JPH0237769B2 - - Google Patents

Info

Publication number
JPH0237769B2
JPH0237769B2 JP60071432A JP7143285A JPH0237769B2 JP H0237769 B2 JPH0237769 B2 JP H0237769B2 JP 60071432 A JP60071432 A JP 60071432A JP 7143285 A JP7143285 A JP 7143285A JP H0237769 B2 JPH0237769 B2 JP H0237769B2
Authority
JP
Japan
Prior art keywords
conductor
pair
annular
conductors
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60071432A
Other languages
Japanese (ja)
Other versions
JPS61230052A (en
Inventor
Norio Iriguchi
Satoshi Yamai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60071432A priority Critical patent/JPS61230052A/en
Publication of JPS61230052A publication Critical patent/JPS61230052A/en
Publication of JPH0237769B2 publication Critical patent/JPH0237769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/343Constructional details, e.g. resonators, specially adapted to MR of slotted-tube or loop-gap type

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は核磁気共鳴装置、特に核磁気共鳴イ
メージング(画像形成)装置の部品として静磁界
中に位置された被検査試料に高周波電磁波を印加
して核磁気共鳴現象を励起させるために、または
その核磁気共鳴現象により発生した信号を検出す
るために用いられる核磁気共鳴用高周波コイルに
関するものである。
[Detailed Description of the Invention] "Industrial Application Field" This invention applies high-frequency electromagnetic waves to a test specimen placed in a static magnetic field as a component of a nuclear magnetic resonance apparatus, particularly a nuclear magnetic resonance imaging (image forming) apparatus. The present invention relates to a high-frequency coil for nuclear magnetic resonance used to excite a nuclear magnetic resonance phenomenon or to detect a signal generated by the nuclear magnetic resonance phenomenon.

「従来の技術」 核磁気共鳴装置に用いられるこの種の高周波コ
イルとして、くら型コイルが知られている(P.
Mansfield他Nuclear Magnetic Resondnce in
Biomedicine 263−271 Academic Press 1982)。
このくら型コイルは被検査試料を取り囲む二つの
くら型の形状を構成するように導電線が巻かれた
ものであり、その二つのくら型形状の配列方向と
平行な磁界を発生することができて静磁界に平行
に長手方向を有して位置された被検査試料に対し
て、直角の方向に高周波電磁波を印加することを
可能としたコイルであり、人体などの被検査試料
のイメージング等に多く用いられている。
``Prior Art'' A saddle-shaped coil is known as this type of high-frequency coil used in nuclear magnetic resonance equipment (P.
Mansfield et al. Nuclear Magnetic Resondence in
Biomedicine 263−271 Academic Press 1982).
This saddle-shaped coil has conductive wire wound around it to form two saddle-shaped shapes surrounding the sample to be inspected, and can generate a magnetic field parallel to the direction in which the two saddle-shaped shapes are arranged. This is a coil that makes it possible to apply high-frequency electromagnetic waves in a direction perpendicular to a test specimen whose longitudinal direction is parallel to a static magnetic field, and is useful for imaging test specimens such as the human body. It is often used.

くら型コイルはこれにより取り囲まれる被検査
試料とくら型コイル自体の導線との間に大きな分
布静電容量が存在するため、試料に印加される高
周波電磁波の周波数の3乗に比例する誘電体損失
をもたらし(DI.Hoult他Journal of Magnetic
Resonance 34巻425−433頁1979)、この誘電体損
失によつて、くら型コイルのQ値は著しく低下し
て、即ち共振性が低下する(D.G.Gardian他
Journal of Magnetic Resonance 34巻449−455
頁1979)。
Since there is a large distributed capacitance between the test specimen surrounded by the saddle-shaped coil and the conductor of the coil itself, the dielectric loss is proportional to the cube of the frequency of the high-frequency electromagnetic wave applied to the sample. (DI. Hoult et al. Journal of Magnetic
Resonance, Vol. 34, pp. 425-433, 1979), and due to this dielectric loss, the Q value of the saddle-shaped coil decreases significantly, and in other words, the resonance performance decreases (DGGardian et al.
Journal of Magnetic Resonance Volume 34 449-455
p. 1979).

このような誘電体損失を小とするために、ユタ
大学のデ、ダブリユ、アルダーマン(D.W.
Alderman)他は、周波数300MHzの高周波電磁
波を用いて化学分析を行うにあたり、同一軸線を
有し、この軸線に対して垂直な平面に関して対称
に配置された一対の導電体円環を用いて被検査試
料を電気的に遮蔽し、前記軸線に関して直線状導
体の一対を平行かつ対称に配置し、各直線状導体
の両端が前記一対の導体円環に対して容量的に結
合された形式の高周波コイルを開発した
(Journal of Magnetic Resonance 36巻447−
451頁1979)。そのD.W.Alderman他の高周波コイ
ルは、円筒にその軸線に関して平行な一対のスロ
ツトが設けられた形式の共振器(S.Kan他
Review of Scientific Instruments 44巻1725−
1733頁1973)の一種であると考えられ、このスロ
ツトは軸線に関して対称、かつ一つのスロツトが
軸線のまわりに約100°の角度をなして設けれたと
き空間的に比較的均一な高周波電磁波を発生する
ことが可能と考えられる(H.J.Schneider他
Review of Scientific Instruments 48巻68−73
頁1977)。
In order to reduce such dielectric loss, the University of Utah's D.
Alderman et al. conducted chemical analysis using high-frequency electromagnetic waves with a frequency of 300 MHz, using a pair of conductive rings having the same axis and symmetrically arranged with respect to a plane perpendicular to this axis. A high-frequency coil that electrically shields a sample, has a pair of linear conductors arranged parallel and symmetrically with respect to the axis, and has both ends of each linear conductor capacitively coupled to the pair of conductor rings. (Journal of Magnetic Resonance Vol. 36, 447-
451 pages 1979). DWAlderman et al.'s high-frequency coil is a resonator in the form of a cylinder with a pair of slots parallel to its axis (S.Kan et al.
Review of Scientific Instruments Volume 44 1725−
(1973, p. 1733), and this slot is symmetrical about the axis, and when one slot is installed at an angle of about 100° around the axis, it emits spatially relatively uniform high-frequency electromagnetic waves. (HJSchneider et al.
Review of Scientific Instruments Volume 48 68-73
p. 1977).

「発明が解決しようとする問題点」 しかしながら前記D.W.Alderman他の高周波コ
イルはその開発思想の根拠となつた前記エツチ、
ジエイ、シユナイダー(H.J.Schneider)他の文
献に開示されたように、またこの発明者らの実験
的確認によつても、前記電磁波の空間的均一性は
必ずしも充分なものではなかつた。
``Problems to be solved by the invention'' However, the high frequency coil of DWAlderman et al.
As disclosed in the literature by H.J. Schneider et al., and also according to the experimental confirmation by the present inventors, the spatial uniformity of the electromagnetic waves was not necessarily sufficient.

この発明の目的は核磁気共鳴現象の励起または
検出に用いられる高周波コイルであつて、高周波
電磁波に対してQ値が高い、即ち共振性に優れて
おり、かつ空間的均一性に優れた高周波電磁波を
発生することができる核磁気共鳴用高周波コイル
を提供することにある。
The object of the present invention is to provide a high-frequency coil used for excitation or detection of nuclear magnetic resonance phenomena, which has a high Q value with respect to high-frequency electromagnetic waves, that is, has excellent resonance properties, and has excellent spatial uniformity. An object of the present invention is to provide a high-frequency coil for nuclear magnetic resonance that can generate.

「問題点を解決するための手段」 この発明によれば同一軸線を有し、この軸線に
対して垂直な平面に関して対称に配置された一対
の環状導体が設けられ、前記軸線に関して平行か
つ対称に配置された第一の導線対と、第二の導線
対とがその各導線の両端に前記環状導体に沿つた
翼端を有しており、該両端が前記一対の環状導体
と誘電体層を介して容量的に結合される。均一な
電磁波を得る点から前記第一の導線対は第二の導
線対に対して前記軸線のまわりに40°〜70°、好ま
しくは50°〜60°程度回転されて位置されている。
その第一の導線対と第二の導線対との互に近接し
た一方の二つの導線と、これと近接した一方の環
状導体との間が高周波給電点とされる。さらに、
近接した導線間に位置する翼端間は該翼端と前記
誘電体層を介した前記環状導体とにより形成され
る容量のみによる結合または導電体で接続され、
上記以外の翼端間は該翼端と前記誘電体層を介し
た前記環状導体とにより形成される容量のみによ
る結合によつて接続されている。
"Means for Solving the Problem" According to the present invention, a pair of annular conductors having the same axis and arranged symmetrically with respect to a plane perpendicular to the axis are provided, and the annular conductors are arranged parallel and symmetrically with respect to the axis. A first pair of conductive wires and a second pair of conductive wires arranged have wing tips along the annular conductor at both ends of each of the conductor wires, and the both ends are arranged so that the pair of annular conductors and the dielectric layer are connected to each other. capacitively coupled via the In order to obtain uniform electromagnetic waves, the first pair of conductive wires is rotated by about 40° to 70°, preferably 50° to 60°, about the axis with respect to the second pair of conductive wires.
A high-frequency feeding point is defined as a point between one of the two conductive wires of the first conductive wire pair and the second conductive wire pair that are close to each other and one of the adjacent annular conductors. moreover,
The blade tips located between adjacent conductive wires are connected by a coupling only by a capacitance formed by the blade tip and the annular conductor via the dielectric layer or by a conductor,
Wing tips other than those mentioned above are connected by coupling only by capacitance formed by the wing tips and the annular conductor via the dielectric layer.

前記一対の環状導体は被検査試料が人体である
場合には空間的対称性が得られ易い点から、円
形、矩形または楕円形であることが望ましい。
The pair of annular conductors are desirably circular, rectangular, or elliptical because spatial symmetry is easily obtained when the test sample is a human body.

前記一対の環状導体の平均半径が被検査試料の
平均半径よりも大きいほど、前述した電磁波の空
間的均一性は被検査試料に対して高くなるが、電
磁波の所望の強度を得るためには外部からより大
きな電力を送り込むことが必要となる。空間的均
一な電磁波を得る点から、環状導体の平均半径は
被検査試料の平均半径の20〜50%増、望ましくは
30〜40%増とされることが実用的である。
The larger the average radius of the pair of annular conductors is than the average radius of the sample to be inspected, the higher the spatial uniformity of the electromagnetic waves will be with respect to the sample to be inspected. It is necessary to send more power from In order to obtain spatially uniform electromagnetic waves, the average radius of the annular conductor should be 20 to 50% larger than the average radius of the test sample, preferably
A 30-40% increase is practical.

前記導線対の長さは、前記環状導体の平均半径
に対して長いほど軸方向中心部における電磁波の
空間的均一性は高くなる反面、所望の強度の電磁
波を得るためには外部から、より大きな電力を送
り込むことが必要となる。前記導線対の長さは、
前記環状導体の平均直径の0.5〜4倍、望ましく
は0.7〜2.5倍とされることが実用的である。この
倍数が1.0倍前後であるときは、前記電磁波の空
間的一性はやや損われる反面、所望強度の電磁波
を得るために高周波コイルに送り込まれる電力が
小さくてよく、一方前記倍数が2.0倍前後である
ときは、前記電力は大きい必要がある反面、前記
電磁波の空間的均一性に優れた高周波コイルを得
ることが可能である。
The longer the length of the conductor pair is with respect to the average radius of the annular conductor, the higher the spatial uniformity of the electromagnetic waves in the axial center. It is necessary to send electricity. The length of the conductor pair is
It is practical that the diameter is 0.5 to 4 times, preferably 0.7 to 2.5 times, the average diameter of the annular conductor. When this multiple is around 1.0 times, the spatial uniformity of the electromagnetic waves is slightly impaired, but on the other hand, the power sent to the high-frequency coil to obtain the desired intensity of electromagnetic waves may be small; on the other hand, when the multiple is around 2.0 times. In this case, although the electric power needs to be large, it is possible to obtain a high-frequency coil with excellent spatial uniformity of the electromagnetic waves.

「作用」 環状導体の対に対して容量的に給合された二対
の導線は、低いインダクタンスを有し、従つて両
端の電位差は低くして高電流を導くことが可能で
ある。環状導体の対と前記二対の導線とをつなぐ
容量的結合は、前記インダクタンスと接続されて
共振回路を形成する。また環状導体の対はそれ自
体電流路を形成すると同時に内部に位置される被
検査試料に対する電気的な遮蔽となり、前述した
誘電体損失を軽減する機能を有し、このためには
前記二対の導線よりも内側に位置されるとき内部
に被検査試料が位置された場合も高い共振性が保
持される。前記導線の対が二つであり、かつ第一
の導線対が第二の導線対に対して前述した軸線の
まわりに40°〜70°、望ましくは50°〜60°回転され
て位置されている。その第一の導線対と第二の導
線対との互に接近した一方の二つの導線と、これ
らと接近した一方の環状導体との間に高周波信号
が給電される。この時その高周波信号の一方の半
周期において電流が前記二つの導線に分配されて
他方の環状導体に向つて流れ、その他方の環状導
体に容量結合して第一の導線対及び第二の導線対
の各二つの他方の導線を、前記一方の環状導体に
向つて流れる。高周波信号の他方の半周期では前
記と逆に電流が流れる。このような関係で第一、
第二の導線対に高周波電流が流れ、これら導線対
を流れる電流にもとずき、発生する磁力線は、こ
れら4本の導線により形成される空間、つまりこ
の高周波コイルの内部空間において、前記軸線と
直角でかつ前記互に接近した導線の配列方向と平
行した方向となる。
"Operation" The two pairs of conductors capacitively coupled to the pair of annular conductors have a low inductance and therefore can conduct high currents with a low potential difference across them. A capacitive coupling connecting the pair of annular conductors and the two pairs of conductive wires is connected with the inductance to form a resonant circuit. In addition, the pair of annular conductors itself forms a current path and at the same time acts as an electrical shield for the test sample located inside, and has the function of reducing the dielectric loss mentioned above. High resonance is maintained even when the sample to be inspected is placed inside the conducting wire. There are two pairs of conductors, and the first pair of conductors is rotated by 40° to 70°, preferably 50° to 60°, about the aforementioned axis with respect to the second pair of conductors. There is. A high frequency signal is supplied between two conductive wires of the first conductive wire pair and the second conductive wire pair that are close to each other and one of the annular conductors that are close to these conductive wires. At this time, in one half cycle of the high frequency signal, the current is distributed between the two conductors and flows toward the other annular conductor, capacitively coupled to the other annular conductor, and connected to the first conductor pair and the second conductor. Flowing through the other conductor of each two pairs towards said one annular conductor. In the other half cycle of the high frequency signal, current flows in the opposite direction. In this kind of relationship, first,
A high-frequency current flows through the second pair of conductive wires, and the lines of magnetic force generated based on the current flowing through these pairs of conductive wires move along the axis in the space formed by these four conductive wires, that is, the internal space of this high-frequency coil. The direction is perpendicular to the direction in which the conductive wires are arranged close to each other and parallel to the direction in which the conductive wires are arranged close to each other.

第一、第二の導線対の前記軸線まわりのなす角
度で前述したように選定されているため内部空間
に励起される高周波電磁波は空間的均一性に優れ
たものとなる。これは、例えば前記二対の導線の
各々に流れる一定電流にもとずき、その導線の周
囲の空間の与えられた位置において発生する磁界
強度が、ビオサバールの法則によつて表わされた
とき、その磁界強度の和の大きさが位置に対して
依在性最小となるとき、つまり位置による差が最
小となるときの角度として定められるものであ
り、特に前記導線が比較的細い形状のものである
とき、この角度は約60°である。
Since the angle formed by the first and second pairs of conducting wires around the axes is selected as described above, the high frequency electromagnetic waves excited in the internal space have excellent spatial uniformity. For example, based on a constant current flowing through each of the two pairs of conductive wires, the magnetic field strength generated at a given position in the space around the conductive wires is expressed by Biot-Savart's law. , is defined as the angle at which the sum of the magnetic field strengths has the minimum dependence on position, that is, the difference depending on position is the minimum, especially when the conductor has a relatively thin shape. When , this angle is approximately 60°.

「実施例」 この発明を更に詳しく図面を用いて説明する。
第1図はこの発明による高周波コイルの実施例を
示す。環状導体1と環状導体2とはいずれも円形
であつて同一軸線CLを有し、その軸線CLに対し
て垂直な平面に関して対称に配置されている。導
線3,4,5,6は前記軸線CLに対して平行な
直線状の導体であり、各両端が環状導体1,2に
対して弗素樹脂のように誘電体損失が小さい誘電
体層7,8を介して容量的に結合されている。図
では各導線3,4,5,6はそれぞれ環状導体
1,2の外側に近接して配されている。また特に
各導線の端部は前記容量結合が強く、かつ分布的
に行われるように、例えば導線3は環状導体1,
2の形状に沿つてそれぞれ両側に翼端3a,3
b,3c,3dが一体に形成され、他の導線4,
5,6も同様翼端が形成された場合である。導線
3,4は軸線CLに関して対称に配置された第一
の導線対であり、導線5,6は同様な第二の導線
対である。第2図に導線4〜6の垂直断面を示す
ように、第一の導線対、即ち導線3,4は、第二
の導線対、即ち導線5,6に対して軸線CLのま
わりに60°回転されて位置されている。
"Example" This invention will be explained in more detail using the drawings.
FIG. 1 shows an embodiment of a high frequency coil according to the present invention. Both the annular conductor 1 and the annular conductor 2 are circular, have the same axis CL, and are arranged symmetrically with respect to a plane perpendicular to the axis CL. The conducting wires 3, 4, 5, and 6 are straight conductors parallel to the axis CL, and each end is covered with a dielectric layer 7 having a small dielectric loss, such as a fluororesin, with respect to the annular conductors 1, 2. 8. In the figure, the conductive wires 3, 4, 5, 6 are arranged close to the outside of the annular conductors 1, 2, respectively. Further, in particular, the capacitive coupling is strong and distributed at the ends of each conductor, for example, the conductor 3 is connected to the annular conductor 1,
Wing tips 3a, 3 are provided on both sides along the shape of 2, respectively.
b, 3c, 3d are integrally formed, and other conductive wires 4,
5 and 6 are cases in which blade tips are similarly formed. The conductors 3 and 4 are a first pair of conductors arranged symmetrically with respect to the axis CL, and the conductors 5 and 6 are a similar second pair of conductors. As shown in the vertical cross-section of the conductors 4 to 6 in FIG. Rotated and positioned.

導線3と導線5とは相互に近接する翼端が導電
体で結合されることが可能であり、導線4と導線
6とは相互に近接する翼端が導電体で結合される
ことが可能である。例えば第1図において導線4
と導線6とは環状導体1に容量的に結合された側
の端部において相互に近接した翼端が導電体で結
合され、その導電体に端子9が設けられている。
環状導体1には端子9に近接して端子10が設け
られている。端子9及び端子10は外部より高周
波電力を送り込むためのものである。
The wing tips of the conducting wire 3 and the conducting wire 5 that are close to each other can be connected with a conductor, and the wing tips of the conducting wire 4 and the conducting wire 6 that are close to each other can be connected with a conductive material. be. For example, in Figure 1, the conductor 4
The wing tips of the conductive wire 6 and the conductive wire 6 which are close to each other at the ends capacitively coupled to the annular conductor 1 are coupled by a conductor, and a terminal 9 is provided on the conductor.
A terminal 10 is provided on the annular conductor 1 in close proximity to the terminal 9. Terminal 9 and terminal 10 are for sending high frequency power from the outside.

いま入力された高周波信号により端子9が端子
10に対し正になると、端子9からの電流は導線
4,6に2分され、導線4,6を矢印で示すよう
に環状導体2側に流れ、環状導体2側に達した電
流は容量結合により環状導体2をそれぞれ導線
5,3に向つて流れ、更に容量結合により導線
5,3を矢印で示すように環状導体1側に向つて
流れる。これら電流は容量結合により環状導体1
を通じて端子10に達する。この時、これら導線
3,4,5,6に流れる電流にもとずき発生する
磁力線分布は導線3,4,5,6で囲まれた内部
空間11では第2図に示すように大部分の磁力線
は軸線CLと直角であり、かつ導線4,6の配列
方向と平行し、しかも均一に分布する。端子10
が端子9に対し正となると、前述とは逆方向に電
流が流れ、磁力線の向きも第2図の場合と逆にな
る。
When the terminal 9 becomes positive with respect to the terminal 10 due to the high frequency signal input just now, the current from the terminal 9 is divided into two into the conductors 4 and 6, and flows through the conductors 4 and 6 toward the annular conductor 2 as shown by the arrow. The current that has reached the annular conductor 2 side flows through the annular conductor 2 toward the conducting wires 5 and 3 due to capacitive coupling, and further flows through the conducting wires 5 and 3 toward the annular conductor 1 side as shown by the arrows due to capacitive coupling. These currents flow through the ring conductor 1 due to capacitive coupling.
The terminal 10 is reached through the terminal 10. At this time, the magnetic field line distribution generated based on the current flowing through these conductors 3, 4, 5, and 6 is mostly as shown in Fig. 2 in the internal space 11 surrounded by the conductors 3, 4, 5, and 6. The lines of magnetic force are perpendicular to the axis CL, parallel to the direction in which the conducting wires 4 and 6 are arranged, and are uniformly distributed. terminal 10
When becomes positive with respect to terminal 9, the current flows in the opposite direction to that described above, and the direction of the magnetic lines of force also becomes opposite to that in FIG. 2.

各部の寸法例を示すと、環状導体1,2は直径
約600mmであり、幅約90mm、厚さ約0.3mmの銅板か
らなり、誘電体層7,8は厚さ約4mmの弗素樹脂
であり、導線3,4,5,6はそれぞれ長さ約
580mm、幅約90mm、厚さ約0.3mmの銅板からなり、
翼端の寸法は、例えば翼端3a,3bの該当部分
の環状導体1に沿う長さはそれぞれ約40cmであ
る。第1図のコイルの例は約40MHzにおいて内部
に被検査試料として何も位置させない場合及び人
体を位置させた場合に共にQ値が100を超えるこ
とが観測された。また環状導体1,2の中間で軸
線CLに対して垂直な平面における磁力線の分布
が第2図に示したように空間的に極めて均一であ
ることが実験により確認された。第3図は第1図
の高周波コイルに、更に導線3,4,5,6の端
部の外側に弗素樹脂のような誘電体層12,13
をそれぞれ介して環状導体14,15が設けられ
たものである。環状導体14,15によつて高周
波コイルの外側に存在しうる他の導電性物体に対
する分布静電容量の影響を軽減することができ
る。
To give an example of the dimensions of each part, the annular conductors 1 and 2 have a diameter of about 600 mm, are made of copper plates about 90 mm wide and about 0.3 mm thick, and the dielectric layers 7 and 8 are made of fluororesin about 4 mm thick. , conductors 3, 4, 5, and 6 each have a length of approximately
Consists of a copper plate measuring 580 mm, width approx. 90 mm, and thickness approx. 0.3 mm.
Regarding the dimensions of the blade tips, for example, the length of the corresponding portions of the blade tips 3a and 3b along the annular conductor 1 is about 40 cm. In the example of the coil shown in FIG. 1, it was observed that the Q value exceeded 100 at approximately 40 MHz both when nothing was placed inside as a test sample and when a human body was placed inside. Furthermore, it has been confirmed through experiments that the distribution of magnetic lines of force in a plane perpendicular to the axis CL between the annular conductors 1 and 2 is spatially extremely uniform as shown in FIG. FIG. 3 shows the high-frequency coil shown in FIG.
Annular conductors 14 and 15 are provided through the respective conductors. The annular conductors 14 and 15 can reduce the influence of distributed capacitance on other conductive objects that may exist outside the high frequency coil.

「発明の効果」 上述したようにこの発明においては、高周波電
磁波に対して被検査試料の有無にかかわらず共振
性に優れており、且つ空間的均一性に優れた高周
波電磁波を発生す高周波コイルが得られる。
"Effects of the Invention" As described above, the present invention provides a high-frequency coil that generates high-frequency electromagnetic waves with excellent resonance regardless of the presence or absence of a sample to be inspected, and with excellent spatial uniformity. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による核磁気共鳴用高周波コ
イルの実施例を示す斜視図、第2図は第1図に示
した高周波コイルによつて作られた磁力線の分布
の実測を模式的に表わした図、第3図はこの発明
による高周波コイルの他の実施例を示す斜視図で
ある。 1,2,14,15:環状導体、3,4,5,
6:導線、3a,3b,3c,3d:導線3の翼
端、7,8,12,13:誘電体層、9,10:
端子、11:内部空間、CL:軸線。
Fig. 1 is a perspective view showing an embodiment of the high-frequency coil for nuclear magnetic resonance according to the present invention, and Fig. 2 schematically shows the actual measurement of the distribution of magnetic lines of force created by the high-frequency coil shown in Fig. 1. 3 are perspective views showing other embodiments of the high frequency coil according to the present invention. 1, 2, 14, 15: ring conductor, 3, 4, 5,
6: Conductive wire, 3a, 3b, 3c, 3d: Wing tip of conductive wire 3, 7, 8, 12, 13: Dielectric layer, 9, 10:
Terminal, 11: Internal space, CL: Axis line.

Claims (1)

【特許請求の範囲】 1 該磁気共鳴現象の励起または検出に用いられ
る高周波コイルであつて、 同一軸線を有し、この軸線に対して垂直な平面
に関して対称に配置された一対の環状導体と、 前記環状導体に沿つた翼端をその両端に形成す
ることにより、該両端が前記一対の環状導体と誘
電体層を介して容量的に結合されるようにした導
線を前記軸線に関して平行かつ対称に配置した導
線対とからなり、 この導線対は第一の導線対と第二の導線対との
二つであり、その第一の導線対は第二の導線対に
対して前記軸線のまわりに40°〜70°回転されて位
置され、かつ近接した導線間に位置する翼端間は
該翼端と前記誘電体層を介した前記環状導体とに
より形成される容量のみによる結合または導電体
で接続され、上記以外の翼端間は該翼端と前記誘
電体層を介した前記環状導体とにより形成される
容量のみによる結合によつて接続されていること
を特徴とする核磁気共鳴用高周波コイル。
[Claims] 1. A high-frequency coil used for excitation or detection of the magnetic resonance phenomenon, comprising: a pair of annular conductors having the same axis and arranged symmetrically with respect to a plane perpendicular to the axis; Wing tips along the annular conductor are formed at both ends thereof, so that the conductor wire is capacitively coupled to the pair of annular conductors via a dielectric layer in parallel and symmetrically with respect to the axis. The conducting wire pairs are a first conducting wire pair and a second conducting wire pair, and the first conducting wire pair is arranged around the axis line with respect to the second conducting wire pair. The blade tips that are rotated by 40° to 70° and located between adjacent conductor wires are coupled only by a capacitance formed by the blade tips and the annular conductor via the dielectric layer, or by a conductor. and the wing tips other than those mentioned above are connected by coupling only by capacitance formed by the wing tips and the annular conductor via the dielectric layer. coil.
JP60071432A 1985-04-03 1985-04-03 High-frequency coil for nuclear magnetic resonance Granted JPS61230052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60071432A JPS61230052A (en) 1985-04-03 1985-04-03 High-frequency coil for nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60071432A JPS61230052A (en) 1985-04-03 1985-04-03 High-frequency coil for nuclear magnetic resonance

Publications (2)

Publication Number Publication Date
JPS61230052A JPS61230052A (en) 1986-10-14
JPH0237769B2 true JPH0237769B2 (en) 1990-08-27

Family

ID=13460357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60071432A Granted JPS61230052A (en) 1985-04-03 1985-04-03 High-frequency coil for nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS61230052A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594975B2 (en) * 1987-09-21 1997-03-26 三菱電機株式会社 High frequency probe for NMR
JPH0458939A (en) * 1990-06-26 1992-02-25 Hitachi Ltd Probe of magnetic resonance inspecting device

Also Published As

Publication number Publication date
JPS61230052A (en) 1986-10-14

Similar Documents

Publication Publication Date Title
Hoburg Principles of quasistatic magnetic shielding with cylindrical and spherical shields
JPS58124936A (en) Device for generating and detecting component of magnetic field in magnetic resonance system
EP0112361B1 (en) Radiofrequency transducer and method of using same
EP0171972B1 (en) Nuclear magnetic resonance radio frequency antenna
EP0047065B1 (en) Distributed phase rf coil
JPS5839939A (en) High-frequency generating or receiving device for nuclear spin resonance device
JPS6331090B2 (en)
JP3066359B2 (en) Superconducting hybrid resonator for NMR signal reception
JPH0350541B2 (en)
JP2004511278A (en) Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils
JPS61742A (en) High-frequency coil device for nuclear magnetic resonance (nmr) mapping device
KR900002467B1 (en) Radio frequency field for nmr
JPS59138101A (en) Cavity resonator
US7102350B2 (en) Shielding apparatus for magnetic resonance imaging
US7482814B2 (en) Electric/magnetic field sensor
EP0486590A1 (en) Resonant cavities for nmr.
JPH0237769B2 (en)
JP4156512B2 (en) Device for suppressing electromagnetic coupling phenomenon
US9196946B2 (en) Resonator and biosensor system including the same
US4667160A (en) High frequency antenna device in nuclear-spin tomography apparatus and method for operating same
US3250985A (en) Microwave cavity resonator
US2811690A (en) Method for testing helix pitch
JPH0331047Y2 (en)
US6366093B1 (en) Re-entrant RF cavity resonator for magnetic resonance
JPH0247922Y2 (en)