玠基ずしおは、た
ずえばアルキル基たたはアリヌル基である。アル
キル基は、通垞、炭玠数〜のアルキル基であ
るが、実甚䞊、メチル基および゚チル基などがそ
れぞれ奜たしい。たた、アリヌル基はプニル基
およびトリル基などであるが、実甚䞊プニル基
が奜たしい。なお、R1〜R4がすべお氎玠原子で
ある堎合は陀倖される。たた、同䞀分子内にアル
キル基ずアリヌル基ずを同時に含むこずはない。
−眮換尿玠の䟋ずしおは、モノアルキル尿玠
モノアリヌル尿玠―ゞアルキル尿玠
―ゞアリヌル尿玠N′―ゞアルキル
尿玠N′―ゞアリヌル尿玠N′―
トリアルキル尿玠N′−トリアリヌル
尿玠N′N′―テトラアルキル尿玠お
よび―N′N′―テトラアルキル尿玠など
があげられる。反応生成物の耇雑さを少なくする
ためには尿玠および察称型−眮換尿玠が奜たし
い。奜適な−眮換尿玠ずしおはN′―ゞメ
チル尿玠のようなN′―ゞアルキル尿玠およ
びN′―ゞプニル尿玠のようなN′―ゞ
アリヌル尿玠などの察称型ニ眮換尿玠を挙げるこ
ずができる。 本発明の方法では、尿玠たたは−眮換尿玠
以䞋䞡者を総称しお尿玠類ず蚘するこずがある
に察するギ酞゚ステルあるいはアルコヌルのモル
比以䞊であり、実甚䞊、通垞は〜30であり、
奜たしくは〜10である。 本発明でぱポキシドの存圚䞋で反応を行なう
が、゚ポキシドぱポキシ基を有する化合物であ
ればずくに制限はない。たずえば、゚チレンオキ
シドプロピレンオキシドおよびスチレンオキシ
ドなどはその代衚䟋ずしおあげるこずができる。
実甚䞊、プロピレンオキシドが奜適に甚いられ
る。゚ポキシドの添加量は、ギ酞゚ステルあるい
はアルコヌル100モルあたり〜1000モルである
が通垞は〜500モルであり奜たしくは、10〜200
モルである。 本発明での反応枩床は50〜400℃である。反応
枩床が50℃よりも䜎くなるず反応速床が遅く、た
た反応枩床が400℃よりも高いず重合、分解など
の副反応が䜵発する危険性が増倧する。奜たしい
反応枩床は100〜200℃である。 本発明での反応は、ギ酞゚ステルず尿玠類ずを
甚いるずきは䜿甚した尿玠類およびギ酞゚ステル
の反応枩床でのそれぞれの蒞気圧䞋、すなわち自
己発生力䞋でも行ない埗る。たた、ギ酞゚ステル
の分解を抑制する目的で反応を䞀酞化炭玠雰囲気
䞋で行なうこずができ、そのためには通垞は反応
に先立ち䞀酞化炭玠をKgcm2以䞊充填しおか
ら反応させる。なお䞀酞化炭玠分圧ずしおは
Kgcm2以䞊、通垞は〜1000Kgcm2の範囲で
行ない埗るが、必芁以䞊の高圧は実際的ではない
ので、䞀酞化炭玠分圧ずしおは〜500Kgcm2
が奜たしい。たた窒玠などの䞍掻性ガス雰囲気䞋
で反応を行なうこずもできる。 本発明においお原料ずしお䞀酞化炭玠アルコ
ヌルおよび尿玠類を甚いるずきは、䞀酞化炭玠の
加圧䞋で行なう。䞀酞化炭玠分圧ずしおはKg
cm2以䞊、通垞は〜1000Kgcm2の範囲で行な
いうるが、必芁以䞊の高圧は実際的ではないので
䞀酞化炭玠分圧ずしおは〜500Kgcm2が奜た
しい。 本発明においお、溶媒は必ずしも必芁ではない
が、たずえばアミド゚ヌテルケトンたたはア
ルコヌルなどの溶媒を䜿甚するこずができる。代
衚的な溶媒ずしおは、アミドずしおたずえばホル
ムアミド―メチルルホルムアミドおよび
―ゞメチルホルムアミド、ケトンずしおた
ずえばアセトンおよびメチル゚チルケトン、゚ヌ
テルずしおゞメチル゚ヌテルゞ゚チル゚ヌテル
およびゞプニル゚ヌテルならびにアルコヌルず
しおメタノヌルならびに゚タノヌルなどをあげる
こずができる。溶媒ずしおアルコヌルを䜿甚する
堎合には、原料のアルコヌルず同じもの、たたは
ギ酞゚ステルのアルキル基ず同䞀なアルキル基ず
OHずからなるアルコヌルを䜿甚するこずが奜た
しい。 本発明での反応は回分匏、半回分匏および流通
匏のいずれの方法でも行なうこずができる。 本発明での觊媒は、第䞀成分および第二成分を
含有する。本発明で䜿甚される觊媒の第䞀成分ず
しおは呚期埋衚ただし、呚期埋衚は千谷利䞉
著・無機化孊新版䞊巻、産業図曞刊に埓う。

族の元玠の化合物たたはアクチナむド族元
玠の化合物である。奜たしい元玠は、たずえば
族では銅および銀、族ではマグネシりム
カルシりムおよびバリりム、族では亜鉛およ
び氎銀、族ではほう玠およびアルミニりム、
族ではゞルコニりム、族ではけい玠す
ずおよび鉛、族ではクロムモリボデンおよ
びタングステン、族ではマンガンおよびレニ
りム、族では鉄コバルトニツケルおよびパ
ラゞりムならびにアクチナむド族元玠ではトリり
ムりラニりムなどがある。 これらの元玠の化合物には特に制限はないが、
たずえばギ酞塩酢酞塩しゆう酞塩およびナフ
テン酞塩のような有機酞塩、硫酞塩硝酞塩およ
び炭酞塩などの無機酞塩、ポリアミノカルボン酞
塩およびアセチルアセトン塩のようなキレヌト化
合物ハロゲン化物ならびにカルボニル化合物な
どがある。第䞀成分の化合物同士の混合物も䜿甚
するこずができる。 本発明で䜿甚される觊媒の第二成分は、窒玠含
有有機化合物りん含有有機化合物たたは族
元玠の有機化合物である。 窒玠含有有機化合物には特に制限はないが、代
衚䟋ずしおモノメチルアミンゞメチルアミン
トリメチルアミンゞメチル゚チルアミントリ
゚チルアミントリ――プロピルアミントリ
―iso―プロピルアミンおよびトリ――ブチル
アミンなどのアミン類アニリンアルキルアニ
リン類ピリゞンピロリゞンピペリゞンピ
リミゞンおよびこれらの―アルキル眮換䜓なら
びにピコリンなどのアルキルピリゞンなどがあ
る。 たたりん含有有機化合物には特に制限はない
が、実甚䞊、通垞は䟡のりんの有機化合物が䜿
甚される。その代衚䟋ずしおトリメチルホスフむ
ンおよびトリブチルホスフむンなどのトリアルキ
ルホスフむン類トリスアミノアミルホスフ
むンなどのアルキル基を有するホスフむン類ト
リプニルホスフむンなどのトリアリヌルホスフ
むン類ならびにトリメチルホスフアむトドリブ
チルホスフアむトおよびトリプニルホスフアむ
トなどのホスフアむト類を挙げるこずができる。 たた族元玠の化合物にも特に制限はない
が、たずえばナトリりムアルコラヌトおよびカリ
りムアルコラヌトなどのナトリりムおよびカリり
ムのそれぞれの有機化合物が奜適に䜿甚される。
第二成分の化合物同士の混合物も䜿甚するこずが
できる。 これらの觊媒成分の化合物は、たずえばクレ
む酞性癜土たたは掻性炭などの通垞の担䜓に担
持させお䜿甚するこずもできる。 觊媒の第䞀成分の䜿甚量は、尿玠類100モルあ
たり0.01モル以䞊奜たしくは0.01〜100モル以
䞋特にこずわらない限り尿玠類100モルあたりの
モルで瀺すの範囲で遞ぶこずができる。しかし
ながら100モルより倚く䜿甚するこずができる経
枈的に埗策でなく、たた䜿甚量が0.01モルよりも
少ないず十分な反応速床が埗られない。觊媒の第
䞀成分の䜿甚量は0.02〜70モルが特に奜たしく、
0.05〜50モルが最も奜たしい。 觊媒の第二成分の䜿甚量は、尿玠類100モルあ
たり0.01〜100モル以䞋特にこずわらない限り
尿玠類100モルあたりのモルで瀺すの範囲で遞
ぶこずができる。しかしながら、100モルより倚
く䜿甚するこずができるが、経枈的に埗策でな
く、たた䜿甚量が0.01モルより少ないず十分な反
応速床が埗られない。觊媒の第二成分の䜿甚量は
0.02〜70モルが奜たしく、0.05〜50モルが特に奜
たしい。 本発明では、炭玠゚ステルのほかにカルバミン
酞゚ステル類およびホルムアミド類が䜵産される
が、これらはたずえば蒞留などの簡䟿な手段で互
いに分離するこずができ、しかも䞡者ずも利甚䟡
倀が高いので、䜕ら顧慮するに圓らない。すなわ
ち、カルバミン酞゚ステル類は医療分野で重甚さ
れ、たたりレタンの原料ずしお倚量に䜿甚され、
䞀方ホルムアミド類はすぐれた溶剀であるばかり
でなく化孊工業での䞭間原料ずしお近幎特に泚目
されおいる。たたホルムアミド類は本発明の反応
における溶媒ずしおも䜜甚する。 原料のギ酞゚ステルおよび−眮換尿玠ずしお
前蚘の䞀般匏(1)(2)および䞀般匏(3)でそれぞれ瀺
される化合物を䜿甚したずきには、炭酞゚ステ
ルカルバミン酞゚ステルおよびホルムアミド類
はそれぞれ぀ぎに䞀般匏(4)䞀般匏(5)および䞀般
匏(6)で瀺される。すなわち、 䞀般匏(4) RO・CO・CR 䞀般匏(5)
An N-substituted urea of the formula is used. Furthermore, this general formula
In (3), R 1 to R 4 are a hydrocarbon group or a hydrogen atom. Note that R 1 to R 4 may be the same or different. Examples of the hydrocarbon group include an alkyl group or an aryl group. The alkyl group is usually an alkyl group having 1 to 4 carbon atoms, but from a practical standpoint, methyl group, ethyl group, etc. are preferable. Further, the aryl group includes a phenyl group, a tolyl group, and the like, and a phenyl group is practically preferred. Note that cases where all R 1 to R 4 are hydrogen atoms are excluded. Furthermore, an alkyl group and an aryl group cannot be contained simultaneously in the same molecule.
Examples of N-substituted ureas include monoalkylureas,
Monoarylurea, N,N-dialkyl urea,
N,N-diarylurea, N,N'-dialkylurea, N,N'-diarylurea, N,N,N'-
Examples include trialkylurea, N,N,N'-triarylurea, N,N,N',N'-tetraalkylurea and N,N-N',N'-tetraalkylurea. Urea and symmetric N-substituted ureas are preferred to reduce the complexity of the reaction product. Suitable N-substituted ureas include symmetrical disubstituted ureas such as N,N'-dialkyl ureas such as N,N'-dimethylurea and N,N'-diarylureas such as N,N'-diphenylurea. can be mentioned. In the method of the present invention, urea or N-substituted urea (hereinafter both may be collectively referred to as ureas)
The molar ratio of formic acid ester or alcohol to
Preferably it is 2-10. In the present invention, the reaction is carried out in the presence of an epoxide, but the epoxide is not particularly limited as long as it is a compound having an epoxy group. For example, ethylene oxide, propylene oxide, and styrene oxide are representative examples.
Practically, propylene oxide is preferably used. The amount of epoxide added is 1 to 1000 mol per 100 mol of formic acid ester or alcohol, but usually 5 to 500 mol, preferably 10 to 200 mol.
It is a mole. The reaction temperature in the present invention is 50 to 400°C. When the reaction temperature is lower than 50°C, the reaction rate is slow, and when the reaction temperature is higher than 400°C, there is an increased risk that side reactions such as polymerization and decomposition will occur simultaneously. The preferred reaction temperature is 100-200°C. When a formic acid ester and a urea are used, the reaction in the present invention can also be carried out under the respective vapor pressures at the reaction temperatures of the urea and formic acid ester used, that is, under self-generating power. Further, in order to suppress the decomposition of the formate ester, the reaction can be carried out in a carbon monoxide atmosphere, and for this purpose, carbon monoxide is usually charged at 0 kg/cm 2 G or more prior to the reaction. The carbon monoxide partial pressure is 0.
Kg/cm 2 G or more, usually in the range of 0 to 1000 Kg/cm 2 G, but it is impractical to use higher pressure than necessary, so the carbon monoxide partial pressure should be 0 to 500 Kg/cm 2 G.
is preferred. The reaction can also be carried out under an atmosphere of an inert gas such as nitrogen. In the present invention, when carbon monoxide, alcohol and ureas are used as raw materials, the reaction is carried out under pressure of carbon monoxide. Carbon monoxide partial pressure is 0Kg/
cm 2 G or more, usually in the range of 0 to 1000 Kg/cm 2 G, but since higher pressure than necessary is not practical, the carbon monoxide partial pressure is preferably 0 to 500 Kg/cm 2 G. In the present invention, a solvent is not necessary, but it is possible to use a solvent such as, for example, an amide, ether, ketone or alcohol. Typical solvents include amides such as formamide, N-methylformamide, and N,N-dimethylformamide, ketones such as acetone and methyl ethyl ketone, ethers dimethyl ether, diethyl ether, and diphenyl ether, and alcohols such as methanol and ethanol. can be given. When using alcohol as a solvent, use the same alcohol as the raw material or the same alkyl group as the formate ester.
Preference is given to using an alcohol consisting of OH. The reaction in the present invention can be carried out by any of the batch, semi-batch and flow methods. The catalyst in the present invention contains a first component and a second component. The first component of the catalyst used in the present invention is the periodic table (however, the periodic table is according to Toshizo Chiya, Inorganic Chemistry (New Edition) Volume 1, published by Sangyo Tosho).
b, a, b, b, a, b, a,
a, a compound of a group element or a compound of an actinide group element. Preferred elements are, for example, copper and silver for group B, magnesium for group a,
calcium and barium, zinc and mercury in group b, boron and aluminum in group b;
Zirconium in the a group, silicon, tin and lead in the b group, chromium, molybodene and tungsten in the a group, manganese and rhenium in the a group, iron, cobalt, nickel and palladium in the group a, and thorium, uranium, etc. in the actinide group. be. There are no particular restrictions on the compounds of these elements, but
For example, organic acid salts such as formates, acetates, oxalates and naphthenates, inorganic acid salts such as sulfates, nitrates and carbonates, chelate compounds such as polyaminocarboxylate and acetylacetone salts, halides. and carbonyl compounds. Mixtures of the compounds of the first component can also be used. The second component of the catalyst used in the present invention is a nitrogen-containing organic compound, a phosphorus-containing organic compound, or an organic compound of a group a element. There are no particular restrictions on nitrogen-containing organic compounds, but typical examples include monomethylamine, dimethylamine,
Amines such as trimethylamine, dimethylethylamine, triethylamine, tri-n-propylamine, tri-iso-propylamine and tri-n-butylamine, aniline, alkylanilines, pyridine, pyrrolidine, piperidine, pyrimidine and their N-alkyl These include substituted products and alkylpyridines such as picoline. Although there are no particular limitations on the phosphorus-containing organic compound, trivalent phosphorus organic compounds are generally used in practice. Representative examples include trialkylphosphines such as trimethylphosphine and tributylphosphine, phosphines with an alkyl group such as tris(aminoamyl)phosphine, triarylphosphines such as triphenylphosphine, and trimethylphosphine, trimethylphosphine, etc. Mention may be made of phosphites such as butyl phosphite and triphenyl phosphite. There are no particular limitations on the compound of the group a element, but organic compounds of sodium and potassium, such as sodium alcoholate and potassium alcoholate, are preferably used.
Mixtures of compounds of the second component can also be used. These catalyst component compounds can also be used by being supported on a conventional carrier such as clay, acid clay or activated carbon. The amount of the first component of the catalyst to be used can be selected within the range of 0.01 mol or more per 100 mol of urea, preferably 0.01 to 100 mol (hereinafter expressed in mol per 100 mol of urea unless otherwise specified). However, it is not economically advisable to use more than 100 mol, and if the amount used is less than 0.01 mol, a sufficient reaction rate cannot be obtained. The amount of the first component of the catalyst used is particularly preferably 0.02 to 70 mol,
Most preferred is 0.05-50 moles. The amount of the second component of the catalyst to be used can be selected within the range of 0.01 to 100 moles per 100 moles of urea (hereinafter expressed in moles per 100 moles of urea unless otherwise specified). However, although it is possible to use more than 100 mol, it is not economically advantageous, and if the amount used is less than 0.01 mol, a sufficient reaction rate cannot be obtained. The amount of the second component of the catalyst used is
0.02 to 70 mol is preferred, and 0.05 to 50 mol is particularly preferred. In the present invention, carbamate esters and formamides are co-produced in addition to carbon esters, but these can be separated from each other by simple means such as distillation, and both have high utility value. It's not worth considering. In other words, carbamate esters are heavily used in the medical field and are also used in large quantities as raw materials for urethane.
On the other hand, formamides are not only excellent solvents, but have also recently attracted particular attention as intermediate raw materials in the chemical industry. Formamides also act as a solvent in the reaction of the present invention. When the compounds represented by the above general formulas (1), (2) and general formula (3) are used as the raw materials formate ester and N-substituted urea, the carbonate ester, carbamate ester and formamide, respectively, are as follows. It is represented by general formula (4), general formula (5) and general formula (6). That is, General formula (4) RO・CO・CR General formula (5)

【匏】および[expression] and

【匏】 ならびに 䞀般匏(6)【formula】 as well as General formula (6)

【匏】および[expression] and

【匏】 なお、これらの䞀般匏(4)〜(6)におけるおよび
R1〜R3はそれぞれ前蚘の䞀般匏(1)(2)および䞀
般匏(3)におけるず同じである。なお、尿玠を䜿甚
したずきには前蚘の䞀般匏(5)および䞀般匏(6)にお
いお、R1〜R4はすべお氎玠原子ずなる。 本発明においお原料物質は、いずれも取り扱い
が容易な物質であり、か぀、觊媒は比范的安䟡で
あり、しかも炭酞゚ステルが工業的有利にか぀容
易に埗られ、たた䜵産されるカルバミン酞゚ステ
ル類およびホルムアミド類もそれぞれ利甚䟡倀が
高く、本発明の工業的䟡倀はきわめお高い。 ぀ぎに実斜䟋により本発明をさらに具䜓的に説
明する。 実斜䟋 〜12 内容積100c.c.のハステロむ補オヌトクレヌブ
に尿玠類ギ酞゚ステル觊媒第成分および
第成分ならびに゚ポキシドさらに必芁に応
じお溶媒のそれぞれの所定量を仕蟌み、ふたをし
たのち、オヌトクレヌブ内の空気を䞀酞化炭玠た
たは窒玠で眮換しあるいは眮換埌䞀酞化炭玠たた
は窒玠を所定圧たで充填し、所定枩床で所定時間
反応させた。冷华埌、オヌトクレヌブ内のガスを
パヌゞしお垞圧にもどしおから反応生成物をずり
出しガスクロマトグラフにより分析した。条件お
よび結果を衚―に䞀括しお瀺した。
[Formula] In addition, R and in these general formulas (4) to (6)
R 1 to R 3 are the same as in the above general formulas (1), (2) and general formula (3), respectively. Note that when urea is used, R 1 to R 4 in the above general formulas (5) and (6) all become hydrogen atoms. In the present invention, all raw materials are easy to handle, the catalyst is relatively inexpensive, carbonate esters can be easily obtained industrially, and carbamate esters are co-produced. and formamides have high utility value, and the industrial value of the present invention is extremely high. Next, the present invention will be explained in more detail with reference to Examples. Examples 1 to 12 Into a Hastelloy C autoclave with an internal volume of 100 c.c., ureas, formic acid esters, catalysts (first and second components), and epoxides, as well as predetermined amounts of solvents as necessary, were charged. After closing the autoclave, the air in the autoclave was replaced with carbon monoxide or nitrogen, or after the replacement, carbon monoxide or nitrogen was filled up to a predetermined pressure, and the autoclave was reacted at a predetermined temperature for a predetermined time. After cooling, the gas in the autoclave was purged to return to normal pressure, and the reaction product was taken out and analyzed by gas chromatography. The conditions and results are summarized in Table 1.

【衚】【table】

【衚】【table】

【衚】 実斜䟋 13〜23 内容積100c.c.のハステロむ補オヌトクレヌブ
に尿玠類などアルコヌル觊媒第成分第
成分および゚ポキシド、さらに必芁に応じお
溶媒のそれぞれの所定量を仕蟌み、ふたをしおの
ちオヌトクレヌブ内の空気を䞀酞化炭玠で眮換
し、぀いで䞀酞化炭玠を所定圧力たで充填し、所
定枩床で所定時間反応させた。冷华埌オヌトクレ
ヌブ内のガスをパヌゞしお垞圧にもどしおから反
応生成物をずり出しガスクロマトグラフにより分
析した。条件および結果を衚―に䞀括しお瀺し
た。
[Table] Examples 13 to 23 Into a Hastelloy C autoclave with an internal volume of 100 c.c., predetermined amounts of urea, alcohol, catalyst (first component, second component), epoxide, and solvent as necessary are added. After charging the autoclave and closing the lid, the air in the autoclave was replaced with carbon monoxide, then carbon monoxide was filled to a predetermined pressure, and the autoclave was reacted at a predetermined temperature for a predetermined time. After cooling, the gas in the autoclave was purged to return it to normal pressure, and the reaction product was taken out and analyzed by gas chromatography. The conditions and results are summarized in Table 2.

【衚】【table】

【衚】 実斜䟋 24 100c.c.の内容積を有するハステロむ補オヌト
クレヌブにN′―ゞメチル尿玠99.99mgmol
メタノヌル437.02mgmolプロピレンオキシド
73.56mgmol鉄アセチルアセトネヌト3.91mg
mol―メチルピロリゞン5.15mgmolギ酞メ
チル171.81mgmolを充填し、ふたをしお内郚の空
気を䞀酞化炭玠で眮換しおから䞀酞化炭玠を145
Kgcm2匵り蟌み、130℃で時間反応させた。
反応埌の生成物には炭酞ゞメチル34.73mgmol
―メチルカルバミン酞メチル53.07mgmolおよ
び―メチルホルムアミド121.80mgmolが含たれ
おいた。 実斜䟋 25 実斜䟋24ず同じオヌトクレヌブにN′―ゞ
メチル尿玠99.99mgmol゚タノヌル430.28mg
molプロピレンオキシド73.41mgmol鉄アセチ
ルアセトネヌト3.91mgmolトリ―ブチルホス
フむン4.80mgmolギ酞゚チル170.53mgmol
―メチルホルムアミド34.91mgmol䞀酞化炭玠
148Kgcm2をそれぞれ充おんし、130℃で4hr反
応させた。反応埌の生成物には炭酞ゞ゚チル
30.80mgmol―メチルカルバミン酞゚チル
57.48mgmolおよび―メチルホルムアミド反
応で生成した量117.94mgmolが含たれおいた。
[Table] Example 24 99.99 mgmol of N,N'-dimethylurea was added to a Hastelloy C autoclave having an internal volume of 100 c.c.
Methanol 437.02mgmol, propylene oxide
73.56mgmol, iron acetylacetonate 3.91mg
mol, N-Methylpyrrolidine 5.15mgmol, methyl formate 171.81mgmol, cover the lid, replace the internal air with carbon monoxide, and then remove carbon monoxide to 145mgmol.
Kg/cm 2 G was charged and the reaction was carried out at 130°C for 4 hours.
The product after the reaction contains 34.73 mgmol of dimethyl carbonate,
It contained 53.07 mgmol of methyl N-methylcarbamate and 121.80 mgmol of N-methylformamide. Example 25 In the same autoclave as in Example 24, 99.99 mgmol of N,N'-dimethylurea and 430.28 mg of ethanol were added.
mol, propylene oxide 73.41 mgmol, iron acetylacetonate 3.91 mgmol, tri-n-butylphosphine 4.80 mgmol, ethyl formate 170.53 mgmol, N
-Methylformamide 34.91mgmol, carbon monoxide
Each tube was filled with 148 Kg/cm 2 G and reacted at 130° C. for 4 hours. The product after the reaction is diethyl carbonate.
30.80mgmol, ethyl N-methylcarbamate
It contained 57.48 mgmol and 117.94 mgmol of N-methylformamide (the amount produced in the reaction).

Claims (1)

【特蚱請求の範囲】[Claims]  (i)䞀酞化炭玠ずアルコヌルおよびたたはギ
酞゚ステルず(ii)尿玠およびたたは−眮換尿玠
ずを、(ã‚€)゚ポキシドならびに(ロ)呚期埋衚
もしく
は族の元玠の化合物たたはアクチナむド族元玠
の化合物および(ハ)窒玠含有有機化合物リン含有
有機化合物たたは族元玠の有機化合物の存圚
䞋で反応させるこずを特城ずする炭酞゚ステルの
補造方法。
1 (i) carbon monoxide and alcohol and/or formate ester and (ii) urea and/or N-substituted urea, (a) epoxide and (b) periodic table b,
Reaction in the presence of a, b, b, a, b, a, a, a, or group element compound or actinide group element compound and (c) a nitrogen-containing organic compound, a phosphorus-containing organic compound, or an organic compound of a group a element. A method for producing a carbonate ester, characterized by:
JP21892182A 1982-12-14 1982-12-14 TANSANESUTERUNOSEIZOHOHO Expired - Lifetime JPH0237907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21892182A JPH0237907B2 (en) 1982-12-14 1982-12-14 TANSANESUTERUNOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21892182A JPH0237907B2 (en) 1982-12-14 1982-12-14 TANSANESUTERUNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS59130239A JPS59130239A (en) 1984-07-26
JPH0237907B2 true JPH0237907B2 (en) 1990-08-28

Family

ID=16727403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21892182A Expired - Lifetime JPH0237907B2 (en) 1982-12-14 1982-12-14 TANSANESUTERUNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0237907B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118349A (en) * 1984-11-13 1986-06-05 Nippon Polyurethan Kogyo Kk Production of dialkyl carbonate
US5902894A (en) * 1998-08-26 1999-05-11 Catalytic Distillation Technologies Process for making dialkyl carbonates

Also Published As

Publication number Publication date
JPS59130239A (en) 1984-07-26

Similar Documents

Publication Publication Date Title
US4436668A (en) Preparation of carbonates
JP3374863B2 (en) Method for producing dialkyl carbonate
EP0071286B1 (en) Process for the preparation of carbonate esters
US4625044A (en) Process of preparing dihydrocarbyl carbonates using a nitrogen-containing coordination compound supported on activated carbon
US5349077A (en) Process for producing alkylene carbonates
US4357477A (en) Process for preparing ethylene glycol monoalkyl ethers
CA2045045C (en) Process and catalyst for preparing organic carbonates
US4424384A (en) Process for homologation of methanol to ethanol
CA1184944A (en) Process for preparing ethylene glycol
EP0372635B1 (en) Method of preparing dialkyl and diallyl dicarbonates
JPH0237907B2 (en) TANSANESUTERUNOSEIZOHOHO
EP0078615B1 (en) Process for preparing glycol ethers
US4585891A (en) Process for the production of dihydrocarbyl oxalates
JPS5879958A (en) Production of carbonic ester
JPH0648993A (en) Production of dialkyl carbonate
JPS5872544A (en) Preparation of carbonic acid ester
US3097237A (en) Process for preparing carboxylic acid halides
US4420633A (en) Process for the preparation of an ester of formic acid
EP0056679B1 (en) Ethanol synthesis by homologation of methanol
Stanley et al. A study of the mode of decomposition of some carboxylic tert-alkylcarbonic anhydrides
US4743401A (en) Conversion of an allylic ether to its corresponding acetal
JPH08119904A (en) Production of lactic acid ester
EP0262684A2 (en) Conversion of an allylic ether to its corresponding acetal
JPH0717967A (en) Production of alkylene carbonate
JPH0542416B2 (en)