JPH0237183B2 - - Google Patents

Info

Publication number
JPH0237183B2
JPH0237183B2 JP59130900A JP13090084A JPH0237183B2 JP H0237183 B2 JPH0237183 B2 JP H0237183B2 JP 59130900 A JP59130900 A JP 59130900A JP 13090084 A JP13090084 A JP 13090084A JP H0237183 B2 JPH0237183 B2 JP H0237183B2
Authority
JP
Japan
Prior art keywords
sterilization
vacuum container
microwave
sterilized
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59130900A
Other languages
Japanese (ja)
Other versions
JPS6111049A (en
Inventor
Yoshasu Maehane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP13090084A priority Critical patent/JPS6111049A/en
Publication of JPS6111049A publication Critical patent/JPS6111049A/en
Publication of JPH0237183B2 publication Critical patent/JPH0237183B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、医療器具等の殺菌に用いられるマイ
クロ波放電プラズマ殺菌装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a microwave discharge plasma sterilizer used for sterilizing medical instruments and the like.

従来の技術 従来、医療器具等の殺菌には、高圧蒸気や高温
空気等による加熱殺菌、酸化エチレンガス等によ
るガス殺菌、紫外線殺菌や放射線殺菌等が広く用
いられている。
BACKGROUND ART Conventionally, heat sterilization using high-pressure steam or high-temperature air, gas sterilization using ethylene oxide gas, ultraviolet sterilization, radiation sterilization, etc. have been widely used to sterilize medical instruments and the like.

加熱殺菌では被殺菌物が高圧蒸気や高温空気に
さらされ、通常100℃以上の高温となるため、殺
菌処理可能な物質は耐熱性である必要があり、極
めて限定されることになる。従つてどのような加
熱手段を用いてもこの欠点は避けることができな
い。
In heat sterilization, the object to be sterilized is exposed to high-pressure steam or high-temperature air, which typically reaches temperatures of 100°C or higher, so the materials that can be sterilized must be heat resistant and are extremely limited. Therefore, this drawback cannot be avoided no matter what heating means is used.

ガス殺菌は、殺菌剤をガス状にして容器内に充
満させ、ガス濃度、温度、湿度、圧力等を調節
し、細菌に作用させるようにしたものであつて、
低温で殺菌することができる。例えばこのガス殺
菌には酸化エチレンが用いられるが、上記の条件
調節が容易でなく、条件の変動によつて作用効果
が著しく左右されることになる。またガス殺菌は
殺菌に長時間かかり、しかも被殺菌物の形状が複
雑な場合にはガスが十分に浸透せず十分な殺菌が
行なわれない恐れがあり、また殺菌後においても
酸化エチレン等の毒性ガスが被殺菌物に吸着し、
長時間残留するので殺菌後被処理物をすぐに使用
できないという欠点がある。
Gas sterilization is a method in which a sterilizer is made into a gas and filled into a container, and the gas concentration, temperature, humidity, pressure, etc. are adjusted so that it acts on bacteria.
Can be sterilized at low temperatures. For example, ethylene oxide is used for this gas sterilization, but the above-mentioned conditions are not easy to adjust, and the effects are significantly affected by variations in conditions. In addition, gas sterilization takes a long time to sterilize, and if the object to be sterilized has a complicated shape, the gas may not penetrate sufficiently and sterilization may not be carried out properly. The gas adsorbs to the object to be sterilized,
Since it remains for a long time, it has the disadvantage that the object to be treated cannot be used immediately after sterilization.

また、紫外線殺菌は極めて短時間で殺菌効果を
発揮するが、紫外線ランプの汚れ等が紫外線強度
が低下することにより殺菌効果も落ち、また細菌
の密度が104/cm2以上では細菌自体の陰影効果に
より陰になる部分は殺菌できない。
Furthermore, although ultraviolet sterilization exerts its sterilizing effect in an extremely short period of time, the sterilizing effect decreases as the intensity of the ultraviolet rays decreases due to dirt on the ultraviolet lamp, and if the density of bacteria is 10 4 /cm 2 or higher, the bacteria themselves become dark. Due to its effectiveness, areas that are shaded cannot be sterilized.

さらに放射線殺菌はその設備自体が大がかりと
なり、一般に通常の使用には不向きである。
Furthermore, radiation sterilization requires large-scale equipment and is generally unsuitable for normal use.

上述のような殺菌法の欠点を解消する方法とし
て放電またはプラズマを用いた殺菌方法が知られ
ている。放電殺菌装置の従来例は例えば特公昭53
−35715号公報、特開昭57−195461号公報および
特開昭57−200156号公報に記載されている。しか
しこれらの公知の放電殺菌装置ではいずれも真空
容器内に放電電極が配置されており、この放電電
極に高電圧を印加して放電させるため電極が放電
によつて生成されたイオンでスパツタされ、スパ
ツタされたものが被殺菌物に付着し殺菌とは別の
意味で汚染されることになる。
A sterilization method using electric discharge or plasma is known as a method for solving the above-mentioned drawbacks of the sterilization method. A conventional example of a discharge sterilizer is, for example,
-35715, JP-A-57-195461, and JP-A-57-200156. However, in all of these known discharge sterilizers, a discharge electrode is placed in a vacuum container, and in order to apply a high voltage to this discharge electrode to cause discharge, the electrode is spattered with ions generated by the discharge. The spattered material adheres to the object to be sterilized, causing contamination in a sense other than sterilization.

発明が解決しようとする問題点 そこで本発明は、従来の加熱殺菌法における高
温に伴なう被殺菌対象の制限問題、ガス殺菌法に
伴なう有毒ガスの残留の問題、紫外線殺菌法に伴
なう殺菌むらの生じる問題および放電殺菌法にお
ける電極等のスパツタによる被殺菌物の汚染の問
題を全て解決して低温、短時間で清浄で十分な殺
菌を行なうことのできるマイクロ波放電プラズマ
殺菌装置を提供することにある。
Problems to be Solved by the Invention The present invention solves the problem of limiting the number of objects to be sterilized due to high temperatures in conventional heat sterilization methods, the problem of residual toxic gas in gas sterilization methods, and A microwave discharge plasma sterilizer that solves the problem of uneven sterilization and the contamination of objects to be sterilized by spatter from electrodes in the discharge sterilization method, and can perform clean and sufficient sterilization at low temperatures in a short time. Our goal is to provide the following.

問題点を解決するための手段 上記目的を達成するために、本発明によるマイ
クロ波放電プラズマ殺菌装置は、排気系に連結さ
れる排気ポートとガス導入ポートとを備えた真空
容器内に被殺菌物の処理棚を配置し、また真空容
器にマイクロ波導入装置を取付け、真空容器内へ
マイクロ波を導入して内部にプラズマを発生さ
せ、さらに真空容器内にプラズマ状態を制御する
磁場を発生させる磁気装置を設けたことを特徴と
しており、この磁気装置は永久磁石または磁気コ
イルから成ることができる。
Means for Solving the Problems In order to achieve the above object, a microwave discharge plasma sterilizer according to the present invention has a method for storing objects to be sterilized in a vacuum container equipped with an exhaust port connected to an exhaust system and a gas introduction port. In addition, a microwave introduction device is installed in the vacuum container to introduce microwaves into the vacuum container to generate plasma inside the vacuum container, and a magnetic field that generates a magnetic field to control the plasma state inside the vacuum container. It is characterized in that a device is provided, which magnetic device can consist of a permanent magnet or a magnetic coil.

作 用 以上のように構成することによつて本発明のマ
イクロ波放電プラズマ殺菌装置においては処理棚
に被殺菌物を置き、所定の圧力まで排気される。
そして真空容器内にはガス導入ポートを介して
Ar、He等の不活性ガスやO2、H2、またはCl2
フツ素ガス、殺菌ガス等が導入され、所定の圧力
にされる。この状態においてマイクロ波導入装置
を作動させてマイクロ波エネルギを真空容器内に
投入し、プラズマを発生させることにより所要の
殺菌処理が行なわれる。
Function With the above-described configuration, in the microwave discharge plasma sterilizer of the present invention, objects to be sterilized are placed on the processing shelf and evacuated to a predetermined pressure.
And inside the vacuum container, there is a gas introduction port.
Inert gas such as Ar, He, O 2 , H 2 or Cl 2 ,
Fluorine gas, sterilizing gas, etc. are introduced and brought to a predetermined pressure. In this state, the microwave introduction device is operated to inject microwave energy into the vacuum container to generate plasma, thereby performing the required sterilization process.

またコイルや永久磁石を設けた真空容器内に磁
場を発生させるようにしているので磁場作用によ
つて電子の空間滞在時間がのび、ガス分子と衝突
する回数が増し、プラズマ密度が増加し、殺菌効
率を上げることができる。
In addition, since a magnetic field is generated in a vacuum container equipped with a coil or permanent magnet, the residence time of electrons in space is extended due to the effect of the magnetic field, the number of collisions with gas molecules increases, the plasma density increases, and sterilization occurs. It can increase efficiency.

実施例 以上添附図面を参照して本発明の実施例につい
て説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図には本発明によるマイクロ波放電プラズ
マ殺菌装置の一実施例を示し、1は真空容器で、
図示してない真空ポンプに連結される排気ポート
2、適当なガス供給源に連結されるガス導入ポー
ト3および被殺菌物を入れたり出したりするため
の扉4を備えている。真空容器1内には被殺菌物
をのせるための処理棚5が配置されている。また
真空容器1の壁の一部には図示したように石英ガ
ラス、セラミツク等の誘電体から成る窓6が設け
られ、この窓6の外側にはマイクロ波導入装置を
構成しているマイクロ波導波管7が取付けられて
いる。このマイクロ波導波管7を介して真空容器
1内に導入されるマイクロ波エネルギのレベルは
運転条件に応じて適当に設定され得る。
FIG. 1 shows an embodiment of the microwave discharge plasma sterilization apparatus according to the present invention, in which 1 is a vacuum container;
It is provided with an exhaust port 2 connected to a vacuum pump (not shown), a gas introduction port 3 connected to a suitable gas supply source, and a door 4 for putting in and taking out objects to be sterilized. A processing shelf 5 for placing objects to be sterilized is arranged within the vacuum container 1. Further, as shown in the figure, a window 6 made of a dielectric material such as quartz glass or ceramic is provided in a part of the wall of the vacuum vessel 1, and outside of this window 6 is a microwave guide which constitutes a microwave introducing device. A tube 7 is attached. The level of microwave energy introduced into the vacuum vessel 1 via the microwave waveguide 7 can be appropriately set depending on the operating conditions.

また真空容器1内には磁気を発生させるため永
久磁石8が設けられている。
Further, a permanent magnet 8 is provided within the vacuum container 1 to generate magnetism.

第2図には別の実施例を示し、9は真空容器
で、第1図の実施例の場合と同様にガス導入ポー
ト10、排気ポート11および扉12を備えてお
り、内部には被殺菌物の置かれる処理棚13が配
置されている。14は真空容器1の壁に設けられ
た誘電体材料から成る窓でその外側にはマイクロ
波導波管14が取付けられており、また真空容器
9の外側には磁気コイル15が設けられている。
なおこの場合磁気コイル15の代りに永久磁石を
用いることもできる。
Another embodiment is shown in FIG. 2, and 9 is a vacuum container, which is equipped with a gas introduction port 10, an exhaust port 11, and a door 12 as in the embodiment shown in FIG. A processing shelf 13 on which items are placed is arranged. Reference numeral 14 denotes a window made of a dielectric material provided on the wall of the vacuum vessel 1. A microwave waveguide 14 is attached to the outside of the window, and a magnetic coil 15 is provided to the outside of the vacuum vessel 9.
In this case, a permanent magnet may be used instead of the magnetic coil 15.

第3図にはマイクロ波エネルギを真空容器内へ
導入する方法の別の例を示す。第3図において真
空容器16の壁に開口部17が設けられ、この開
口部17にはコネクタ18が取付られ、コネクタ
18から真空容器16内にはアンテナ19がのび
ており、そしてコネクタ18は同軸ケーブル20
を介してマイクロ波電源(図示されてない)に接
続される。
FIG. 3 shows another example of a method for introducing microwave energy into a vacuum container. In FIG. 3, an opening 17 is provided in the wall of the vacuum vessel 16, a connector 18 is attached to the opening 17, an antenna 19 extends from the connector 18 into the vacuum vessel 16, and the connector 18 is connected to a coaxial cable. 20
to a microwave power source (not shown).

このように構成された各図示実施例の装置を使
用して殺菌動作を行なう場合には、まず、真空容
器1,9内に配置された処理棚5,13に処理す
べき被殺菌物を置き、所定の圧力まで真空ポンプ
を用いて排気する。しかる後、ガス導入ポート
2,10を介して上述のようなガスを真空容器
1,9内に導入し、第1図の実施例では1.3×101
〜1.3×102pa程度、また第1図および第2図の実
施例では1.3×10-2〜1.3×102pa程度の圧力にす
る。この状態においてマイクロ波導波管7,14
または同軸ケーブル20を介して真空容器1,9
内に所定のマイクロ波エネルギを投入する。これ
により真空容器1,9内にはプラズマが発生さ
れ、処理棚5,13に置かれた被殺菌物の殺菌処
理が行なわれる。こうして予定の時間後マイクロ
波の投入が止められ、そして大気圧まで戻して被
殺菌物を取り出す。このようにして一連の殺菌処
理動作が行なわれる。
When carrying out a sterilization operation using the apparatus of each of the illustrated embodiments configured in this way, first, the objects to be sterilized are placed on the processing shelves 5 and 13 arranged in the vacuum containers 1 and 9. , and evacuate to a predetermined pressure using a vacuum pump. Thereafter, the above-mentioned gas is introduced into the vacuum vessels 1 and 9 through the gas introduction ports 2 and 10, and in the embodiment shown in FIG .
The pressure is approximately 1.3×10 2 pa, and in the embodiments shown in FIGS. 1 and 2, the pressure is approximately 1.3×10 −2 to 1.3×10 2 pa. In this state, the microwave waveguides 7, 14
or via the coaxial cable 20 to the vacuum vessels 1 and 9.
A predetermined microwave energy is input into the chamber. As a result, plasma is generated in the vacuum containers 1 and 9, and the objects to be sterilized placed on the processing shelves 5 and 13 are sterilized. In this manner, the microwave input is stopped after the scheduled time, and the pressure is returned to atmospheric pressure and the object to be sterilized is taken out. In this way, a series of sterilization operations are performed.

なお、第1図および第2図に示すように永久磁
石8や磁気コイル15を用いて真空容器1,9内
に磁場を発生させ、内部に発生したプラズマの状
態を制御することによつてより高い殺菌効率を得
ることができる。
As shown in FIGS. 1 and 2, a permanent magnet 8 and a magnetic coil 15 are used to generate a magnetic field within the vacuum vessels 1 and 9, and the state of the plasma generated inside is controlled. High sterilization efficiency can be obtained.

一例として第1図に示すような構造の装置を用
いてO2プラズマを0.04×102Paの圧力のもとで発
生させ(この時のマイクロ波入力は200W)、試料
として枯草菌芽胞106個をスライドガラスに塗布
したものを用いて殺菌処理をしたところ、3分間
の処理で完全に殺菌させることができた。同一試
料を従来の蒸気殺菌法で殺菌処理した場合には20
分、また従来の放電殺菌法では5分かかつた。こ
のことから、本発明による装置は低温でしかも短
時間で清浄な滅菌が可能であることが認められ
る。
As an example, O 2 plasma was generated under a pressure of 0.04 × 10 2 Pa (microwave input at this time was 200 W) using a device with the structure shown in Figure 1, and 10 6 Bacillus subtilis spores were used as a sample. When sterilization was performed using a sample coated on a slide glass, complete sterilization was achieved in just 3 minutes. 20 when the same sample is sterilized using the conventional steam sterilization method.
The conventional electrical discharge sterilization method took 5 minutes. From this, it is recognized that the apparatus according to the present invention is capable of clean sterilization at low temperatures and in a short time.

効 果 以上説明してきたように本発明においては電極
を用いずにマイクロ波エネルギの投入によつてプ
ラズマを発生させ、それにより殺菌処理を行なう
ように構成しているので従来の加熱殺菌法、ガス
殺菌法、紫外線殺菌法および放電殺菌法等におけ
る欠点を解消して低温、短時間で汚染のないきれ
いな殺菌を効率よく行なうことができる。
Effects As explained above, in the present invention, plasma is generated by inputting microwave energy without using electrodes, and the sterilization process is performed thereby. It is possible to eliminate the drawbacks of sterilization methods, ultraviolet sterilization methods, discharge sterilization methods, etc., and efficiently perform clean sterilization without contamination at low temperatures and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略断面図、
第2図は別の実施例を示す概略断面図、第3図は
マイクロ波導入手段の一例を示す図である。 図中、1,9:真空容器、2,10:ガス導入
ポート、3,14:排気ポート、5,13:処理
棚、7,14,18,19,20:マイクロ波導
入装置、8,15:磁気装置。
FIG. 1 is a schematic sectional view showing an embodiment of the present invention;
FIG. 2 is a schematic sectional view showing another embodiment, and FIG. 3 is a diagram showing an example of microwave introduction means. In the figure, 1, 9: Vacuum container, 2, 10: Gas introduction port, 3, 14: Exhaust port, 5, 13: Processing shelf, 7, 14, 18, 19, 20: Microwave introduction device, 8, 15 : Magnetic device.

Claims (1)

【特許請求の範囲】[Claims] 1 排気系に連結される排気ポートとガス導入ポ
ートとを備えた真空容器内に被殺菌物の処理棚を
配置し、また真空容器にマイクロ波導入装置を取
付け、真空容器内へマイクロ波を導入して内部に
プラズマを発生させ、さらに真空容器内にプラズ
マ状態を制御する磁場を発生させる磁気装置を設
けたことを特徴とするマイクロ波放電プラズマ殺
菌装置。
1 Place a processing shelf for objects to be sterilized in a vacuum container equipped with an exhaust port and a gas introduction port connected to an exhaust system, and install a microwave introduction device in the vacuum container to introduce microwaves into the vacuum container. What is claimed is: 1. A microwave discharge plasma sterilization device characterized by being provided with a magnetic device that generates plasma inside the vacuum container and generates a magnetic field that controls the state of the plasma inside the vacuum container.
JP13090084A 1984-06-27 1984-06-27 Microwave discharge plasma sterilization apparatus Granted JPS6111049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13090084A JPS6111049A (en) 1984-06-27 1984-06-27 Microwave discharge plasma sterilization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13090084A JPS6111049A (en) 1984-06-27 1984-06-27 Microwave discharge plasma sterilization apparatus

Publications (2)

Publication Number Publication Date
JPS6111049A JPS6111049A (en) 1986-01-18
JPH0237183B2 true JPH0237183B2 (en) 1990-08-22

Family

ID=15045342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13090084A Granted JPS6111049A (en) 1984-06-27 1984-06-27 Microwave discharge plasma sterilization apparatus

Country Status (1)

Country Link
JP (1) JPS6111049A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716457B2 (en) * 2004-03-19 2011-07-06 独立行政法人科学技術振興機構 Microwave plasma sterilization apparatus and sterilization method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865796A (en) * 1971-12-13 1973-09-10
JPS52156074A (en) * 1976-06-21 1977-12-26 Lilly Co Eli Plasma sterilizing method
JPS56102248A (en) * 1980-01-11 1981-08-15 Baiofuijikusu Research Ando Co Pasturization due to gas plasma added with seed
JPS56148354A (en) * 1980-04-18 1981-11-17 Tokyo Shibaura Electric Co Sterilizing treating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865796A (en) * 1971-12-13 1973-09-10
JPS52156074A (en) * 1976-06-21 1977-12-26 Lilly Co Eli Plasma sterilizing method
JPS56102248A (en) * 1980-01-11 1981-08-15 Baiofuijikusu Research Ando Co Pasturization due to gas plasma added with seed
JPS56148354A (en) * 1980-04-18 1981-11-17 Tokyo Shibaura Electric Co Sterilizing treating device

Also Published As

Publication number Publication date
JPS6111049A (en) 1986-01-18

Similar Documents

Publication Publication Date Title
US4348357A (en) Plasma pressure pulse sterilization
EP0278623B1 (en) Hydrogen peroxide plasma sterilization system
AU592576B2 (en) Hydrogen peroxide plasma sterilization system
US6113851A (en) Apparatus and process for dry sterilization of medical and dental devices and materials
US5633424A (en) Device and methods for plasma sterilization
Gadri et al. Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP)
US5184046A (en) Circular waveguide plasma microwave sterilizer apparatus
EP0387022B1 (en) Plasma sterilizer and method
US5645796A (en) Process for plasma sterilizing with pulsed antimicrobial agent treatment
EP1040839B1 (en) Method of enhanced sterilization with improved material compatibility
US5413759A (en) Plasma sterilizer and method
US5741460A (en) Process for dry sterilization of medical devices and materials
WO1996021473A9 (en) Device and methods for plasma sterilization
US20050269199A1 (en) Process for the plasma sterilization of dielectric objects comprising a hollow part
WO2013101673A1 (en) Plasma sterilization systems
US6707254B1 (en) Low temperature plasma sterilising system and method
US5163458A (en) Method for removing contaminants by maintaining the plasma in abnormal glow state
US20140003998A1 (en) Plasma Sterilization System
US5068002A (en) Ultrasonic glow discharge surface cleaning
JPH0237183B2 (en)
AU6169596A (en) Process and apparatus for dry sterilization of medical devices and materials
CN212308482U (en) Atmospheric pressure low temperature plasma rapid sterilization device
Roth et al. Increasing the surface energy and sterilization of nonwoven fabrics by exposure to a one atmosphere uniform glow discharge plasma (OAUGDP)
JPS6389162A (en) Sterilizing treatment apparatus
CN111150863A (en) Atmospheric pressure low-temperature plasma rapid sterilization device and sterilization method