JPH0237389B2 - ITSURYUGATAKOATSUEKISOSUISOKATOKOATSUKISOSUISOKATONOCHOKURETSUKOTEINYORISOJUSHITSUYUKARAKEISHITSUYUOSEIZOSURUHOHO - Google Patents

ITSURYUGATAKOATSUEKISOSUISOKATOKOATSUKISOSUISOKATONOCHOKURETSUKOTEINYORISOJUSHITSUYUKARAKEISHITSUYUOSEIZOSURUHOHO

Info

Publication number
JPH0237389B2
JPH0237389B2 JP12942581A JP12942581A JPH0237389B2 JP H0237389 B2 JPH0237389 B2 JP H0237389B2 JP 12942581 A JP12942581 A JP 12942581A JP 12942581 A JP12942581 A JP 12942581A JP H0237389 B2 JPH0237389 B2 JP H0237389B2
Authority
JP
Japan
Prior art keywords
catalyst
cylinder
hydrogenation
temperature
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12942581A
Other languages
Japanese (ja)
Other versions
JPS5832694A (en
Inventor
Kyoshi Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP12942581A priority Critical patent/JPH0237389B2/en
Publication of JPS5832694A publication Critical patent/JPS5832694A/en
Publication of JPH0237389B2 publication Critical patent/JPH0237389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 目 的 本発明は粗重質油から灯油・ジエツト燃料・ガ
ソリン等の軽質油を製造する方法のうち、粗重質
油をまず液相で高温高圧接触水素化して粗軽・中
質留分を生成させ、ついでこれを気相で高温高圧
接触水素化してさらに精製・軽質化するという2
段水素化法の改良に関するものである。
[Detailed Description of the Invention] Purpose The present invention is a method for producing light oil such as kerosene, jet fuel, gasoline, etc. from crude heavy oil. 2. A medium fraction is generated, which is then subjected to high temperature, high pressure catalytic hydrogenation in the gas phase to further refine and lighten it.
This paper relates to improvements in the stage hydrogenation process.

ここで粗重質油というのは石油系の蒸留残油の
ほか、頁岩粗油・サンドオイル・低温タール・石
炭液化重油等をも含めて総称するものであり、常
圧下の初留点が概ね330℃以上の高沸点留分を主
体とする粗油を言う。
Here, crude heavy oil is a general term that includes petroleum-based distillation residual oil, shale crude oil, sand oil, low-temperature tar, coal liquefied heavy oil, etc., and has an initial boiling point of approximately 330 at normal pressure. Refers to crude oil consisting mainly of high boiling point fractions above ℃.

近年原油の価格の高騰とその資源的限界が認識
されるに伴い、一方では炭化水素製造原料の多様
化がはかられ、頁岩粗油・サンドオイル・低温タ
ール等が注目されるようになつた。しかしこれら
はいずれも重質であり、また新たに開発される油
田も重質のものが多く、全体的に原料油は重質化
の傾向にある。他方従来重質油の主な用途であつ
た鉄鋼・火力発電等の熱源用には石炭等の代替エ
ネルギーへの切替・使用が進行中である。そのた
め液体燃料の需要は全体として軽質化の傾向にあ
つて、供給と需要との間に質的不均衡を生じつつ
ある。このため最近は粗重質油の軽質化技術がい
ちだんと重要視されるようになつてきた。
In recent years, as the price of crude oil has soared and its resource limitations have been recognized, raw materials for producing hydrocarbons have been diversified, with crude shale oil, sand oil, low-temperature tar, etc. gaining attention. . However, all of these oils are heavy, and many of the newly developed oil fields are also heavy, so there is an overall tendency for feedstock oil to become heavier. On the other hand, for heat sources such as steel and thermal power generation, which were the main uses of heavy oil in the past, a switch to and use of alternative energies such as coal is underway. For this reason, demand for liquid fuels as a whole is trending towards lighter fuels, creating a qualitative imbalance between supply and demand. For this reason, technology to lighten crude and heavy oil has recently become increasingly important.

しかしながら前述の粗重質油は、種類および産
地によつて程度の差はあるが、不純物として酸
素・硫黄・窒素などのヘテロ原子を含むアスフア
ルテンやビチユーメンなどの極性高分子化合物を
含み、さらにまたニツケル・ヴアナジウムのよう
な金属原子を含有する高分子有機錯化合物などを
含む場合もある。これらを接触水素化精製してヘ
テロ原子と金属原子を除去する反応(必然的に
軽・中質化を伴う)と、高分子炭化水素鎖また
は/および環の炭素―炭素結合を接触水素化分解
して軽質化するという反応とを連続的に行うこと
ができれば、粗重質油の水素化プラントおよび生
成した粗軽・中質油の水素化プラトンという独立
した2つのプラントを要せず、一つのプラントで
済むことになるので、経済的にきわめて大きな効
果を挙げることができる。
However, the above-mentioned crude heavy oil contains impurities such as polar polymer compounds such as asphaltene and bityumene, which contain heteroatoms such as oxygen, sulfur, and nitrogen, although the degree varies depending on the type and production area. It may also include a polymeric organic complex compound containing a metal atom such as vanadium. A reaction in which heteroatoms and metal atoms are removed by catalytic hydrorefining (inevitably accompanied by lightening/mediumization), and a catalytic hydrogenolysis of carbon-carbon bonds in polymeric hydrocarbon chains and/or rings. If the reaction of lightening and lightening could be carried out continuously, there would be no need for two independent plants: a hydrogenation plant for crude heavy oil and a hydrogenation plant for the produced crude, light and medium oil. Since this can be done with a plant, it can have an extremely large economic effect.

先行技術 粗重質油から前記高分子不純物を変成・除去す
る技術は、当初公害対策として、高硫黄の粗重油
を水素化精製して低硫黄重油を製造するために発
達した技術であつて、粗重油を液相で接触水素化
処理するに際し、水素化触媒を固定床・浮動床
(例えば特公昭42―26105号:H―oil法)・静止床
(例えば特公昭47―4627号および特公昭47―6219
号:工技院法)などで使用する方法が提案されて
いる。しかしこれらは反応性の高い含硫黄高分子
化合物だけを水素化脱流し、水素化生成油はその
まま製品とすることを目的とするものである。し
たがつて担体上に水素化活性成分を担持させた成
型または粗粒の触媒を比較的穏和な反応条件下で
使用する方法である。それでも実際には触媒の寿
命および再生に関していろいろの問題がある。
Prior art The technology for modifying and removing the above-mentioned polymer impurities from crude heavy oil was initially developed to produce low-sulfur heavy oil by hydrorefining high-sulfur crude heavy oil as a pollution control measure. When carrying out catalytic hydrogenation treatment of heavy oil in the liquid phase, the hydrogenation catalyst can be used in fixed bed, floating bed (e.g. Japanese Patent Publication No. 42-26105: H-oil method), stationary bed (e.g. Japanese Patent Publication No. 47-4627 and Japanese Patent Publication No. 47-1986: H-oil method). ―6219
A method has been proposed for use in the Institute of Technology Law). However, the purpose of these methods is to hydrogenate and deflow only highly reactive sulfur-containing polymer compounds, and use the hydrogenated oil as a product as it is. Therefore, this method uses a shaped or coarse-grained catalyst in which a hydrogenation active component is supported on a carrier under relatively mild reaction conditions. Nevertheless, in practice there are various problems with regard to catalyst life and regeneration.

一般に成型または粗粒触媒を用いて液相水素化
を高度に進行させようとすれば、粗重質油中のア
スフアルテンまたはビチユーメンなどがまず成型
または粗粒触媒の外表面に優先吸着され、ついで
熱分解・重縮合を起して高分子の多環芳香族構造
体いわゆる遊離炭素を生成し、これらが触媒表面
を被覆して触媒能の発揮を妨害する。すなわち水
素化を受け易い軟質スフアルテンを僅かしか含ま
ないパラフイン基系以外の粗重質油を液相水素化
しようとする場合、露出外表面積の小さい成型ま
たは粗粒触媒を使用すると、その反応操作形式の
如何にかかわらず、触媒寿命を工業的に可使用な
ほど永く保持することはきわめて困難である。ま
た接触水素化精製反応により遊離したニツケル・
ヴアナジウムなどの金属の硫化物などが触媒表面
に付着・被覆するが、これらもまた触媒の活性を
低下させる原因となる。
In general, if a shaped or coarse-grained catalyst is used to advance liquid phase hydrogenation to a high degree, asphaltenes or bityumens in crude heavy oil are first preferentially adsorbed on the outer surface of the shaped or coarse-grained catalyst, and then thermally decomposed.・Polycondensation occurs to produce a polymeric polycyclic aromatic structure, so-called free carbon, which coats the catalyst surface and obstructs the performance of the catalyst. In other words, when attempting to liquid-phase hydrogenate coarse heavy oils other than paraffin-based oils that contain only a small amount of soft sulphaltenes that are susceptible to hydrogenation, the use of shaped or coarse-grained catalysts with small exposed external surface areas will result in problems with the reaction operation format. Regardless of the circumstances, it is extremely difficult to maintain a catalyst life long enough to be industrially usable. In addition, nickel and
Sulfides of metals such as vanadium adhere to and coat the surface of the catalyst, but these also cause a decrease in the activity of the catalyst.

一般に遊離炭素の付着により劣化した触媒は、
水蒸気存在下の緩慢燃焼などの再生処理により、
その活性をある程度回復できる。しかし固定床反
応器の場合には、再生処理の間水素化操作を中断
せざるを得ず、これを避けようとすれば、複数の
反応器を設置し、操業複雑な切替方式となる。ま
た操業中触媒の抜き出しの可能な浮動床や静止床
の反応器の場合でも、抜き出した多量の廃触媒を
工業的規模で再生することは技術的にも経済的に
も大きな負担となる。さらにニツケル・ヴアナジ
ウムなどの金属の硫化物が付着して劣化した成型
触媒の再生は容易でなく、別個の廃触媒回収工場
に送らねばならない。
In general, catalysts that have deteriorated due to the adhesion of free carbon are
Through regeneration processing such as slow combustion in the presence of water vapor,
Its activity can be restored to some extent. However, in the case of a fixed bed reactor, the hydrogenation operation must be interrupted during the regeneration process, and if this is to be avoided, multiple reactors must be installed and a complicated switching system required for operation. Furthermore, even in the case of a floating bed or stationary bed reactor from which the catalyst can be extracted during operation, it is technically and economically burdensome to regenerate the large amount of extracted waste catalyst on an industrial scale. Furthermore, it is not easy to regenerate molded catalysts that have deteriorated due to adhesion of metal sulfides such as nickel and vanadium, and must be sent to a separate waste catalyst recovery plant.

上記固定床・浮動床・静止床による粗重質油の
液相水素化に際して生ずる問題点を解決する手段
として、微粉水素化触媒を分散・懸濁させた液相
懸濁触媒層(以下懸濁層と略称)の使用が考えら
れる。
As a means to solve the problems that occur during the liquid phase hydrogenation of crude and heavy oil using fixed beds, floating beds, and stationary beds, we developed a liquid phase suspension catalyst layer (hereinafter referred to as a suspension layer) in which a finely powdered hydrogenation catalyst is dispersed and suspended. (abbreviation)) may be used.

従来懸濁を反応相として工業的に利用した先例
は少なく、僅かに石炭直接液化の高温高圧液相水
素化法があるのみである。この石炭の直接液化法
によつて常圧下の沸点約200℃以下の軽質液体燃
料を製造しようとすれば、まず高温高圧の液相水
素化プラントにおいて石炭粉末・微粉水素化触媒
および重質油の混合物いわゆるペーストを水素化
して、主として重質油(ペースト製造用に循環使
用)と粗軽油とを製造する。ついでこの粗軽油を
別個の高温高圧気相水素化精製プラントにかけて
精製軽油とし、最後にこの精製軽油をまた別個の
高温高圧気相水素化分解プラントにかけてガソリ
ン等の軽質燃料油にするのが常法であつた。すな
わち独立した3個の高温高圧水素化プラントを連
用することが必要であり、このことが石炭液化工
場の建設費を巨額にし、液化軽質燃料油の製造原
価を著しく高くする大きな原因であつた。昭和十
年代末に、本発明者の属する当時の南満洲鉄道株
式会社中央試験所において、液相水素化筒と気相
水素筒とを高温分離筒を介して直列に結合する直
列型石炭液化法が考案され、小規模工業化連続試
験が実施されて、大きな注目をあびた。しかし期
待に反し、気相水素化筒内の成型触媒が次第に減
衰・失活するという結果になり、研究は中断され
てしまつた。
There are few precedents for the industrial use of suspension as a reaction phase, and there is only a high-temperature, high-pressure liquid-phase hydrogenation method that involves direct liquefaction of coal. In order to produce a light liquid fuel with a boiling point of approximately 200°C or less under normal pressure using this direct coal liquefaction method, first, coal powder/fine hydrogenation catalyst and heavy oil are used in a high-temperature, high-pressure liquid-phase hydrogenation plant. The mixture, so-called paste, is hydrogenated to produce primarily heavy oil (recycled for paste production) and crude light oil. This crude light oil is then passed through a separate high-temperature, high-pressure gas-phase hydrotreating plant to produce refined light oil, and finally, this refined light oil is passed through a separate high-temperature, high-pressure gas-phase hydrocracking plant to produce light fuel oil such as gasoline. It was hot. In other words, it is necessary to use three independent high-temperature, high-pressure hydrogenation plants in series, which is a major cause of the enormous construction costs of a coal liquefaction plant and the extremely high production cost of liquefied light fuel oil. At the end of the 1930s, at the South Manchuria Railway Co., Ltd. Central Research Laboratory, to which the present inventor belonged, a series-type coal liquefaction system was developed in which a liquid-phase hydrogenation cylinder and a gas-phase hydrogen cylinder were connected in series via a high-temperature separation cylinder. A method was devised, a series of small-scale industrial tests were carried out, and it attracted great attention. However, contrary to expectations, the molded catalyst inside the gas-phase hydrogenation cylinder gradually weakened and deactivated, and the research was discontinued.

その後長年月にわたりこの構想は埋れて来た
が、本発明者はその原因を追究した結果、その理
由を明らかにすることができた。
After that, this concept remained unresolved for many years, but as a result of investigating the cause, the present inventor was able to clarify the reason.

まず液化用原料炭中にはこれを精選しても7〜
10%の無機物を含む。これが触媒と共に液化残渣
中に集積残留するため、触媒の回収・再使用はも
ちろん、含有油分の回収をめざした液化残渣の処
分は技術的にも経済的にも非常に困難であつた。
そのため使い棄てのできる安価なしかし活性の低
い触媒(いずれも硫化鉄あるいは硫化鉄を生ずる
原料物質)が専ら各国で使用された。上記直列型
炭液化工業化試験もこの例外ではなかつた。
First of all, even if carefully selected coking coal for liquefaction is used, 7~
Contains 10% inorganic matter. Since this remains together with the catalyst in the liquefied residue, it has been extremely difficult both technically and economically to recover and reuse the catalyst, as well as to dispose of the liquefied residue with the aim of recovering the oil content.
Therefore, disposable, inexpensive, but low-activity catalysts (all of which are iron sulfide or raw materials that produce iron sulfide) were used exclusively in each country. The above-mentioned serial type coal liquefaction industrialization test was no exception to this.

このため第1段の液相水素化筒における水素化
進度は浅く、そのため多量の重質留分の油蒸気が
過剰の水素により第2段の気相水素化筒へ運びこ
まれ、筒内の全型水素化触媒を次第に減衰させる
結果になつたものと判定された。
Therefore, the progress of hydrogenation in the first stage liquid phase hydrogenation cylinder is shallow, and therefore a large amount of heavy fraction oil vapor is carried by excess hydrogen to the second stage gas phase hydrogenation cylinder, It was determined that this resulted in the gradual attenuation of the entire hydrogenation catalyst.

既述の如く、近年粗重質油の接触水素化による
軽質油の製造技術の確立が重要視されるようにな
つた。しかしこれまでに提案された技術の多く
は、公害対策上低硫黄重油を得る目的で発達した
液相接触水素化法と、つとに確立している中質油
の気相接触水素化によるジエツト燃料・ガソリン
等の軽質油の製造法という、独立した二つの水素
化法の単純な組み合せである。その際はじめの液
相接触水素化法には固定床・浮動床・静止床など
の触媒層が賞用され、懸濁層はほとんど全く顧み
られることがなかつた。このような結果を招来し
たのは第1に懸濁層の唯一の工業化例である石炭
直接液化法自体の操業が非常に難しかつたという
こと、第2に懸濁層と気相成型水素触媒充填層
(以下充填層と略称)とを直列に結合した前述の
工業化試験が所期の成果を挙げることができなか
つたこと、第3に微粉水素化触媒が懸濁状態で水
素化生成物中に同伴されて来るプロセスでは、生
成物からこの触媒を分離するのが面倒であること
などの定見が一般化していたためではないかと思
われる。
As mentioned above, in recent years, emphasis has been placed on establishing a technology for producing light oil by catalytic hydrogenation of crude heavy oil. However, most of the technologies that have been proposed to date are liquid-phase catalytic hydrogenation, which was developed to obtain low-sulfur heavy oil as a pollution control measure, and jet fuel, which is based on gas-phase catalytic hydrogenation of medium oil, which has been established.・It is a simple combination of two independent hydrogenation methods: a method for producing light oil such as gasoline. At that time, catalyst beds such as fixed beds, floating beds, and stationary beds were used in the first liquid-phase catalytic hydrogenation methods, and suspended beds were hardly considered at all. The reasons for this result were, firstly, that the direct coal liquefaction method itself, which is the only industrialized example of a suspended bed, was extremely difficult to operate; and secondly, the suspension bed and vapor-formed hydrogen catalyst were very difficult to operate. The above-mentioned industrialization test in which packed beds (hereinafter referred to as packed beds) were connected in series could not achieve the expected results, and thirdly, the finely divided hydrogenation catalyst was suspended in the hydrogenation product. This is thought to be due to the general consensus that it is troublesome to separate the catalyst from the products in the process that involves it.

特開昭53―78203号および特開昭54―40806号に
は、粉末触媒ことに水素化脱硫廃触媒の粉砕物を
用い、これと炭化水素と水素との混合物を400〜
480℃の温度および30〜100Kg/cm2Gの圧力下で反
応させて、前記炭化水素の水素化分解を行う方法
が提案されている。しかしこれらは比較的低い水
素圧で水素化精製して低硫黄重油を得ることを主
目的とする方法である。その際水素化生成物は粉
末触媒を混合したまま液状で取り出されるので、
全量の生成物から粉末触媒を機械的に分離すると
いう操作が必要となる。そしてさらに軽質化しよ
うとすれば、液状の生成物を蒸留して軽・中質油
留分の蒸気を取り出し凝縮して、これを気相水素
化処理を行う別個のプラントにかける必要があつ
た。
In JP-A-53-78203 and JP-A-54-40806, pulverized waste hydrodesulfurization catalyst is used as a powder catalyst, and a mixture of this, hydrocarbon, and hydrogen is
A method has been proposed in which the hydrocarbons are subjected to a reaction at a temperature of 480° C. and a pressure of 30 to 100 kg/cm 2 G. However, these are methods whose main purpose is to obtain low-sulfur heavy oil by hydrorefining at a relatively low hydrogen pressure. At that time, the hydrogenated product is taken out in liquid form with the powdered catalyst mixed in.
This requires mechanical separation of the powdered catalyst from the total product. In order to further reduce the weight, it was necessary to distill the liquid product to extract the vapor of the light and medium oil fraction, condense it, and send it to a separate plant for gas-phase hydrogenation. .

また特開昭55―165993号には、重質油中に微細
固体粒子状水素化触媒を懸濁させて、これを水素
化処理する方法が述べられているが、これはそれ
に続く接触分解工程の前処理として用いられてい
るのにすぎない。その主反応が水素を伴わない接
触熱分解である結果、遊離炭素が大量に生成する
のをおさえることができない。したがつて酸化焙
焼処理による廃触媒の再生を必要とするが、この
点で従来法の欠点を免れてはいない。
Furthermore, JP-A-55-165993 describes a method of suspending a fine solid particulate hydrogenation catalyst in heavy oil and hydrotreating it; It is only used as a pre-treatment. As the main reaction is catalytic pyrolysis without hydrogen, it is impossible to suppress the generation of a large amount of free carbon. Therefore, it is necessary to regenerate the spent catalyst by oxidative roasting treatment, but in this respect, the conventional methods are not free from the drawbacks.

発明の構成 本発明者は原料粗重質油(以下原料油と略称)
の無機物の含量が僅少であることに着目し、かつ
て石炭の直接液化法の工業化試験に従事した際に
得た諸知見を巧みに原料油の高温高圧接触水素化
による軽質油の製造法に応用して、従来法の欠点
を解消した本発明を完成するに至つたものであ
る。すなわち懸濁層を有する液相水素化筒と充填
層を有する気相水素化筒とを高温分離筒を介して
直列に結合した工程を採用することを基本とし、
液相水素化触媒のみならず後続する気相成型水素
化触媒の寿命をも延長させるという技術的ならび
に経済的効果を発揮させたものである。
Structure of the Invention The present inventor is a raw material crude heavy oil (hereinafter abbreviated as raw material oil)
Focusing on the fact that the content of inorganic substances in coal is very small, we skillfully applied the knowledge we gained when we were involved in the industrialization test of the direct liquefaction method of coal to a method for producing light oil by high-temperature, high-pressure catalytic hydrogenation of feedstock oil. As a result, the present invention, which eliminates the drawbacks of the conventional method, has been completed. In other words, it is based on a process in which a liquid-phase hydrogenation cylinder having a suspended layer and a gas-phase hydrogenation cylinder having a packed bed are connected in series via a high-temperature separation cylinder.
This method has the technical and economical effect of extending the life of not only the liquid-phase hydrogenation catalyst but also the subsequent gas-phase molded hydrogenation catalyst.

ここで「直列に結合した工程」と称するのは、
液相水素化筒で原料油を接触水素化することによ
り生成した粗軽・中質留分(常圧下の沸点が概ね
330℃以下で極性高分子化合物を含む留分)の蒸
気をいつたん凝縮して液状の粗軽・中質油を収得
する工程を経ることなく、粗軽・中質留分の蒸気
および未反応水素を主体とする生成気流(以下生
成気流と略称)を高温分離筒で含触媒残油スラリ
ーから分離した後そのまま、または生成気流中に
同伴されている粗重質留分(常圧下の沸点が概ね
330℃以上で極性高分子化合物を含む留分)の蒸
気のみを凝縮・分離するだけで、粗軽・中質留分
は蒸気のまま水素と共につぎに連結した気相水素
化筒へ送入するという工程を意味する。
Here, the term "series coupled processes" refers to
Coarse, light and medium fractions (boiling points under normal pressure are approximately
The vapor of crude, light and medium fractions and unreacted oil can be collected without going through the process of condensing the vapor of the fraction containing polar polymer compounds at temperatures below 330°C to obtain liquid crude, light and medium oil. After the generated gas stream mainly consisting of hydrogen (hereinafter referred to as the generated gas stream) is separated from the catalyst residual oil slurry in a high-temperature separation column, it can be used as it is, or the crude and heavy fraction entrained in the generated gas stream (the boiling point under normal pressure is approximately
By condensing and separating only the vapor (the fraction containing polar polymer compounds at temperatures above 330°C), the crude, light and medium fractions are sent as vapor together with hydrogen to the next connected gas-phase hydrogenation cylinder. It means the process of

(1) 基本構成とその特徴 本発明の基本構成および総合工程全体の流れ
を明らかにするため、以下添化の図面に従つて
説明するが、本発明の実施態様はこれらのみに
限定されるものではない。
(1) Basic structure and its characteristics In order to clarify the basic structure and overall process flow of the present invention, explanations will be given below with reference to the attached drawings, but the embodiments of the present invention are limited only to these. isn't it.

第1図において破線の左側A部は常圧機器を
配置した部分であり、破線の右側B部は高圧反
応帯域である。高圧反応帯域は、(a)原料油の液
相水素化工程、(b)液相水素化筒から溢流する生
成気流と含触媒残油スラリーの高温分離工程、
(c)生成気流中の粗軽・中質留分の気相水素化工
程、(d)生成油の分離・回収と水素の循環工程、
(e)含触媒残油スラリーの循環工程という5工程
に大別される。そしてこの懸濁層を用いた液相
水素化工程(a)を中心として、上記各工程を結合
した総合工程が本発明の特徴であり、後述のよ
うなすぐれた効果をもたらす。以下順次これら
の詳細について説明する。
In FIG. 1, part A on the left side of the broken line is a part where normal pressure equipment is arranged, and part B on the right side of the broken line is a high pressure reaction zone. The high-pressure reaction zone consists of (a) a liquid-phase hydrogenation process of feedstock oil, (b) a high-temperature separation process of the product gas overflowing from the liquid-phase hydrogenation column and the catalyst-containing residual oil slurry,
(c) Gas-phase hydrogenation process of coarse light and medium fractions in the produced air stream, (d) Separation and recovery of produced oil and hydrogen circulation process,
It is roughly divided into five steps: (e) circulation step of catalyst residual oil slurry; The present invention is characterized by a comprehensive process that combines the above-mentioned steps, centering on the liquid-phase hydrogenation step (a) using this suspension layer, and brings about excellent effects as described below. Details of these will be explained below.

(a) 原料油の液相水素化工程 ここでいう液相水素化工程とは、液相水素
化筒内に懸濁層を作り、これに原料油と水素
を通じて原料油を軽・中質化する工程であ
る。本工程の特徴は、微粉水素化触媒を懸濁
したまま液状で液相水素化筒から溢流する未
軽質化重質残油を主成分とする含触媒残油ス
ラリー(以下スラリーと略称)をつぎの高温
分離筒で生成気流から分離した後、これを液
相水素化筒に循環送入することにより、最終
的に原料油をほとんど全部粗軽・中質留分の
蒸気とする点にある。
(a) Liquid-phase hydrogenation process for feedstock oil The liquid-phase hydrogenation process referred to here is a process in which a suspension layer is created in a liquid-phase hydrogenation cylinder, and feedstock oil and hydrogen are passed through this layer to lighten and neutralize the feedstock oil. This is the process of The feature of this process is that a catalyst-containing residual oil slurry (hereinafter abbreviated as "slurry") whose main component is unlightened heavy residual oil that overflows from the liquid-phase hydrogenation cylinder in a liquid state with finely powdered hydrogenation catalyst suspended in it is produced. After separating it from the produced gas stream in the next high-temperature separation column, it is circulated into the liquid-phase hydrogenation column, thereby converting almost all of the feedstock oil into vapor of coarse, light and medium fractions. .

原料油はまずその水分を分離し、ついでこ
れを遠心分離装置・加熱沈降分離装置等(図
示せず)にかけて、その中に含まれる無機・
有機の固形物微粉を充分に分離する。この後
ライン11を経て原料供給槽12に送り、こ
こで微粉水素化触媒を分散・懸濁させた後原
料ポンプ13で加圧し、ライン14からの常
温常圧換算で約103〜104容積倍の(循環)高
圧水素と混合し、ついで熱交換器15、予熱
器16を経て液相水素化反応開始温度以上に
加熱した後、液相水素化筒17の底部に連続
的に送入する。最初から触媒と水素を混合す
るのは、予熱段階では原料油が熱分解・重縮
合を起して遊離炭素を生成するのを防止する
ためである。微粉水素化触媒は、これを定常
運転時にはスラリーとして高温分離筒18の
底部から抜き出し、空気による冷却器26・
温スラリー貯槽28・常圧スラリー貯槽31
を経て原料供給槽12に循環供給する。この
ほかポンプ27によりり熱スラリーまたはポ
ンプ29により温スラリーを直接液相水素化
筒に送入することもできる。
The water content of the feedstock oil is first separated, and then the inorganic and
Thoroughly separate fine organic solids. After that, it is sent to the raw material supply tank 12 via the line 11, where the fine powder hydrogenation catalyst is dispersed and suspended, and then pressurized by the raw material pump 13, and the volume from the line 14 is approximately 10 3 to 10 4 in terms of room temperature and normal pressure. It is mixed with twice as much (circulated) high-pressure hydrogen, then heated to a temperature higher than the liquid phase hydrogenation reaction initiation temperature via a heat exchanger 15 and a preheater 16, and then continuously fed into the bottom of the liquid phase hydrogenation cylinder 17. . The reason why the catalyst and hydrogen are mixed from the beginning is to prevent the feedstock oil from undergoing thermal decomposition and polycondensation to generate free carbon during the preheating stage. During steady operation, the finely divided hydrogenation catalyst is extracted as a slurry from the bottom of the high-temperature separation column 18, and then passed through an air cooler 26.
Warm slurry storage tank 28/Normal pressure slurry storage tank 31
The raw material is circulated and supplied to the raw material supply tank 12 through. In addition, it is also possible to directly feed the hot slurry using the pump 27 or the hot slurry using the pump 29 to the liquid phase hydrogenation cylinder.

反応系に初めて触媒を供給する時は予め微
粉水素化触媒と熱的に安定な重質油とをよく
混合して、触媒を濃厚に懸濁した運転開始用
を含触媒重質油を製造して置き、これをライ
ン34から原料供給槽12に送入し、この中
でよく混合して原料油中に均一に分散・懸濁
させる。このためには通常原料供給槽内に撹
拌機を設置して置く。運転開始時の新水素お
よび定常運転時の補給水素は高圧水素ライン
25から供給する。
When supplying the catalyst to the reaction system for the first time, the finely divided hydrogenation catalyst and thermally stable heavy oil are thoroughly mixed in advance to produce catalyst heavy oil containing a thick suspension of the catalyst for starting operation. This is then fed into the raw material supply tank 12 through the line 34, where it is thoroughly mixed to be uniformly dispersed and suspended in the raw material oil. For this purpose, a stirrer is usually installed in the raw material supply tank. Fresh hydrogen at the start of operation and make-up hydrogen during steady operation are supplied from the high-pressure hydrogen line 25.

微粉水素化触媒としては従来公知の重質油
水素化活性のある触媒の微粉ならいずれも使
用できるが、とくに活性が高ければ高価な触
媒でも、たとえば二硫化モリブデンまたは二
硫化タングステンを主成分とする多成分触媒
でも、あるいはこれらの担持触媒でも、これ
を使用できるという利点がある。既述の如く
懸濁層はかつて石炭の直接液化法において採
用されていたが、液化用原料炭中には通常選
炭後でも7〜10%の無機物を含んでおり、こ
れが触媒と共に液化残渣中に集積残留するた
めに、触媒の回収・再使用は困難となり、結
局使い棄てのできる安価なしかし活性の低い
触媒を使用せざるを得なかつた。これに対し
粗重質油の場合は無機物の含有量が非常に少
ないため、本発明のごとく使用済み触媒の循
環再使用が可能となる。したがつて活性が高
ければ高価な触媒でも、これを数十%という
高濃度で循環使用することが可能になり、そ
のため原料油の高圧水素化の生産性と経済性
を著しく高めることができる。
As the finely divided hydrogenation catalyst, any conventionally known finely divided catalyst having heavy oil hydrogenation activity can be used, but if the activity is particularly high, even expensive catalysts may be used, such as molybdenum disulfide or tungsten disulfide as the main component. The advantage is that it can be used either as a multicomponent catalyst or as a supported catalyst. As mentioned above, suspension beds were once used in the direct liquefaction method of coal, but coking coal for liquefaction usually contains 7 to 10% inorganic matter even after coal preparation, and this together with the catalyst remains in the liquefaction residue. Because of the accumulated residue, it becomes difficult to recover and reuse the catalyst, and in the end, we have no choice but to use disposable, inexpensive catalysts with low activity. On the other hand, in the case of crude heavy oil, the content of inorganic substances is very low, so that the used catalyst can be recycled and reused as in the present invention. Therefore, if the activity is high, even an expensive catalyst can be reused at a high concentration of several tens of percent, thereby significantly increasing the productivity and economic efficiency of high-pressure hydrogenation of feedstock oil.

懸濁する微粉水素化触媒の粒径は微細なほ
ど活性面積は広く、また懸濁油の安定度も良
いので、たとえばミクロン単位の数値である
ことが望ましい。
The finer the particle size of the suspended finely divided hydrogenation catalyst, the wider the active area, and the better the stability of the suspended oil, so it is desirable that the particle size be in the micron range, for example.

このような微粉触媒の製法としては沈澱と
油との混〓法や塩水溶液と油との乳化液を熱
分解する方法など、既知の方法をいずれも利
用できる。このような微粉であることによつ
て、触媒の重量当りの活性表面積は著しく増
加して、触媒水素化効率が高くなると共に、
スラリーのポンプ輸送などの取扱もまた容易
になる。一般に原料油の反応性に応じ最適な
触媒濃度を設定するが、通常懸濁層における
触媒濃度は5〜20容量%くらいが適当であ
る。
As a method for producing such a fine powder catalyst, any known method can be used, such as a method of mixing precipitate with oil or a method of thermally decomposing an emulsion of an aqueous salt solution and oil. By being such a fine powder, the active surface area per weight of the catalyst is significantly increased, and the catalytic hydrogenation efficiency is increased.
Handling, such as pumping the slurry, is also facilitated. Generally, the optimal catalyst concentration is determined depending on the reactivity of the feedstock oil, and the appropriate catalyst concentration in the suspension layer is usually about 5 to 20% by volume.

液相水素化筒の運転諸条件すなわち送油
量・水素対原料油の比・反応圧力・反応温度
などは、原料油の反応性および触媒の活性・
粒径とその懸濁濃度さらに懸濁層の層高など
によつて変る。一般に原料油の液空間速度は
1〜5hr-1、水素対原料油の容積比は常温常
圧換算で約103〜104、圧力は通常130〜300気
圧、反応温度は約370〜440℃である。液相水
素化筒内では反応熱による温度上昇があるの
で、原料油および水素は液相水素化筒におけ
る反応開始温度である約350〜390℃よりやや
高い程度に熱交換器15・予熱器16で加熱
して送入すれば良い。
The operating conditions of the liquid-phase hydrogenation cylinder, such as the amount of oil fed, the ratio of hydrogen to feedstock oil, the reaction pressure, and the reaction temperature, depend on the reactivity of the feedstock oil and the activity and activity of the catalyst.
It varies depending on the particle size, its suspended concentration, and the height of the suspended layer. In general, the liquid space velocity of feedstock is 1 to 5 hr -1 , the volume ratio of hydrogen to feedstock is approximately 10 3 to 10 4 when converted to normal temperature and pressure, the pressure is usually 130 to 300 atm, and the reaction temperature is approximately 370 to 440°C. It is. Since the temperature rises in the liquid-phase hydrogenation cylinder due to the heat of reaction, the feedstock oil and hydrogen are heated to a temperature slightly higher than the reaction starting temperature of approximately 350 to 390°C in the liquid-phase hydrogenation cylinder through the heat exchanger 15 and preheater 16. All you have to do is heat it up and send it in.

アスフアルテンやビチユーメンの含有量が
僅少で、直鎖状の化学構造を持つ成分に富ん
だ原料油、たとえばパラフイン基系石油の残
油や頁岩粗油の場合には、所望の反応速度を
与える反応温度と反応圧力(水素分圧)はい
ずれも比較的低くて済む。たとえば370〜400
℃・200気圧以下でも充分目的を達成し得る
場合がある。しかし硬質のアスフアルテンに
富んだナフテン基系石油の残油や多環芳香族
成分に富んだ頁岩粗油おおよび低温タール・
石炭液化重油などを原料油とする場合には、
反応温度と反応圧力をやや高めに、たとえば
400〜440℃・200気圧以上にすることが望ま
しい。またかかる高沸点留分に富んだ原料油
の場合は、これに本発明の方法による生成中
質留分の一部を混合・稀釈して使用すれば、
懸濁層への水素の溶解度を増加して、水素分
圧の増大と同様の効果を招来する。さらに加
えて、懸濁層内のアスフアルテン乃至ビチユ
ーメンの濃度を減少させるので、触媒能力の
発揮に有利となる。このように生成中質油の
混入使用は一見原料油の液相水素化筒内の滞
留時間を短くするため不利のように思われよ
うが、実際にはかえつて技術的にも経済的に
も有利となる場合が多い。
In the case of feedstock oils that have a small content of asphaltenes and bityumenes and are rich in components with a linear chemical structure, such as paraffin-based petroleum residues or shale crude oils, the reaction temperature that provides the desired reaction rate is required. and reaction pressure (hydrogen partial pressure) are both relatively low. For example 370-400
In some cases, the purpose can be fully achieved even at temperatures below ℃ and 200 atm. However, hard asphaltene-rich naphthene-based petroleum residues, polycyclic aromatic-rich shale crude oils, and low-temperature tars and
When using raw material oil such as coal liquefied heavy oil,
By increasing the reaction temperature and pressure slightly, for example,
It is desirable to maintain the temperature at 400-440℃ and at least 200 atm. In addition, in the case of feedstock oil rich in such high boiling point fractions, if a part of the medium fraction produced by the method of the present invention is mixed and diluted with it and used,
Increasing the solubility of hydrogen in the suspended layer leads to an effect similar to increasing the hydrogen partial pressure. In addition, since the concentration of asphaltene or bityumen in the suspended layer is reduced, it is advantageous for exerting the catalytic ability. At first glance, mixing and using produced medium oil may seem disadvantageous because it shortens the residence time of feedstock oil in the liquid phase hydrogenation cylinder, but in reality it is technically and economically disadvantageous. It is often advantageous.

懸濁槽内では原料油中極性高分子化合物の
ヘテロ原子や高分子有機錯化合物中の金属原
子は大部分水素化させて、酸素は水に、硫黄
は硫化水素に、窒素はアンモニアに、また金
属はさらに硫化水素と反応し硫化物となつ
て、いずれも炭化水素環または鎖から分離さ
れる。その際これらヘテロ原子・金属原子の
除去により分子量は低下するが、実質炭化水
素成分もまた一部水素化分解されて軽・中質
化され、これと同時にメタン・エタン・プロ
パン等の炭化水素ガスを少量副生する。ここ
で原料油の全部をワンパスで軽・中質化する
必要はなく、むしろその一部即ち概ね30〜70
%を軽・中質化するにとどめる。そして残り
の重質残油はこれを次の高温分離筒18内で
微粉水素化触媒と共にスラリーとして生成気
流から気液分離した後、液相水素化筒へ循環
送入して再使用する(後述の(b)工程および(e)
工程)。
In the suspension tank, most of the heteroatoms of the polar polymer compounds in the feed oil and the metal atoms in the polymer organic complex compounds are hydrogenated, and oxygen is converted to water, sulfur to hydrogen sulfide, nitrogen to ammonia, and The metal further reacts with hydrogen sulfide to form a sulfide, both of which are separated from the hydrocarbon ring or chain. At this time, the molecular weight decreases due to the removal of these heteroatoms and metal atoms, but some of the actual hydrocarbon components are also hydrogenolyzed and become light and medium, and at the same time, hydrocarbon gases such as methane, ethane, and propane are produced. A small amount of by-product is produced. Here, it is not necessary to lighten or mediumize all of the feedstock oil in one pass, but rather a portion of it, approximately 30 to 70
% should be reduced to light/medium. Then, the remaining heavy residual oil is separated into gas and liquid from the generated air stream as a slurry together with a finely divided hydrogenation catalyst in the next high-temperature separation column 18, and is then recirculated and sent to the liquid-phase hydrogenation column for reuse (described later). Step (b) and (e) of
process).

液相水素化筒の温度は原料油の予熱温度お
よび循環水素量で調節するのが基本である。
しかしいつたん限度を越えて温度が上昇し始
めると、水素化反応が加速されて反応熱をま
すます発生し、温度は急上昇して暴走する危
険がある。そこであらかじめ循環スラリーの
一部を抜き出して冷却器付き貯槽28内に冷
却・貯蔵しておき、必要に応じてポンプ29
で液相水素化筒へ送入することによつて温度
調整に役立たせる。さらに緊急を要する場合
には本発明による生成油を分留して貯えられ
ている軽・中質油を適当量液相水素化筒に送
入すれば、その蒸発熱によつて容易に反応温
度を制御することができる。
The temperature of the liquid phase hydrogenation cylinder is basically adjusted by the preheating temperature of the feedstock oil and the amount of circulating hydrogen.
However, once the temperature exceeds the limit and begins to rise, the hydrogenation reaction is accelerated and more reaction heat is generated, causing the temperature to rise rapidly and run out of control. Therefore, a part of the circulating slurry is extracted in advance, cooled and stored in a storage tank 28 equipped with a cooler, and pumped 29 as needed.
By feeding it into the liquid phase hydrogenation cylinder, it is useful for temperature adjustment. Furthermore, if an emergency is required, by fractionating the produced oil according to the present invention and feeding an appropriate amount of the stored light/medium oil into the liquid phase hydrogenation cylinder, the reaction temperature can be easily raised by the heat of evaporation. can be controlled.

本発明の方法によれば固定床・浮動床・静
止床などの用いる従来法よりもはるかに高い
触媒濃度を用いることができる。その結果高
い水素化率を維持しつつ、しかも従来法より
も低い温度たとえば20〜40℃低い反応温度で
操業できる。そのため液相水素化筒上部から
流出する生成気流中に含まれる粗重質留分蒸
気の含有率を従来法よりも低くおさえること
ができる。その結果あとで説明する高温分離
筒内部機構による粗重質留分蒸気の分離効果
とあいまつて、次の気相水素化筒に送入され
る生成気流中に同伴されている粗重質留分蒸
気の含有量は著しく少なくなり、その結果気
相水素化触媒の寿命は非常に延長されること
となる。
The method of the present invention allows the use of much higher catalyst concentrations than conventional methods using fixed beds, floating beds, stationary beds, etc. As a result, while maintaining a high hydrogenation rate, it is possible to operate at a reaction temperature lower, for example, by 20 to 40°C, than in conventional methods. Therefore, the content of crude heavy fraction vapor contained in the generated gas stream flowing out from the upper part of the liquid phase hydrogenation column can be kept lower than in the conventional method. As a result, combined with the separation effect of the crude and heavy distillate vapor by the internal mechanism of the high-temperature separation column, which will be explained later, the crude and heavy distillate vapor entrained in the product air stream sent to the next gas-phase hydrogenation column is The content is significantly lower, as a result of which the lifetime of the gas phase hydrogenation catalyst is greatly extended.

(b) 生成気流とスラリーの高温分離工程 こうして液相水素化反応後は生成気流とス
ラリーとを生ずるので、これらを液相水素化
筒上部より連続的に溢流させてつぎの高温分
離筒18に送る。ここで液相水素化筒からの
溢流物を生成気流とスラリーとに分離する。
高温分離筒は通常の気液分離機能を有するも
のを使用する。高温分離筒の下部にはスラリ
ー貯留部を設け、生成気流出口にはミスト捕
集器(図示せず)を設ける。
(b) High-temperature separation process of product airflow and slurry After the liquid-phase hydrogenation reaction, a product airflow and slurry are generated, so these are continuously overflowed from the top of the liquid-phase hydrogenation column to the next high-temperature separation column 18. send to Here, the overflow from the liquid phase hydrogenation cylinder is separated into a product stream and a slurry.
The high-temperature separation cylinder used has a normal gas-liquid separation function. A slurry storage section is provided at the bottom of the high-temperature separation cylinder, and a mist collector (not shown) is provided at the generated air outlet.

(c) 粗軽・中質留分の気相水素化工程 粗軽・中質留分の水素化は充填層を有する
気相水素化筒で行う。装置および触媒は公知
のものでよいが、この工程の特徴とする点は
生成気流を高温分離筒内でスラリーから分離
した後、気相のまま気相水素化筒に送入して
直ちに接触水素化する点にある。既述の如く
懸濁層では粗重質油の高い反応率を比較的低
い温度で達成できる。そのため生成気流中に
同伴されている粗重質留分の蒸気は減少する
ので、気相水素化筒の成型触媒の劣化は減少
し、その寿命は延びる。
(c) Gas-phase hydrogenation process for coarse, light, and medium fractions Hydrogenation of coarse, light, and medium fractions is performed in a gas-phase hydrogenation cylinder with a packed bed. Although known equipment and catalysts may be used, this process is characterized by separating the generated gas stream from the slurry in a high-temperature separation column, and then feeding it as a gas into a gas-phase hydrogenation column, where it is immediately converted into catalytic hydrogen. It is on the verge of becoming a reality. As mentioned above, in the suspension layer, a high conversion rate of crude heavy oil can be achieved at a relatively low temperature. As a result, the amount of crude heavy fraction vapor entrained in the produced gas stream is reduced, so that the deterioration of the shaped catalyst in the gas phase hydrogenation cylinder is reduced and its life is extended.

第1図において、高温分離筒18で分離し
た生成気流は、液相水素化筒で分解・生成し
た粗軽・中質留分の蒸気および未反応水素を
主体とし、これに若干量の分解生成ガス(硫
化水素・アンモニア・水蒸気・メタン・エタ
ン・プロパン等)および高温分離筒出口温度
における気液平衡に由来する粗重質留分の蒸
気を含んでいる。このような生成気流を連続
的につぎの気相水素化筒19へ送入し、高温
高圧で接触水素化して、粗軽・中質留分をさ
らに精製・軽質化する。
In Fig. 1, the generated gas stream separated in the high-temperature separation column 18 is mainly composed of vapor of coarse light and medium fractions decomposed and produced in the liquid phase hydrogenation column, and unreacted hydrogen, with a small amount of decomposed products. Contains gases (hydrogen sulfide, ammonia, water vapor, methane, ethane, propane, etc.) and crude heavy fraction vapor derived from vapor-liquid equilibrium at the exit temperature of the high-temperature separation tube. Such a generated gas stream is continuously sent to the next gas phase hydrogenation column 19, where it is subjected to catalytic hydrogenation at high temperature and high pressure to further refine and lighten the crude light and medium fractions.

気相水素化筒で用いる成型水素化触媒とし
ては、常用される水素化精製触媒および水素
化分解触媒を併用するのが効果的である。た
とえば硫化モリブデンと硫化ニツケルをアル
ミナおよびシリカアルミナにそれぞれ担持さ
せた3元触媒を併用することが好ましい。気
相水素化筒に送入する粗軽・中質留分の蒸気
の液空間速度は通常0.5〜3hr-1、圧力は液相
水素化筒に準じ、反応温度は390〜460℃であ
る。
As the shaped hydrogenation catalyst used in the gas phase hydrogenation cylinder, it is effective to use commonly used hydrorefining catalysts and hydrocracking catalysts together. For example, it is preferable to use a three-way catalyst in which molybdenum sulfide and nickel sulfide are supported on alumina and silica-alumina, respectively. The liquid hourly space velocity of the vapor of the coarse, light and medium fractions fed into the gas phase hydrogenation cylinder is usually 0.5 to 3 hr -1 , the pressure is the same as that of the liquid phase hydrogenation cylinder, and the reaction temperature is 390 to 460°C.

気相水素化筒でも反応熱に基く反応温度の
急激な上昇が起きるが、既知の方法たとえば
充填層を数段に区切り、各段の中間に冷却用
水素を送入する方法を用いれば、反応温度を
自由に調節できる。ライン37は冷却用高圧
水素供給管である。冷却用水素は循環水素・
補給用新水素のいずれを用いても良い。
Even in a gas-phase hydrogenation cylinder, a rapid rise in reaction temperature occurs due to the reaction heat, but if a known method is used, such as dividing a packed bed into several stages and feeding cooling hydrogen between each stage, the reaction can be improved. You can freely adjust the temperature. Line 37 is a high pressure hydrogen supply pipe for cooling. Hydrogen for cooling is recycled hydrogen.
Any new hydrogen for replenishment may be used.

(d) 生成油の分離・回収と水素の循環工程 気相水素化筒19で水素化精製・水素化分
解されて生成した軽質留分に富んだ生成油の
蒸気と未反応水素を主体とする気流は、これ
を熱交換器15により冷却した後、アンモニ
ウムカーバメートの析出を防止するため必要
に応じ適当量の蒸留水を枝管68より注入
し、水冷却器20によりさらに冷却し生成油
の蒸気を凝縮・液化してから、低温分離筒2
1に送入し、液状生成油および凝縮水と未反
応水素を主成分とする循環ガスとに分離す
る。前者はライン22により高圧反応系外に
取り出し、精製・分留工場に送つて、軽質油
および中質油製品とする。後者は高圧水素循
環ポンプ23・ライン14を経て反応系に循
環し、繰り返し使用する。この循環ガス中に
は水素のほか、水素化反応副生物であるメタ
ン・エタン・プロパンなどの炭化水素ガスお
よび少量の硫化水素・アンモニア・水蒸気・
炭酸ガスなどが混入・著積して来るので、そ
の一部をライン24を経て高圧反応系外に排
出し、ガス精製設備を経て水素回収工場へ送
る。ライン25は運転開始時における新水素
(高圧)の供給ラインであるが、操業中消費
された水素の補給ラインとしても使用され
る。気相水素筒の冷却用としてライン37に
より新水素を補給する場合には、ライン25
からの水素の補給量は減少する。
(d) Separation/recovery of produced oil and hydrogen circulation process The main components are the vapor of the produced oil rich in light fractions produced by hydrorefining and hydrocracking in the gas phase hydrogenation cylinder 19, and unreacted hydrogen. After the airflow is cooled by the heat exchanger 15, an appropriate amount of distilled water is injected from the branch pipe 68 as necessary to prevent the precipitation of ammonium carbamate, and the airflow is further cooled by the water cooler 20 to form the vapor of the produced oil. After condensing and liquefying the
1 and separated into liquid produced oil, condensed water, and circulating gas whose main component is unreacted hydrogen. The former is taken out of the high-pressure reaction system through line 22 and sent to a refining/fractionation plant to produce light oil and medium oil products. The latter is circulated to the reaction system via the high-pressure hydrogen circulation pump 23 and line 14 and used repeatedly. In addition to hydrogen, this circulating gas contains hydrocarbon gases such as methane, ethane, and propane, which are hydrogenation reaction byproducts, as well as small amounts of hydrogen sulfide, ammonia, water vapor, and
Since carbon dioxide and other gases are mixed in and accumulated, a portion of the gas is discharged from the high-pressure reaction system through line 24 and sent to a hydrogen recovery factory via gas purification equipment. Line 25 is a supply line for fresh hydrogen (high pressure) at the start of operation, but is also used as a replenishment line for hydrogen consumed during operation. When replenishing fresh hydrogen through line 37 for cooling the gas phase hydrogen cylinder, line 25
The amount of hydrogen replenishment from

(e) スラリーの循環工程 高温分離筒の下部にはスラリーが滞留す
る。これを高温分離筒の底部から抜き出し、
空気による冷却器26でポンプ27の最高常
用温度まで降下させた熱スラリーとした後、
冷却器付き温スラリー貯槽28・ライン3
0・常圧スラリー貯槽31・ポンプ32を経
て原料供給タンク12に循環送入する。この
ほかポンプ27により熱スラリーまたはポン
プ29により温スラリーを直接液相水素化筒
に循環送入することもできる。熱スラリーま
たは温スラリーを直接循環することにより液
相水素化筒の温度調整を容易に行うことがで
きる。スラリーを原料供給タンクに循環する
方法と液相水素化筒に直接循環する方法は併
用してもよい。
(e) Slurry circulation process Slurry remains at the bottom of the high-temperature separation column. This is extracted from the bottom of the high-temperature separation cylinder,
After the slurry is cooled down to the maximum operating temperature of the pump 27 using an air cooler 26,
Warm slurry storage tank 28/line 3 with cooler
The slurry is circulated and fed into the raw material supply tank 12 via the normal pressure slurry storage tank 31 and pump 32. In addition, the pump 27 can circulate the hot slurry or the pump 29 can directly circulate the hot slurry to the liquid phase hydrogenation cylinder. By directly circulating the hot slurry or hot slurry, the temperature of the liquid phase hydrogenation cylinder can be easily adjusted. A method of circulating the slurry to the raw material supply tank and a method of directly circulating the slurry to the liquid phase hydrogenation cylinder may be used in combination.

このようにスラリーを循環することにより
スラリー中の微粉水素化触媒は繰り返し液相
水素化筒に送入されて液相懸濁触媒層を構成
し、またスラリー中の重質残油も繰返し水素
化を受けることにより、最終的にはその全部
あるいはほとんど全部が水素化精製と水素化
分解を受けて粗軽・中質留分に変わることに
なる。
By circulating the slurry in this way, the finely divided hydrogenation catalyst in the slurry is repeatedly fed into the liquid phase hydrogenation column to form a liquid phase suspension catalyst layer, and the heavy residual oil in the slurry is also repeatedly hydrogenated. Eventually, all or almost all of it undergoes hydrorefining and hydrocracking to be converted into coarse, light and medium fractions.

スラリー中の触媒などの微粉固形物濃度は
約40容量%(微粉固形物4容量に残油6容
量)が上限なので、ポンプ27,29および
32におけるスラリー濃度がこの上限を越え
ないように運転諸条件を調整する。液相水素
化筒の温度が上昇すれば軽・中質留分の蒸気
の生成量は多くなり、原料油の毎時送入量が
一定の場合、液状の重質残油は減少する。重
質残油が減少すれば、触媒濃度は増大する。
しかし残油スラリー中の触媒濃度は上記限界
を越えないようにしなければならない。そこ
で原料油の毎時送入量を多くするか、液相水
素筒の温度を降下させる。実際の操作におい
ては、高温分離筒18内のスラリーの液面を
所定値に保ち得るように、液相水素化筒17
への原料油・水素・熱スラリー・温スラリー
の毎時送入量を計測し制御する。
The upper limit of the concentration of fine powder solids such as catalyst in the slurry is approximately 40% by volume (4 volumes of fine powder solids and 6 volumes of residual oil), so the operating conditions must be adjusted so that the slurry concentration in pumps 27, 29 and 32 does not exceed this upper limit. Adjust conditions. If the temperature of the liquid-phase hydrogenation cylinder increases, the amount of light and medium distillate vapor produced will increase, and if the hourly feed rate of feedstock oil is constant, the amount of liquid heavy residual oil will decrease. As the heavy residual oil decreases, the catalyst concentration increases.
However, the catalyst concentration in the residual oil slurry must not exceed the above limits. Therefore, either the hourly feed rate of feedstock oil is increased or the temperature of the liquid phase hydrogen cylinder is lowered. In actual operation, the liquid phase hydrogenation column 17 is
Measures and controls the hourly flow rate of feedstock oil, hydrogen, hot slurry, and hot slurry.

以上のような5工程を結合して総合工程とす
ることにより、粗重質油の高圧液相水素化プラ
ントと粗軽・中質油の高圧気相水素化プラント
という2個の独立払ラントの連用効果を1個の
直列型プラントで実現・獲得するという大きな
成果をあげ得ることとなる。
By combining the above five processes into a comprehensive process, two independent plants, a high-pressure liquid-phase hydrogenation plant for crude heavy oil and a high-pressure gas-phase hydrogenation plant for crude, light and medium oil, can be used in tandem. It will be possible to achieve great results by achieving and obtaining these effects with a single series-type plant.

本発明では上記総合工程の実施態様につい
て、さらに以下の各項(特許請求の範囲の番号
順に記載)に述べるような新規の工夫を凝ら
し、本直列型高圧水素化プロセスの技術的改良
と経済性向上をはかつている。
In the present invention, the embodiments of the above-mentioned comprehensive process are further devised with new ideas as described in the following sections (listed in numerical order of the claims), resulting in technical improvements and economic efficiency of the present serial high-pressure hydrogenation process. We are making improvements.

(2) 高温分離筒における水素化 高温分離筒においては、液相水素化筒からの
溢流物を筒上部から送入して単純な気液分離を
行い、筒貯部から生成気流筒底部からスラリー
を抜き出してもよい。しかし筒内の空間をより
効果的に利用するために、筒内にスラリー貯留
層を形成させ、液相水素化筒からの溢流物を高
温分離筒底部に送入して、溢流物中の生成気流
が上記貯留層中を上昇してから気液分離するよ
うにすれば一層効率的である。このようにする
ことによつて生成気流中に多量に存在する水素
によつて貯留層中の残油をさらに水素化するこ
とができる。この貯留層中には触媒が濃縮され
た状態で存在するので、難反応性の多環芳香族
化合物の核水素化分解をさらに促進することに
なる。この場合貯留層の高さは設計上許される
限り高くした方が効果は大きい。第1図におけ
る点線38は液相水素化筒17からの溢流物を
高温分離筒18の底部に送入する際のラインを
示す。
(2) Hydrogenation in the high-temperature separation column In the high-temperature separation column, the overflow from the liquid-phase hydrogenation column is fed from the top of the column for simple gas-liquid separation, and the produced gas is transferred from the column storage section to the bottom of the column. The slurry may be extracted. However, in order to use the space inside the cylinder more effectively, a slurry reservoir layer is formed inside the cylinder, and the overflow from the liquid phase hydrogenation cylinder is sent to the bottom of the high-temperature separation cylinder. It is more efficient if the generated airflow rises in the reservoir layer and then undergoes gas-liquid separation. By doing so, the residual oil in the reservoir can be further hydrogenated by the large amount of hydrogen present in the generated gas stream. Since the catalyst exists in a concentrated state in this reservoir, it further promotes the nuclear hydrogenolysis of the polycyclic aromatic compound which is difficult to react. In this case, the effect will be greater if the height of the reservoir is as high as the design allows. The dotted line 38 in FIG. 1 indicates the line through which the overflow from the liquid phase hydrogenation column 17 is fed to the bottom of the high temperature separation column 18.

(3) 生成気流より粗重質留分蒸気の分離 気相水素化筒に充填した成形水素化触媒の寿
命をできるだけ永くするためには、高温分離筒
よりの生成気流中に同伴されている粗重質留分
の蒸気の含有量ができるだけ少くなるように調
整することが肝要である。なぜかというと、こ
の粗重質留分は気相水素化においても熱分解・
重縮合を起して遊離炭素を生成し易く、この遊
離炭素はニツケル・ヴアナジウムのような金属
の硫化物と共に成型水素化触媒の活性表面に付
着して、その活性を次第に減衰させるからであ
る。
(3) Separation of coarse and heavy fraction vapor from the product air stream In order to extend the life of the shaped hydrogenation catalyst packed in the gas phase hydrogenation cylinder as long as possible, it is necessary to separate the coarse and heavy fraction vapor entrained in the product air stream from the high temperature separation cylinder. It is important to adjust the vapor content of the fraction to be as low as possible. The reason is that this crude and heavy fraction is thermally decomposed and decomposed even in gas phase hydrogenation.
This is because polycondensation tends to occur and free carbon is produced, and this free carbon adheres to the active surface of the shaped hydrogenation catalyst together with metal sulfides such as nickel vanadium, gradually reducing its activity.

原料油が、たとえばパラフイン基系の石油残
油や頁岩粗油のようなアスフアルデンやビユー
メンの含量が僅少で直鎖状の化学構造を持つ成
分に富んだものならば、所望の水素化率を得る
ための液相水素化温度をかなり低目に維持する
ことができる。その結果液相水素化筒上部温度
における気液平衡分圧に相当する粗重質留分蒸
気の生成気流中の含有量は減少する。成分的に
はもちろん気相水素化筒で分解する際遊離炭素
を生成し難い直鎖構造のものが主体である。し
たがつて液相水素化筒における生成気流は、そ
のまま気相水素化筒へ送入できる場合がかなり
ある。
If the feedstock oil is rich in components with a linear chemical structure and has a small content of asphaldenes or biumene, such as paraffin-based petroleum residue or shale crude oil, the desired hydrogenation rate can be obtained. The liquid phase hydrogenation temperature can be kept fairly low. As a result, the content of crude heavy fraction vapor in the produced gas stream corresponding to the vapor-liquid equilibrium partial pressure at the temperature at the top of the liquid-phase hydrogenation column decreases. In terms of components, it is of course mainly composed of linear structures that are difficult to generate free carbon when decomposed in a gas-phase hydrogenation cylinder. Therefore, the gas stream produced in the liquid-phase hydrogenation cylinder can often be fed directly to the gas-phase hydrogenation cylinder.

しかし原料油がナフテン基系の石油残油や低
温タールのようなアスフアルデンやビチユーメ
ンの含有量が多くまた多環状の化学構造を持つ
成分に富んだものである場合には、所望の水素
化率を得るための液相水素化の反応圧力と反応
温度は高めになり、その結果液相水素化筒上部
温度における粗重質留分の平衡分圧が高くな
り、そのため生成気流中その含有量が増加し
て、気相水素化触媒の活性低下を早めるような
結果になる。
However, if the feedstock oil is naphthene-based petroleum residue or low-temperature tar, which has a high content of asphaldenes and bityumenes and is rich in components with polycyclic chemical structures, it is difficult to obtain the desired hydrogenation rate. The reaction pressure and reaction temperature of liquid-phase hydrogenation to obtain hydrogen gas are higher, and as a result, the equilibrium partial pressure of the crude heavy fraction at the upper temperature of the liquid-phase hydrogenation cylinder is higher, which increases its content in the product stream. As a result, the activity of the gas phase hydrogenation catalyst decreases more quickly.

これを抑制するためには、高温分離筒でスラ
リーから分離された生成気流を冷却して温度を
ある程度降下させて、生成気流中に同伴されて
いる粗重質留分の蒸気を凝縮・分離すれば目的
が達成せられる。
In order to suppress this, the generated air stream separated from the slurry in a high-temperature separation column is cooled to lower the temperature to a certain extent, and the vapor of the coarse and heavy fraction entrained in the generated air stream is condensed and separated. The purpose is achieved.

上述のように液相水素化筒の反応温度は370
〜440℃であるが、そこからの生成気流の温度
を気相水素化反応開始温度である350〜390℃ま
で降下させるだけでも、かなりの量の粗重質留
分の蒸気が凝縮・分離する。しかしさらに気相
水素化反応開始温度以下の温度まで冷却してや
れば、分離効率はさらに高まり、成型水素化触
媒の寿命をいちだんと永くすることができる。
この場合は、粗重質留分の蒸気を分離したあと
の生成気流を気相水素化反応開始温度以上の温
度まで再加熱してやる必要がある。この再加熱
は冷却前の生成気流または液相水素化筒からの
溢流物と熱交換することにより容易に行われ
る。あるいは気相水素化筒内に熱交換器を設
け、気相水素化反応熱により再加熱を行うこと
もできる。
As mentioned above, the reaction temperature of the liquid phase hydrogenation cylinder is 370
~440°C, but by simply lowering the temperature of the produced gas stream to 350~390°C, which is the starting temperature of the gas-phase hydrogenation reaction, a considerable amount of the crude and heavy fraction vapor is condensed and separated. However, if the catalyst is further cooled to a temperature below the gas phase hydrogenation reaction initiation temperature, the separation efficiency can be further increased and the life of the shaped hydrogenation catalyst can be further extended.
In this case, it is necessary to reheat the generated gas stream after separating the vapor of the crude heavy fraction to a temperature equal to or higher than the gas phase hydrogenation reaction initiation temperature. This reheating is facilitated by heat exchange with the uncooled product stream or overflow from the liquid phase hydrogenation column. Alternatively, a heat exchanger may be provided in the gas phase hydrogenation cylinder to perform reheating using the heat of the gas phase hydrogenation reaction.

この生成気流の冷却と再加熱の操作は、高温
分離筒で分離した生成気流を高温分離筒とは全
く別個の高圧装置(図示せず)に送入して、こ
れを行うこともできる。しかし同じ高温分離筒
内で、スラリーの分離に引き続いて行つた方が
熱経済および設備の点で有利である。
This operation of cooling and reheating the generated airflow can also be performed by sending the generated airflow separated by the high-temperature separation column to a high-pressure device (not shown) that is completely separate from the high-temperature separation column. However, it is more advantageous in terms of thermal economy and equipment to perform the slurry separation successively in the same high-temperature separation column.

(4) 分縮による粗重質留分蒸気の分離 第3図はスラリーを分離した後の生成気流を
間接冷却することにより、同伴されている粗重
質留分の蒸気を凝縮・分離する分縮器を設けた
高温分離筒18の内部構造の一例を示すもので
ある。筒内上部空間に設置した分縮器42の内
部に冷却コイル43、下端に開放した気流入口
44、上部に気流出口45を設け、コイル状熱
交換器46を高温分離筒と分縮器との間の環状
空間に設置し、さらにその空間の上部に液相水
素化筒からの溢流物のフラツシユノズル47を
設けてある。
(4) Separation of crude heavy fraction vapor by fractional condensation Figure 3 shows a demultiplexer that condenses and separates the entrained crude heavy fraction vapor by indirectly cooling the generated airflow after separating the slurry. This figure shows an example of the internal structure of a high-temperature separation cylinder 18 provided with. A cooling coil 43 is provided inside the demultiplexer 42 installed in the upper space of the cylinder, an air inlet 44 open at the lower end, and an air outlet 45 at the upper end, and a coiled heat exchanger 46 is installed between the high temperature separation cylinder and the dephlegmator. A flash nozzle 47 for the overflow from the liquid phase hydrogenation cylinder is provided above the space.

液相水素化筒上部から溢流してきた生成気流
とスラリーとの混合流体をライン51で導き、
ノズル47から高温分離簡18内に送入する。
送入された混合流体はまず熱交換器46のコイ
ル外表面に触れることによりかなり冷却され
る。このあとスラリーはそのまま下降を続け
て、スラリー貯留部48に落下するので、これ
を一時貯留する。生成気流は反転してスラリー
から気液分離し、下端気流入口44から分縮器
42の内部に入り、冷却コイル43の外表面
(冷却面)に接触してさらに冷却される。この
冷却過程で生成気流中に同伴されている粗重質
留分の蒸気は冷却コイル外表面上で凝縮して、
スラリー貯留部48に落下し、スラリーの一部
となる。こうして粗重質留分の蒸気の大部分が
凝縮・分離された残りの生成気流は、分縮器の
上部に設けたラシツヒ環などを充填したミスト
捕集器49・気流出口45を経て、熱交換器4
6のコイルの内部を通つて加熱され、気相水素
化反応開始温度以上の温度を回復した後、ライ
ン52により気相水素化筒に導かれる。
A mixed fluid of the product air flow and slurry overflowing from the top of the liquid phase hydrogenation cylinder is guided through a line 51.
It is fed into the high temperature separator 18 from the nozzle 47.
The mixed fluid introduced is first cooled considerably by contacting the outer surface of the coil of the heat exchanger 46. Thereafter, the slurry continues to descend and falls into the slurry storage section 48, where it is temporarily stored. The generated airflow is reversed to separate gas and liquid from the slurry, enters the interior of the demultiplexer 42 from the lower end air inlet 44, contacts the outer surface (cooling surface) of the cooling coil 43, and is further cooled. During this cooling process, the vapor of the coarse and heavy fraction entrained in the generated air stream condenses on the outer surface of the cooling coil.
It falls into the slurry storage section 48 and becomes part of the slurry. In this way, most of the vapor of the coarse and heavy fraction is condensed and separated, and the remaining generated airflow passes through a mist collector 49 and an air outlet 45, which are filled with a Raschitz ring installed at the top of the decentralizer, and undergoes heat exchange. Vessel 4
After being heated through the inside of the coil 6 and recovering the temperature above the gas phase hydrogenation reaction initiation temperature, it is led to the gas phase hydrogenation cylinder through a line 52.

ここで分縮器の冷却用コイル43へ送入され
る冷媒たとえば水素のような気体または高沸点
油のような液体は、生成気流を冷却すると共に
自らは加熱されるので、これをそのまま高温分
離筒外へ排出し、系外の冷却器で冷却した後循
環使用するのが普通の考え方であり、またその
ようにしても差支えない。
Here, the refrigerant, such as a gas such as hydrogen or a liquid such as high-boiling point oil, sent to the cooling coil 43 of the decentralizer cools the generated air flow and is heated itself, so it is directly separated at high temperature. The usual idea is to discharge it outside the cylinder, cool it with a cooler outside the system, and then recirculate it for use, and there is no harm in doing so.

しかし本直列型高圧水素化法においては、常
温高圧の水素を冷媒として使用した後、これを
粗重質留分の蒸気を分離した生成気流にそのま
ま混入して、つぎの気相水素化反応にあずから
せることができる。このようにすれば、系外の
冷媒と冷却器が不要であるばかりでなく、水素
対粗軽・中質留分蒸気のモル比を増大し、気相
水素化反応にはかえつて有利となる。
However, in this serial high-pressure hydrogenation method, after hydrogen at room temperature and high pressure is used as a refrigerant, it is mixed directly into the product air stream from which the vapor of the crude heavy fraction has been separated, and is used in the next gas-phase hydrogenation reaction. It can be dried. This method not only eliminates the need for a refrigerant and cooler outside the system, but also increases the molar ratio of hydrogen to coarse, light, and medium distillate vapors, which is even more advantageous for gas-phase hydrogenation reactions. .

すなわち第3図に示すように、冷却コイル4
3の末端をミスト捕集器49の入口で開放して
おき、常温高圧の水素をライン50から送入す
れば、この水素は冷却コイル43の内部を通
り、生成気流を冷却すると共に自らは加熱され
た後、ミスト捕集器49の入口で冷却コイルか
ら出て、粗重質留分の蒸気の大部分が除去され
た残りの生成気流に合体する。なお冷却用の水
素は補給用の新水素でも循環水素でもよい。
That is, as shown in FIG.
3 is left open at the inlet of the mist collector 49, and hydrogen at room temperature and high pressure is fed through the line 50. This hydrogen passes through the inside of the cooling coil 43, cools the generated air flow, and heats itself. It then exits the cooling coil at the inlet of the mist collector 49 and joins the remaining product stream from which most of the crude heavy fraction vapor has been removed. Note that the hydrogen for cooling may be fresh hydrogen for replenishment or circulating hydrogen.

(5) 分留による粗重質留分蒸気の分離 第4図はスラリーを分離した生成気流を常温
付近の液状軽・中質油(以下整流油と略称)と
直接接触させて冷却することにより、同伴され
ている粗重質留分の蒸気を凝縮・分離する分留
器を設けた高温分離筒18の内部構造の一例を
示すものである。筒内上部空間に設置した分留
器53の内部に複数段の棚段54、下端に開放
した気流入口55、上端に気流出口56を設
け、コイル状熱換器46を高温分離筒と分留器
との間の環状空間に設置し、さらにその空間の
上部に液相水素化筒からの溢流物のフラツシユ
ノズル47を設けてある。
(5) Separation of crude and heavy distillate vapor by fractional distillation Figure 4 shows that by cooling the generated air stream from separated slurry by directly contacting it with liquid light/medium oil (hereinafter referred to as rectified oil) at around room temperature, This figure shows an example of the internal structure of a high-temperature separation column 18 equipped with a fractionator that condenses and separates the vapor of the entrained coarse and heavy fraction. A fractionator 53 installed in the upper space of the cylinder is provided with a plurality of shelves 54, an air inlet 55 open at the lower end, and an air outlet 56 at the upper end, and the coiled heat exchanger 46 is connected to the high temperature separation cylinder for fractionation. A flash nozzle 47 for the overflow from the liquid phase hydrogenation cylinder is provided above the space.

液相水素化筒上部から溢流してきた生成気流
とスラリーとの混合流体をライン51で導き、
ノズル47から高温分離筒18内に送入する
と、送入された混合流体はまず熱交換器46の
コイル外表面に触れることによりかなり冷却さ
れる。このあとスラリーはそのまま下降を続け
て、スラリー貯留部48に落下する。生成気流
は反転してスラリーから分離し、下端気流入口
55から分留器53の内部に入り、棚段54を
上昇する。その途中、ライン58を経て送入さ
れ棚段上部から下降してくる整流油と接触して
冷却され、その温度は降下する。この間、生成
気流中の粗重質留分蒸気は冷却・凝縮されると
同時に分留効果も受け、下降してスラリー貯留
部48に落下し、スラリーの一部となる。整流
油は棚段を下降しながら上昇してくる生成気流
と熱交換して気化し、生成気流に合体する。こ
うして粗重質留分の蒸気の大部分を凝縮・分離
したかつ整流油の蒸気と一体になつた生成気流
は、分留器の上部に設けたラシツヒ環などを充
填したミスト捕集器57・気流出口56を経て
熱交換器46のコイルの内部を通り加熱され、
気相水素化反応開始温度以上の温度を回復した
後、ライン52により気相水素化筒へ導かれ
る。
A mixed fluid of the product air flow and slurry overflowing from the top of the liquid phase hydrogenation cylinder is guided through a line 51.
When the mixed fluid is introduced into the high-temperature separation cylinder 18 through the nozzle 47, the mixed fluid first contacts the outer surface of the coil of the heat exchanger 46 and is cooled considerably. Thereafter, the slurry continues to descend and falls into the slurry storage section 48. The generated airflow is reversed and separated from the slurry, enters the interior of the fractionator 53 through the lower end air inlet 55, and ascends the tray 54. On the way, it comes into contact with the rectifying oil that is sent through the line 58 and descends from the upper part of the tray, and is cooled, and its temperature drops. During this time, the crude and heavy fraction vapor in the generated air stream is cooled and condensed, and at the same time is also subjected to the fractionation effect, descends and falls into the slurry storage section 48, and becomes part of the slurry. The rectifying oil exchanges heat with the rising generated airflow while descending on the tray, vaporizes, and merges with the generated airflow. In this way, most of the vapor of the coarse and heavy fraction is condensed and separated, and the generated airflow is combined with the vapor of the rectified oil. is heated through the outlet 56 and inside the coil of the heat exchanger 46;
After the temperature has been restored to a temperature higher than the gas phase hydrogenation reaction starting temperature, it is led to the gas phase hydrogenation cylinder through a line 52.

ここで使用する整流油は、つぎに連結された
気相水素化筒からの生成油を分留して得られる
常圧下沸点200℃以上の留分または系外からの
中質油等を使用することができる。この方法は
前項で説明した間接冷却の分縮法より効果は大
きい。しかし粗軽・中質留分に対する水素のモ
ル比を低下させる負の効果を伴うので、あらか
じめ循環水素の使用量を多くするとか、反応圧
を高める必要のある場合がある。
The rectifying oil used here is a distillate with a boiling point of 200°C or higher under normal pressure obtained by fractionating the oil produced from the gas-phase hydrogenation cylinder connected next, or medium oil from outside the system. be able to. This method is more effective than the partial condensation method of indirect cooling explained in the previous section. However, since this has the negative effect of lowering the molar ratio of hydrogen to coarse, light and medium fractions, it may be necessary to increase the amount of circulating hydrogen used or to increase the reaction pressure in advance.

(6) 減衰した液相水素化触媒の再生 本発明の方法においても原料油の種類によつ
て、高分子の金属有機錯化合物の水素化により
生成する金属の硫化物やアスフアルテン・ビチ
ユーメンの熱分解・重縮合に基く遊離炭素が懸
濁触媒表面に付着するのを完全に防止するのは
難しい場合がかなり多い。しかし微粉状である
ため触媒の外表面積は通常の成型触媒に比べ2
桁以上も大きく、そのため上記付着に基く触媒
活性の減衰速度は非常に遅くなる。しかもこの
場合には、つぎに述べるように、簡単な手段・
操作で容易に再生できる利点がある。即ちこれ
を第1図によつて説明すれば、、温スラリーの
1部を貯槽28からライン30を経て常圧スラ
リー貯槽31に送り、ここからポンプ32でチ
ユーブミル・ボールミルのような摩砕機35に
供給し、約60〜90℃の温度で長時間たとえば数
時間乃至数十時間充分に摩砕すれば、触媒粒子
表面に付着したニツケル・ヴアナジウムなどの
金属の硫化物や遊離炭素などの固形異物は機械
的に剥離され、触媒は再びその活性表面を露出
して、活性のほとんどを回復するに至る。スラ
リーの粘度が高く、そのため摩砕効果が弱いよ
うであれば、適当量の中質油を加えて粘度を低
下させてやればよい。
(6) Regeneration of attenuated liquid phase hydrogenation catalyst In the method of the present invention, thermal decomposition of metal sulfides and asphaltenes/bityumens produced by hydrogenation of polymeric metal-organic complex compounds also depends on the type of feedstock oil. - It is often difficult to completely prevent free carbon resulting from polycondensation from adhering to the surface of a suspended catalyst. However, since it is in the form of a fine powder, the outer surface area of the catalyst is 2
This is more than an order of magnitude larger, and therefore the rate of decay of catalyst activity based on the above-mentioned adhesion becomes very slow. Moreover, in this case, as described below, there is a simple method
It has the advantage of being easy to play. That is, to explain this with reference to FIG. 1, a portion of the hot slurry is sent from the storage tank 28 via a line 30 to an atmospheric slurry storage tank 31, and from there is sent to an attrition machine 35 such as a tube mill or ball mill by a pump 32. If the catalyst particles are supplied and thoroughly milled at a temperature of about 60 to 90°C for a long period of time, for example, several hours to several tens of hours, solid foreign matter such as sulfides of metals such as nickel and vanadium and free carbon attached to the surface of the catalyst particles will be removed. Mechanically exfoliated, the catalyst once again exposes its active surface and regains most of its activity. If the slurry has a high viscosity and therefore has a weak grinding effect, an appropriate amount of medium oil may be added to reduce the viscosity.

摩砕後のスラリーは再び常圧スラリー貯槽3
1に戻しポンプ32によりライン33を経て原
料供給槽12へ供給し、ポンプ13により熱交
換器15・予熱器16を経て液相水素化筒17
の底部へ循環送入する。この摩砕機による触媒
再生処理は、触媒の失活状態に応じて間歇的に
行うこともできる。しかし定常的に連続して行
う方が触媒の活性を定常値に保ち得るし、また
摩砕機の容量も小さくて済むので好ましい。こ
のような摩砕機による触媒再生法は、慣用の成
型または粗粒触媒に対しては適用不可能であつ
て、微粉触媒においてのみ始めて実施が可能と
なる方法である。
The slurry after grinding is returned to normal pressure slurry storage tank 3.
1 and is supplied to the raw material supply tank 12 via a line 33 by a pump 32, and is supplied to a liquid phase hydrogenation cylinder 17 via a heat exchanger 15 and a preheater 16 by the pump 13.
It is circulated to the bottom of the tank. This catalyst regeneration process using the attritor can also be performed intermittently depending on the deactivation state of the catalyst. However, it is preferable to carry out the process continuously, since the activity of the catalyst can be maintained at a constant value, and the capacity of the attritor can be small. Such a catalyst regeneration method using a grinder cannot be applied to conventional shaped or coarse-grained catalysts, and can only be implemented with fine-powder catalysts.

(7) 予熱過程における遊離炭素の生成防止 定常運転の場合も、原料油の予熱器などにお
ける熱分解・重縮合による遊離炭素の生成を予
防するため、予熱前の原料油に微粉水素化触媒
を懸濁させることが望ましい。そのためには温
スラリーの一部を貯槽28から抜き出し、ライ
ン30を経て常圧スラリー貯槽31に送り、こ
こからポンプ32・ライン33を経て原料供給
槽12へ連続的に供給する。このようにすれ
ば、必ずしも原料油に新触媒を常時追加する必
要がない。原料油中に懸濁する触媒量は原料油
の反応性および触媒の活性・粒度等によつて異
なるが、だいたい0.5〜3容量%程度でよい。
しかし温度調整のため熱スラリーや温スラリー
を直接液相水素化筒へ送入する必要がなけれ
ば、高温分離筒で分離したスラリーの全量を予
熱前の原料油に混入することは差し支えない。
このように予熱段階から触媒を存在させること
ができるのは液相水素化に微粉水素化触媒の懸
濁層を用いることの利点の一つであつて、固定
触媒層では実現できないことである。
(7) Preventing the generation of free carbon during the preheating process Even during steady operation, in order to prevent the generation of free carbon due to thermal decomposition and polycondensation in the feedstock preheater, a finely divided hydrogenation catalyst is applied to the feedstock before preheating. Suspension is desirable. For this purpose, a portion of the hot slurry is extracted from the storage tank 28 and sent to the atmospheric slurry storage tank 31 via a line 30, and from there is continuously supplied to the raw material supply tank 12 via a pump 32 and a line 33. In this way, it is not necessarily necessary to constantly add a new catalyst to the feedstock oil. The amount of catalyst suspended in the feedstock oil varies depending on the reactivity of the feedstock oil and the activity and particle size of the catalyst, but may be approximately 0.5 to 3% by volume.
However, if there is no need to directly feed the hot slurry or hot slurry to the liquid-phase hydrogenation cylinder for temperature adjustment, there is no problem in mixing the entire amount of the slurry separated in the high-temperature separation cylinder with the feedstock oil before preheating.
The ability to have the catalyst present from the preheating stage is one of the advantages of using a suspended bed of finely divided hydrogenation catalyst in liquid phase hydrogenation, which cannot be achieved with a fixed catalyst bed.

(8) 懸濁層中固形異物濃度の制御 第(6)項で説明した触媒再生法によつて触媒表
面から剥離したニツケル・ヴアナジウムなどの
金属の硫化物や遊離炭素などの固形異物は、触
媒と同じく懸濁状態で液相水素化筒内の懸濁層
に蓄積される。これら固形異物の存在は水素化
反応そのものに対しては有害でないが、長時間
の操業で蓄積量が増加すると懸濁層およびスラ
リーの流動性の低下などの好ましくない影響を
生ずるようになる。したがつてこれらの蓄積量
には自ら一定の限界がある。
(8) Control of the concentration of solid foreign matter in the suspended layer Solid foreign matter such as sulfides of metals such as nickel and vanadium and free carbon, which are exfoliated from the catalyst surface by the catalyst regeneration method explained in section (6), are Similarly, it is accumulated in a suspended state in the suspension layer inside the liquid phase hydrogenation cylinder. Although the presence of these solid foreign substances is not harmful to the hydrogenation reaction itself, if the accumulated amount increases over a long period of operation, it will cause undesirable effects such as a decrease in the fluidity of the suspended layer and slurry. Therefore, there is a certain limit to the amount of these things that can be accumulated.

そのために高温分離筒から抜き出したスラリ
ーの一部を冷却・減圧後連続的または間歇的に
反応系外に排出すると共に、新触媒を連続的ま
たは間歇的に反応系内に補給する。こうして液
相水素化筒における懸濁触媒の濃度を所定範囲
内に保持すると同時に、懸濁層内に蓄積される
遊離炭素・金属硫化物などの固形異物の濃度を
所定限度以下に制御する必要がある。固形異物
の濃度の所定限度は触媒濃度との関連において
定められる値であつて、触媒濃度を高く維持す
る必要がある時は固形異物濃度の上限は低く定
めなければならないが、触媒濃度が低くてよい
時は固形異物濃度の上限を高く定めても良い。
既に述べたようにスラリー中の微粉固形物濃度
の上限が約40容量%なので、微粉水素化触媒と
固形異物の合計濃度が約40容量%を越えないよ
うに、固形異物の濃度の所定限度を定める。
To this end, a portion of the slurry extracted from the high-temperature separation column is cooled and depressurized, then continuously or intermittently discharged to the outside of the reaction system, and fresh catalyst is continuously or intermittently replenished into the reaction system. In this way, it is necessary to maintain the concentration of suspended catalyst in the liquid phase hydrogenation cylinder within a predetermined range, and at the same time to control the concentration of solid foreign matter such as free carbon and metal sulfides accumulated in the suspended layer to below a predetermined limit. be. The predetermined limit for the concentration of solid foreign matter is a value determined in relation to the catalyst concentration, and when it is necessary to maintain a high catalyst concentration, the upper limit of the solid foreign matter concentration must be set low; When appropriate, the upper limit of the solid foreign matter concentration may be set high.
As already mentioned, the upper limit of the concentration of fine solids in the slurry is approximately 40% by volume, so the predetermined limit for the concentration of solid foreign matter must be set so that the total concentration of the fine hydrogenation catalyst and solid foreign matter does not exceed approximately 40% by volume. stipulate.

第1図では新触媒は、これを濃厚に懸濁した
含触媒重質油の形で、ライン34から原料供給
槽12を送入する。他方常圧スラリー貯槽31
出口にスラリー排出ライン36を設けてある。
In FIG. 1, the new catalyst is fed into the raw material supply tank 12 from the line 34 in the form of catalyst-containing heavy oil in which it is heavily suspended. On the other hand, normal pressure slurry storage tank 31
A slurry discharge line 36 is provided at the outlet.

ライン36より排出されたスラリー中には、
触媒はもちろん、ニツケル・ヴアナジウムの硫
化物などを多量に含有している場合があるが、
いずれにせよこれを別に貯蔵して、適宜資源回
収工場へ送る。
In the slurry discharged from line 36,
It may contain large amounts of sulfides of nickel and vanadium as well as catalysts,
In any case, this will be stored separately and sent to a resource recovery factory as appropriate.

懸濁層内の微粉水素化触媒は活性の高い硫化
物の形態であるが、補給用新触媒は硫化物のみ
に限定されるものではなく、微粉の金属酸化
物・金属水酸化物・金属のオキシ酸・ヘテロポ
リ酸・有機酸の金属塩などの形態であつても、
液相水素化筒の反応で化されて硫化物となるも
のは、これを支障なく使用することができる。
The finely divided hydrogenation catalyst in the suspension layer is in the form of highly active sulfides, but the new replenishment catalyst is not limited to only sulfides, but also finely divided metal oxides, metal hydroxides, and metals. Even if it is in the form of oxyacid, heteropolyacid, metal salt of organic acid, etc.
Those that are converted into sulfides by the reaction in the liquid phase hydrogenation cylinder can be used without any problem.

(9) 複数個の気相水素化筒の連結・使用 高温分離筒から気相水素化筒へ送入される生
成気流中には、原料油の種類と反応性によつて
多少の差はあるが、液相水素化筒で水素化精製
されてもまだヘテロ原子を含む極性高分子化合
物の蒸気が、既に述べた方法で粗重質留分の蒸
気を凝縮・分離したあとでも、なお相当量混入
してくる。
(9) Connection and use of multiple gas-phase hydrogenation cylinders There are some differences in the generated airflow sent from the high-temperature separation cylinder to the gas-phase hydrogenation cylinder depending on the type and reactivity of the feedstock oil. However, even after being hydrorefined in a liquid-phase hydrogenation cylinder, a considerable amount of the vapor of the polar polymer compound containing heteroatoms still contaminates even after the vapor of the crude heavy fraction is condensed and separated by the method described above. I'll come.

これをうまく水素化処理するためには、複数
個の気相水素化筒を連結して設置し、先行する
筒たとえば2筒連結した場合には第1筒に極性
高分子化合物を炭化水素へ環元する能力即ち接
触水素化精製能に優れた成型触媒、たとえばア
ルミナに担持した硫化モリブデン触媒を充填す
る。後続する第2筒には硫化水素・アンモニ
ア・水蒸気に毒され難く、しかも炭化水素の接
触水素化分解能に優れた成型触媒、たとえばシ
リカアルミナを担体とする硫化モリブデン・硫
化ニツケルの3元触媒を充填する。このように
2個またはそれ以上の気相水素化筒に異種性能
の触媒を充填・使用すれば、水素化精製と水素
化分解という二つの目的を一挙に達成し、しか
も生産性を高めることができる。
In order to successfully hydrogenate this, it is necessary to connect and install multiple gas phase hydrogenation cylinders. For example, if two cylinders are connected, the first cylinder is used to convert a polar polymer compound into a hydrocarbon. A molded catalyst having excellent refining ability, that is, catalytic hydrorefining ability, such as a molybdenum sulfide catalyst supported on alumina, is packed. The second cylinder that follows is filled with a molded catalyst that is not easily poisoned by hydrogen sulfide, ammonia, and steam and has excellent catalytic hydrogen cracking performance for hydrocarbons, such as a three-way catalyst of molybdenum sulfide and nickel sulfide using silica alumina as a carrier. do. In this way, by filling and using catalysts with different performance in two or more gas-phase hydrogenation cylinders, it is possible to achieve the two objectives of hydrorefining and hydrocracking at once, and increase productivity. can.

第2図には第1気相水素化筒19a、第2気
相水素化筒19bを直列に連結して使用する場
合を例示した。ライン37a,37bはそれぞ
れ第1・第2気相水素化筒に送入する冷却用水
素の供給管を示し、その他の記号は第1図と同
様である。
FIG. 2 illustrates a case where the first gas phase hydrogenation cylinder 19a and the second gas phase hydrogenation cylinder 19b are connected in series and used. Lines 37a and 37b indicate cooling hydrogen supply pipes to be sent to the first and second gas phase hydrogenation cylinders, respectively, and other symbols are the same as in FIG. 1.

(10) 液相水素化筒内シヨートパスの防止 液相水素化筒内の触媒層は送入水素気泡によ
り逆混合を起し易く、水素化筒底部入口から送
入された原料油の一部がシヨートパスして、充
分な反応時間を経ることなく水素化筒上部出口
に達し、そのまま溢流するおそれがある。他方
熱分散のためには、入口、出口の流体の混合が
望ましい。この矛盾する二つの要求を充すため
の方法の一例をつぎに説明する。
(10) Prevention of short pass in the liquid phase hydrogenation cylinder The catalyst layer in the liquid phase hydrogenation cylinder is prone to back mixing due to hydrogen bubbles, and a portion of the feedstock oil fed from the bottom inlet of the hydrogenation cylinder is There is a risk that the product may pass through the shot and reach the outlet at the top of the hydrogenation column without sufficient reaction time and overflow. On the other hand, for heat dissipation, it is desirable to mix the fluids at the inlet and outlet. An example of a method for satisfying these two contradictory demands will be described below.

第5図はそのための筒内構造の概念図であつ
て、液相水素化筒17の内部中央に上下端が開
枚された内筒59を設置し、内筒と外筒との間
の空間60に複数段の分散板61を設けてあ
る。分散板は多孔板のような構造のものが簡単
で便利である。
FIG. 5 is a conceptual diagram of the internal structure of the cylinder for this purpose, in which an inner cylinder 59 with open upper and lower ends is installed in the center of the liquid phase hydrogenation cylinder 17, and a space between the inner cylinder and the outer cylinder. 60 is provided with a plurality of stages of dispersion plates 61. The dispersion plate has a structure similar to a perforated plate, which is simple and convenient.

ライン62から筒底部に送入される原料油・
微粉水素化触媒(スラリー)および水素の混合
物は傘63に遮られて外周に向かい、内筒と外
筒との間の空間60を上昇する。空間60は伏
散板61により複数段に仕切られているので、
各段ごとに逆混合が起つても、分解されるべき
原料油が短時間で入口から出口までシヨートパ
スすることはなくなる。液相水素化筒上部で懸
濁層を構成していたスラリーの一半および生成
気流はライン64から溢流して高温分離筒に送
られ、残りのスラリーは内筒59の内部空間6
5を下降して、空間60の下方へ循環する。
Raw material oil is fed into the bottom of the cylinder from line 62.
The mixture of the fine hydrogenation catalyst (slurry) and hydrogen is blocked by the umbrella 63 and moves toward the outer periphery, rising through the space 60 between the inner cylinder and the outer cylinder. Since the space 60 is partitioned into multiple stages by the scattering board 61,
Even if back-mixing occurs at each stage, the raw oil to be cracked will not pass through from the inlet to the outlet in a short period of time. Half of the slurry forming the suspended layer at the top of the liquid-phase hydrogenation cylinder and the generated gas flow overflow from line 64 and are sent to the high-temperature separation cylinder, and the remaining slurry flows into the internal space 6 of inner cylinder 59.
5 and circulates below the space 60.

66は予熱器から送られてくる原料油と水素
との混合流体の送入ライン、67は高温分離筒
から送られてくるスラリーの循環ラインであ
る。
Reference numeral 66 is an inlet line for a mixed fluid of raw material oil and hydrogen sent from the preheater, and 67 is a circulation line for slurry sent from the high-temperature separation column.

(11) 複数個の液相水素化筒の連結・使用 一般に液相水素化反応を高度に進行させるた
めには、液相水素化筒を複数個連結して使用す
る。とくに反応性の低い原料油の場合は、液相
水素化筒を2個以上連結して用いることが必要
となる。
(11) Connecting and using multiple liquid phase hydrogenation cylinders Generally, in order to advance the liquid phase hydrogenation reaction to a high degree, multiple liquid phase hydrogenation cylinders are connected and used. In particular, in the case of feedstock oil with low reactivity, it is necessary to use two or more liquid phase hydrogenation cylinders connected together.

第2図はその実施態様を示すもので、第1液
相水素化筒17a、第2液相水素化筒17bが
直接連結されている。定常運転においては高温
分離筒18の底部からスラリーを抜き出し、こ
れを空気冷却器26・熱スラリー循環ポンプ2
7を経て第1液相水素化筒17aの底部に送入
する。この筒内の含触媒生成油は水素と共に第
1液相水素化筒17aの上部から内筒41を通
じて排出され、第2液相水素化筒17bの下部
に送入される。また貯槽28中の温スラリーを
ポンプ29によりライン39またはライン40
を経て第1液相水素化筒17aおよび/または
第2液相水素化筒17bの下部に送入する。各
筒に対する温スラリーの送入量を調節すること
によつて、第1液相水素化筒の反応温度と第2
液相水素化筒の反応温度をそれぞれ別個に人為
的に調節できる。
FIG. 2 shows an embodiment thereof, in which a first liquid phase hydrogenation cylinder 17a and a second liquid phase hydrogenation cylinder 17b are directly connected. During steady operation, the slurry is extracted from the bottom of the high-temperature separation column 18 and sent to the air cooler 26 and thermal slurry circulation pump 2.
7 to the bottom of the first liquid phase hydrogenation cylinder 17a. The catalyst-containing produced oil in this cylinder is discharged together with hydrogen from the upper part of the first liquid phase hydrogenation cylinder 17a through the inner cylinder 41, and is fed into the lower part of the second liquid phase hydrogenation cylinder 17b. In addition, the hot slurry in the storage tank 28 is pumped through the line 39 or line 40 by the pump 29.
It is sent to the lower part of the first liquid phase hydrogenation cylinder 17a and/or the second liquid phase hydrogenation cylinder 17b. By adjusting the amount of hot slurry fed to each cylinder, the reaction temperature of the first liquid phase hydrogenation cylinder and the second liquid phase hydrogenation cylinder can be adjusted.
The reaction temperature of each liquid-phase hydrogenation cylinder can be artificially adjusted separately.

原料油が硬質のアスフアルトやビチユーメン
を比較的多量に含む場合は、第1液相水素化筒
を比較的低温で操作して、硬質のアスフアルト
やビチユーメンを軟質のアスフアルトやビチユ
ーメン乃至重炭化水素などに変えてから、比較
的高温で操作する第2液相水素化筒へ移せば、
遊離炭素の生成を効果的におさえることができ
る。
When the feedstock oil contains a relatively large amount of hard asphalt or bitumen, the first liquid phase hydrogenation cylinder is operated at a relatively low temperature to convert the hard asphalt or bitumen into soft asphalt, bitumen, or heavy hydrocarbons. After changing the temperature, if you transfer it to the second liquid phase hydrogenation cylinder which operates at a relatively high temperature,
Generation of free carbon can be effectively suppressed.

このように液相水素化筒を2個以上とすれ
ば、原料油の成分と反応性に応じて各筒の操業
条件を別個に設定することができるので、1筒
の場合よりも効果的に原料油の液相水素化を行
うことができる場合が多い。
By using two or more liquid-phase hydrogenation cylinders in this way, the operating conditions for each cylinder can be set separately according to the components and reactivity of the feedstock oil, making it more effective than when using only one cylinder. It is often possible to carry out liquid phase hydrogenation of the feedstock.

(12) 運転開始時の操作法 最後に本発明のプラントを操作する際とくに
注意すべき諸点について述べる。既述のごとく
粗重質油ことにアスフアルデンやビチユーメン
を多く含むものは、水素分圧が過小の場合や過
熱される場合には、熱分解と同時に重縮合を起
して遊離炭素を生成し易い。遊離炭素は触媒表
面に付着してその活性を減衰させるばかりでな
く、予熱炉などの加熱面や管路の屈曲部に付
着・蓄積すると、伝熱抵抗や流路抵抗の増大を
招き易い。このような不都合をできるだけ避け
るためには、原料供給・反応・循環各系の各部
分における温度・流速などの運転諸条件があら
かじめ最適条件として設定された所定値の範囲
内にくるように、これらを調整することが肝要
である。
(12) Operation method at the start of operation Finally, we will discuss various points that should be especially noted when operating the plant of the present invention. As mentioned above, crude heavy oils, especially those containing a large amount of asphaldene and bityumene, tend to undergo polycondensation and generate free carbon when the hydrogen partial pressure is too low or when the oil is overheated. Free carbon not only adheres to the catalyst surface and attenuates its activity, but also tends to increase heat transfer resistance and flow path resistance when it adheres and accumulates on heating surfaces such as preheating furnaces and bent portions of pipes. In order to avoid such inconveniences as much as possible, the operating conditions such as temperature and flow rate in each part of the raw material supply, reaction, and circulation systems must be adjusted so that they are within predetermined values set as optimal conditions. It is important to adjust the

とくに運転開始の当初は、諸条件が所定値に
到達するまでの間いろいろな障害を生じ易いの
で、まずアスフアルテンやビチユーメンの含有
量の少い熱的に安定な重質油を使用して運転を
開始し、予熱器の温度や液相水素化筒の温度・
圧力・水素循環量・触媒の懸濁濃度などの運転
諸条件が所定値近くに到達した後、送入する重
質油を漸次原料油に切り替えて正常運転へ移行
する。
Especially at the beginning of operation, various problems are likely to occur until the various conditions reach the specified values, so first start operation using thermally stable heavy oil with a low content of asphaltenes and bityumens. The temperature of the preheater and the temperature of the liquid phase hydrogenation cylinder are
After operating conditions such as pressure, hydrogen circulation amount, and catalyst suspension concentration reach near predetermined values, the incoming heavy oil is gradually switched to raw material oil and normal operation begins.

運転停止時はこれと逆に原料油を上記の熱的
に安定な重質油に切り替えて、特に予熱器の加
熱面に原料油が付着・残留しないように、洗浄
を充分に行つてから停止する。必要とあらばさ
らに軽・中質油流体による洗浄を行う。
Conversely, when the operation is stopped, the feedstock oil is switched to the thermally stable heavy oil mentioned above, and the heating surface of the preheater is thoroughly cleaned to prevent the feedstock oil from adhering to or remaining on the heating surface before the operation is stopped. do. If necessary, perform further cleaning with light/medium oil fluid.

ここで用いる熱的に安定な重質油とは熱分
解・重縮合により遊離炭素を生成しにくいもの
を謂い、アスフアルデン・ビチユーメンおよび
不飽和化合物の含有量の僅少な重質油が適当で
ある。
The thermally stable heavy oil used herein refers to one that is difficult to generate free carbon through thermal decomposition and polycondensation, and suitable heavy oil has a small content of asphaldene bitiumen and unsaturated compounds.

効 果 以上の説明によつて本発明の効果は明らかに示
されているが、以下にこれらをまとめて列挙す
る。
Effects The above explanation clearly shows the effects of the present invention, and these will be listed below.

(1) 液相水素化で用いる触媒は微粉状なので、こ
れを懸濁状態にし、しかも高濃度にして使用で
きる。このため触媒の活性表面積が著しく大き
くなり、その結果接触効果は著しく増大し、併
せて副生する金属硫化物および遊離炭素の被覆
による減衰は著しくおそくなり、これらの結果
触媒の活性を長時間保持できる。
(1) Since the catalyst used in liquid-phase hydrogenation is in fine powder form, it can be used in a suspended state and at a high concentration. As a result, the active surface area of the catalyst becomes significantly larger, and as a result, the contact effect increases significantly, and at the same time, the attenuation due to the coating of by-product metal sulfides and free carbon becomes extremely slow, and as a result, the activity of the catalyst is maintained for a long time. can.

(2) 触媒を長時間連続使用できるため、再生操作
が著しく軽減され、また再生損失も殆んどない
ので、高価であつても水素化活性の高い触媒を
使用できる。
(2) Since the catalyst can be used continuously for a long time, regeneration operations are significantly reduced, and there is almost no regeneration loss, so even if it is expensive, a catalyst with high hydrogenation activity can be used.

(3) 活性が高い触媒をその有効表面積が著しく大
きい状態で使用できる結果として、液相水素化
筒では原料油の高い水素化反応率を比較的低い
反応温度で達成できる。温度が低いため生成気
流に同伴される粗重質留分の蒸気は減少するの
で、気相水素化筒の成型触媒の劣化は減少し、
その寿命は延びる。これに加えて、液相水素化
筒よりの生成気流を冷却して温度をいつたん降
下させ、同伴されてくる粗重質留分の蒸気を凝
縮・除去する操作を併せて行えば、気相水素化
筒の成型触媒の劣化はさらに減少し、その寿命
は著しく延びる。
(3) As a result of being able to use a highly active catalyst with a significantly large effective surface area, a high hydrogenation reaction rate of feedstock oil can be achieved in a liquid phase hydrogenation cylinder at a relatively low reaction temperature. Because the temperature is low, the amount of crude and heavy fraction vapor entrained in the product air stream is reduced, so the deterioration of the shaped catalyst in the gas phase hydrogenation cylinder is reduced.
Its lifespan will be extended. In addition to this, by cooling the generated airflow from the liquid phase hydrogenation cylinder to gradually lower the temperature and condensing and removing the entrained crude heavy fraction vapor, it is possible to The deterioration of the shaped catalyst in the conversion tube is further reduced and its lifespan is significantly extended.

(4) 活性が高い触媒をその活性表面積が著しく大
きい状態で使用できる結果として、従来の方法
では処理困難であつたアスフアルテンやビチユ
ーメンを多く含有する原料油も、これを充分に
軟質化することができる。
(4) As a result of being able to use a highly active catalyst with a significantly large active surface area, it is now possible to sufficiently soften raw oils containing a large amount of asphaltenes and bityumenes, which were difficult to process using conventional methods. can.

(5) 液相水素化筒で分解・生成した粗軽・中質留
分の蒸気を凝縮・液化することなく、そのまま
直列に結合した気相水素化筒に送入し反応させ
るので、熱・エネルギーの損失が少なく設備費
も軽減され、しかも原料粗重質油より軽質油を
一挙に製造することができる。すなわち液相水
素化プラントと気相水素化プラントという2個
の独立プラントの挙げ得る生産効果を1個の液
相・気相直列型水素化プラントで挙げ得ること
になるので、その技術的・経済的効果は極めて
大きい。
(5) The vapors of crude, light and medium fractions decomposed and produced in the liquid-phase hydrogenation cylinder are fed directly to the gas-phase hydrogenation cylinders connected in series and reacted without being condensed or liquefied. Energy loss is small, equipment costs are reduced, and light oil can be produced all at once from raw crude heavy oil. In other words, the production effects that can be achieved by two independent plants, a liquid-phase hydrogenation plant and a gas-phase hydrogenation plant, can be achieved with one liquid-phase and gas-phase series hydrogenation plant. The effect is extremely large.

(6) 微粉水素化触媒の再生は、スラリーの形態の
まま、簡単な機械的摩砕方法により達成できる
ので、再生設備費も予備触媒の在庫費も少くて
済む。また水素化操業を停止せずに触媒の再
生・補給を行うことができる。
(6) Since regeneration of the finely divided hydrogenation catalyst can be achieved in the form of a slurry by a simple mechanical grinding method, the cost of regeneration equipment and inventory of preliminary catalysts can be reduced. In addition, the catalyst can be regenerated and replenished without stopping the hydrogenation operation.

(7) 熱分解・重縮合により遊離炭素を生成し易い
不安定な原料油であつても、微粉水素化触媒を
原料油中に分散・懸濁し、水素と共に高圧の反
応帯域に送入することができるので、熱交換・
予熱過程における遊離炭素の生成を充分におさ
えることができる。
(7) Even if the feedstock oil is unstable and easily generates free carbon due to thermal decomposition and polycondensation, the finely divided hydrogenation catalyst can be dispersed and suspended in the feedstock oil and fed into the high-pressure reaction zone together with hydrogen. heat exchange and
The generation of free carbon during the preheating process can be sufficiently suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の方法を実施する
ための工程図、第3図は本発明の実施に際して使
用する高温分離筒の内部構造の一例、第4図は高
温分離筒の内部構造の他の例、第5図は液相水素
化筒の内部構造を示す概念図である。 A…常圧部、B…高圧部、11…ライン、12
…原料供給槽、13…原料ポンプ、14…ライ
ン、15…熱交換器、15a…第1熱交換器、1
5b…第2熱交換器、15c…第3熱交換器、1
6…予熱器、17…液相水素化筒、17a…第1
液相水素化筒、17b…第2液相水素化筒、18
…高温分離筒、19…気相水素化筒、19a…第
1気相水素化筒、19b…第2気相水素化筒、2
0…水冷却器、21…低温分離筒、22…ライ
ン、23…高圧水素循環ポンプ、24…ライン、
25…高圧水素ライン、26…冷却器、27…ポ
ンプ、28…温スラリー貯槽、29…ポンプ、3
0…ライン、31…常圧スラリー貯槽、32…ポ
ンプ、33…ライン、34…ライン、35…摩砕
機、36…スラリー排出ライン、37…水素供給
ライン、37a…水素供給ライン、37b…水素
供給ライン、38…ライン、39…ライン、40
…ライン、41…内管、42…分縮器、43…冷
却コイル、44…気流入口、45…気流出口、4
6…コイル状熱交換器、47…フラツシユノズ
ル、48…スラリー貯留部、49…ミスト捕集
器、50…ライン、51…ライン、52…ライ
ン、53…分留器、54…棚段、55…気流入
口、56…気流出口、57…ミスト捕集器、58
…ライン、59…内筒、60…空間、61…分散
板、62…ライン、63…傘、64…ライン、6
5…内筒の内部空間、66…送入ライン、67…
循環ライン、68…枝管。
Figures 1 and 2 are process diagrams for carrying out the method of the present invention, Figure 3 is an example of the internal structure of a high-temperature separation cylinder used in carrying out the present invention, and Figure 4 is the internal structure of a high-temperature separation cylinder. Another example, FIG. 5, is a conceptual diagram showing the internal structure of a liquid phase hydrogenation cylinder. A... Normal pressure section, B... High pressure section, 11... Line, 12
...Raw material supply tank, 13...Raw material pump, 14...Line, 15...Heat exchanger, 15a...First heat exchanger, 1
5b...Second heat exchanger, 15c...Third heat exchanger, 1
6... Preheater, 17... Liquid phase hydrogenation cylinder, 17a... First
Liquid phase hydrogenation cylinder, 17b...Second liquid phase hydrogenation cylinder, 18
...High temperature separation column, 19... Gas phase hydrogenation column, 19a... First gas phase hydrogenation column, 19b... Second gas phase hydrogenation column, 2
0...Water cooler, 21...Low temperature separation column, 22...Line, 23...High pressure hydrogen circulation pump, 24...Line,
25... High pressure hydrogen line, 26... Cooler, 27... Pump, 28... Hot slurry storage tank, 29... Pump, 3
0... Line, 31... Ordinary pressure slurry storage tank, 32... Pump, 33... Line, 34... Line, 35... Attritor, 36... Slurry discharge line, 37... Hydrogen supply line, 37a... Hydrogen supply line, 37b... Hydrogen supply Line, 38...Line, 39...Line, 40
... Line, 41 ... Inner pipe, 42 ... Decentralizer, 43 ... Cooling coil, 44 ... Air inlet, 45 ... Air outlet, 4
6... Coiled heat exchanger, 47... Flush nozzle, 48... Slurry storage section, 49... Mist collector, 50... Line, 51... Line, 52... Line, 53... Fractionator, 54... Shelf, 55... Air inlet, 56... Air outlet, 57... Mist collector, 58
... Line, 59 ... Inner cylinder, 60 ... Space, 61 ... Dispersion plate, 62 ... Line, 63 ... Umbrella, 64 ... Line, 6
5...Inner space of inner cylinder, 66...Feeding line, 67...
Circulation line, 68...branch pipe.

Claims (1)

【特許請求の範囲】 1 粗重質油をまず液相で高温高圧接触水素化し
て粗軽・中質留分を生成させ、ついでこれを気相
で高温高圧接触水素化して精製・軽質化すること
よりなる軽質油の連続製造法において、 (a) 液相水素化筒の底部に予熱した原料粗重質
油・微粉水素化触媒および過剰の水素を連続的
に送入し、液相水素化筒内において粗重質油中
に微粉水素化触媒が分散・懸濁して液相懸濁触
媒層を構成している状態で、粗重質油の一部を
接触水素化して粗軽・中質留分の蒸気を連続的
に生成させる工程、 (b) その際得られる粗軽・中質留分の蒸気および
未反応水素を主体とする生成気流ならびに微粉
水素化触媒と粗重質油の残油とよりなる含触媒
残油スラリー流を、液相水素化筒上部より連続
的に溢流させてつぎの高温分離筒に送り、ここ
で生成気流と含触媒残油スラリー流とを気液分
離する工程、 (c) 高温分離筒で分離した粗軽・中質留分の蒸気
および水素を主体とする生成気流を高温分離筒
上部より連続的に抜き出し、引き続き気相のま
ま成型水素化触媒充填層を有する気相水素化筒
に送入し接触水素化して、粗軽・中質留分の蒸
気をさらに精製・軽質化する工程、 (d) 気相水素化筒で生成した軽質留分に富んだ生
成油の蒸気および未反応水素を主体とする気流
を冷却し、軽質留分に富んだ生成油の蒸気を液
化して未反応水素と分離し、水素は液相水素化
筒へ循環・使用する工程、 (e) 前記(b)工程で分離された含触媒残油スラリー
を高温分離筒底部から抜き出し、液相水素化筒
へ循環送入して再使用する工程、 以上の5工程を結合することを特徴とする軽質
油の連続製造法。 2 高温分離筒内に含触媒残油スラリー貯留層を
形成させ、液相水素化筒からの溢流物を高温分離
筒底部に送入して、溢流物中の生成気流が上記貯
留層中を上昇してから気液分離するようにし、生
成気流中の水素によつて貯留層中の残油をさらに
水素化することを特徴とする特許請求の範囲第1
項記載の方法。 3 高温分離筒で含触媒残油スラリーから分離さ
れた生成気流を冷却し温度を降下させて、生成気
流中に同伴されている粗重質留分の蒸気を凝縮・
分離した後、残りの粗軽・中質留分の蒸気および
水素を主体とする生成気流を、加熱または加熱せ
ずして、気相水素化反応開始温度以上の温度を保
たせながら、引き続き気相水素化筒へ送入するこ
とを特徴とする特許請求の範囲第1項に記載の方
法。 4 高温分離筒内の気相部に設置した分縮器の冷
却面に含触媒残油スラリーから分離された生成気
流を接触させて冷却し、生成気流の温度を降下さ
せることを特徴とする特許請求の範囲第3項記載
の方法。 5 高温分離筒内の気相部に設置した分留器中
で、筒外から供給される液状の軽・中質油に含触
媒残油スラリーから分離された生成気流を直接接
触させて冷却し、生成気流の温度を降下させるこ
とを特徴とする特許請求の範囲第3項記載の方
法。 6 高温分離筒底部から抜き出した含触媒残油ス
ラリーの一部を冷却・減圧してから摩砕機にかけ
て充分摩砕することにより、含触媒残油スラリー
中の微粉水素化触媒表面に付着した遊離炭素・金
属硫化物などの固形異物を機械的に剥離した後、
含触媒残油スラリーを液相水素化筒へ循環送入す
ることを特徴とする特許請求の範囲第1項記載の
方法。 7 高温分離筒底部から抜き出した含触媒残油ス
ラリーを予熱前の原料粗重質油に連続的に混合
し、原料粗重質油中に微粉水素化触媒が懸濁して
いる状態で水素と共に予熱してから、液相水素化
筒に送入することを特徴とする特許請求の範囲第
1項記載の方法。 8 高温分離筒底部から抜き出した含触媒残油ス
ラリーの一部を冷却・減圧した後連続的または間
歇的に反応系外に排出すると共に、新触媒を連続
的または間歇的に反応系内に補給して、液相水素
化筒における懸濁触媒濃度を所定範囲内に保持す
ると同時に、液相水素化筒の懸濁触媒層内に蓄積
される遊離炭素・金属硫化物などの固形異物の濃
度を所定限度以下に制御することを特徴とする特
許請求の範囲第1項記載の方法。 9 複数個の気相水素化筒を連結して設置し、先
行する筒には接触水素化精製能に優れた成型触媒
を充填し、後続する筒には接触水素化分解能に優
れた成型触媒を充填することを特徴とする特許請
求の範囲第1項記載の方法。 10 液相水素化筒の内部中央に上下端が開放さ
れた内筒を設置し、内筒と外筒との間の空間に複
数段の分散板を配置し、送入される粗重質油・微
粉水素化触媒および水素が分散・混合した状態で
上記内筒と外筒との間の空間を上昇するようにす
ると共に、液相水素化筒上部に存在する含触媒残
油スラリーの一部が内筒内部を下降して循環する
ようにしたことを特徴とする特許請求の範囲第1
項記載の方法。 11 液相水素化筒を複数筒連結して用いること
を特徴とする特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. Crude heavy oil is first subjected to high-temperature, high-pressure catalytic hydrogenation in the liquid phase to produce crude, light and medium fractions, and then refined and lightened by high-temperature and high-pressure catalytic hydrogenation in the gas phase. In the continuous light oil production method, (a) Preheated raw material crude heavy oil, finely powdered hydrogenation catalyst, and excess hydrogen are continuously fed into the bottom of the liquid phase hydrogenation cylinder, and In a state in which finely powdered hydrogenation catalyst is dispersed and suspended in crude heavy oil to form a liquid phase suspended catalyst layer, a part of the crude heavy oil is catalytically hydrogenated to produce vapors of coarse light and medium fractions. (b) a process of continuously producing vapor of the crude light and medium fractions obtained at that time, a generated gas stream mainly consisting of unreacted hydrogen, and a gaseous stream consisting of finely powdered hydrogenation catalyst and residual crude and heavy oil; A step of continuously overflowing the catalyst residual oil slurry flow from the upper part of the liquid phase hydrogenation cylinder and sending it to the next high temperature separation cylinder, where the generated gas flow and the catalyst residual oil slurry flow are separated into gas and liquid, (c ) The vapor of the crude, light and medium fractions separated in the high-temperature separation column and the produced gas stream mainly composed of hydrogen are continuously extracted from the upper part of the high-temperature separation column, and are then kept in the gas phase with a formed hydrogenation catalyst packed bed. (d) Process of further refining and lightening the crude light and medium fraction vapors by feeding them into a hydrogenation cylinder and subjecting them to catalytic hydrogenation. A process in which a gas stream consisting mainly of steam and unreacted hydrogen is cooled, the vapor of the produced oil rich in light fractions is liquefied and separated from unreacted hydrogen, and the hydrogen is recycled to the liquid phase hydrogenation cylinder for use. e) A step in which the catalyst residual oil slurry separated in step (b) is extracted from the bottom of the high-temperature separation column and reused by circulating it into the liquid-phase hydrogenation column.It is characterized by combining the above five steps. Continuous production method of light oil. 2 Form a catalyst residual oil-containing slurry storage layer in the high-temperature separation column, and feed the overflow from the liquid phase hydrogenation column to the bottom of the high-temperature separation column, so that the generated airflow in the overflow flows into the storage layer. Claim 1, characterized in that the residual oil in the reservoir is further hydrogenated by the hydrogen in the generated gas stream, and the residual oil in the reservoir is further hydrogenated by the hydrogen in the generated gas stream.
The method described in section. 3 The generated air stream separated from the catalyst residual oil slurry in the high-temperature separation column is cooled to lower the temperature, and the vapor of the crude heavy fraction entrained in the generated air stream is condensed.
After separation, the remaining crude, light and medium fraction steam and the produced gas stream, which is mainly composed of hydrogen, are continuously heated with or without heating, while maintaining the temperature above the gas phase hydrogenation reaction initiation temperature. 2. The method according to claim 1, characterized in that it is fed into a phase hydrogenation cylinder. 4. A patent characterized in that the generated airflow separated from the catalyst residual oil slurry is brought into contact with the cooling surface of a dephlegmator installed in the gas phase part of a high-temperature separation cylinder to cool the generated airflow, thereby lowering the temperature of the generated airflow. The method according to claim 3. 5 In a fractionator installed in the gas phase inside the high-temperature separation cylinder, the produced air stream separated from the catalyst residual oil slurry is brought into direct contact with the liquid light/medium oil supplied from outside the cylinder and cooled. 4. A method according to claim 3, characterized in that the temperature of the produced air stream is lowered. 6. By cooling and depressurizing a portion of the catalyst residual oil slurry extracted from the bottom of the high-temperature separation column and thoroughly grinding it in a grinder, free carbon attached to the surface of the finely divided hydrogenation catalyst in the catalyst residual oil slurry is removed.・After mechanically peeling off solid foreign substances such as metal sulfides,
The method according to claim 1, characterized in that the slurry containing catalyst residual oil is circulated and fed to the liquid phase hydrogenation column. 7. Continuously mix the catalyst-containing residual oil slurry extracted from the bottom of the high-temperature separation cylinder with the raw material crude heavy oil before preheating, and preheat it with hydrogen while the fine hydrogenation catalyst is suspended in the raw material crude heavy oil. 2. The method according to claim 1, characterized in that the hydrogen gas is fed into a liquid phase hydrogenation cylinder from the hydrogen gas. 8 A part of the catalyst residual oil slurry extracted from the bottom of the high-temperature separation cylinder is cooled and depressurized, and then continuously or intermittently discharged from the reaction system, and new catalyst is continuously or intermittently replenished into the reaction system. In this way, the concentration of suspended catalyst in the liquid phase hydrogenation cylinder is maintained within a predetermined range, and at the same time, the concentration of solid foreign substances such as free carbon and metal sulfides accumulated in the suspended catalyst layer of the liquid phase hydrogenation cylinder is controlled. The method according to claim 1, characterized in that the temperature is controlled to be below a predetermined limit. 9 Multiple gas-phase hydrogenation cylinders are connected and installed, the leading cylinder is filled with a shaped catalyst with excellent catalytic hydrogenation refining ability, and the subsequent cylinder is filled with a shaped catalyst with excellent catalytic hydrogenation cracking ability. A method according to claim 1, characterized in that filling. 10 An inner cylinder with open upper and lower ends is installed in the center of the liquid-phase hydrogenation cylinder, and multiple stages of dispersion plates are arranged in the space between the inner cylinder and the outer cylinder, and the crude and heavy oil to be fed is The finely powdered hydrogenation catalyst and hydrogen are dispersed and mixed to rise through the space between the inner cylinder and the outer cylinder, and a part of the catalyst residual oil slurry present in the upper part of the liquid phase hydrogenation cylinder is Claim 1 characterized in that the circulation is made to descend inside the inner cylinder.
The method described in section. 11. The method according to claim 1, characterized in that a plurality of liquid phase hydrogenation cylinders are connected and used.
JP12942581A 1981-08-20 1981-08-20 ITSURYUGATAKOATSUEKISOSUISOKATOKOATSUKISOSUISOKATONOCHOKURETSUKOTEINYORISOJUSHITSUYUKARAKEISHITSUYUOSEIZOSURUHOHO Expired - Lifetime JPH0237389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12942581A JPH0237389B2 (en) 1981-08-20 1981-08-20 ITSURYUGATAKOATSUEKISOSUISOKATOKOATSUKISOSUISOKATONOCHOKURETSUKOTEINYORISOJUSHITSUYUKARAKEISHITSUYUOSEIZOSURUHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12942581A JPH0237389B2 (en) 1981-08-20 1981-08-20 ITSURYUGATAKOATSUEKISOSUISOKATOKOATSUKISOSUISOKATONOCHOKURETSUKOTEINYORISOJUSHITSUYUKARAKEISHITSUYUOSEIZOSURUHOHO

Publications (2)

Publication Number Publication Date
JPS5832694A JPS5832694A (en) 1983-02-25
JPH0237389B2 true JPH0237389B2 (en) 1990-08-23

Family

ID=15009174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12942581A Expired - Lifetime JPH0237389B2 (en) 1981-08-20 1981-08-20 ITSURYUGATAKOATSUEKISOSUISOKATOKOATSUKISOSUISOKATONOCHOKURETSUKOTEINYORISOJUSHITSUYUKARAKEISHITSUYUOSEIZOSURUHOHO

Country Status (1)

Country Link
JP (1) JPH0237389B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8624952D0 (en) * 1986-10-17 1986-11-19 Shell Int Research Converting stream containing heavy hydrocarbons into stream

Also Published As

Publication number Publication date
JPS5832694A (en) 1983-02-25

Similar Documents

Publication Publication Date Title
US3622498A (en) Slurry processing for black oil conversion
JP2804369B2 (en) Hydrotreatment of residual oil with resin
US7618530B2 (en) Heavy oil hydroconversion process
US4336160A (en) Method and apparatus for cracking residual oils
US7964156B2 (en) Method and apparatus for regenerating an iron-based fischer-tropsch catalyst
RU2385346C2 (en) Method of treatment with hydrogen and system for enriching heavy oil with implementation of colloid or molecular catalyst
KR102505534B1 (en) Upgraded ebullated bed reactor with less fouling sediment
JP4866351B2 (en) Process for direct coal liquefaction
RU2622393C2 (en) Asphaltene pitch conversion during hydrocracking of residue with fluidized bed
KR100983817B1 (en) Hydrocracking process to maximize diesel with improved aromatic saturation
US4222844A (en) Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes
CN1455809A (en) Asphalt and resin production to integration of solent deasphalting and gasification
JP2018532841A (en) Improved ebullated bed reactor using timely raw materials
JPH08911B2 (en) Hydroconversion method for hydrocarbon liquids using supercritical vapor extraction of liquid fractions
US9550947B2 (en) Hydrocracking process of heavy hydrocarbon distillates using supercritical solvent
US4179352A (en) Coal liquefaction process
KR20180064553A (en) Solvent de-asphalting with cyclonic separation
JP2018532839A (en) Improved ebullated bed reactor with increased production rate of plastic secondary products
GB1580656A (en) Production of liquid hydrocarbons from coal
KR20190018465A (en) A binary catalyst system for upgrading an < RTI ID = 0.0 > evoluted < / RTI > bed to produce an improved quality vacuum residue product
CN105980532B (en) Decompression residuum and vacuum gas oil (VGO) are handled in fluidized bed reactor system
CN111465675A (en) Process and apparatus for recovering products of slurry hydrocracking
CN110819383A (en) Process for the upflow hydrogenation of poor quality hydrocarbons using reactors with internal parallel reaction zones
JPH0237389B2 (en) ITSURYUGATAKOATSUEKISOSUISOKATOKOATSUKISOSUISOKATONOCHOKURETSUKOTEINYORISOJUSHITSUYUKARAKEISHITSUYUOSEIZOSURUHOHO
JPS6241997B2 (en)