JPH0236527B2 - AKUCHINOIDOSHOSANKABUTSUNONETSUBUNKAIHANNOSOCHI - Google Patents

AKUCHINOIDOSHOSANKABUTSUNONETSUBUNKAIHANNOSOCHI

Info

Publication number
JPH0236527B2
JPH0236527B2 JP20659981A JP20659981A JPH0236527B2 JP H0236527 B2 JPH0236527 B2 JP H0236527B2 JP 20659981 A JP20659981 A JP 20659981A JP 20659981 A JP20659981 A JP 20659981A JP H0236527 B2 JPH0236527 B2 JP H0236527B2
Authority
JP
Japan
Prior art keywords
actinide
fluidized bed
reaction
heated air
nitrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20659981A
Other languages
Japanese (ja)
Other versions
JPS58110429A (en
Inventor
Kimio Ueda
Akira Fujimura
Hiroshi Hirashima
Kazu Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP20659981A priority Critical patent/JPH0236527B2/en
Publication of JPS58110429A publication Critical patent/JPS58110429A/en
Publication of JPH0236527B2 publication Critical patent/JPH0236527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はアクチノイド(U、Np、Pu、Am、
Cm等)の硝酸化物の熱分解反応装置に係わり、
さらに詳しくはアクチノイド硝酸化物を熱分解反
応してアクチノイド酸化物を製造するに適した二
重円筒管型流動反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides actinides (U, Np, Pu, Am,
Involved in thermal decomposition reaction equipment for nitrates such as Cm, etc.
More specifically, the present invention relates to a double cylindrical fluid flow reactor suitable for producing actinide oxides by thermally decomposing actinide nitrates.

通常、原子炉から取出された使用済核燃料は、
アクチノイド硝酸化物として取出され、特にウラ
ン、プルトニウムは再使用のためこれを熱分解し
て酸化物とする工程が必要である。また、ウラ
ン、プルトニウム以外のアクチノイド硝酸化物
は、これを熱分解して減溶化せしめ廃棄処理する
工程が必要である。本発明はかかるアクチノイド
硝酸化物の熱分解反応装置に関するものである。
Spent nuclear fuel removed from a nuclear reactor is usually
Actinide nitrates are extracted, and uranium and plutonium in particular require a step to thermally decompose them into oxides for reuse. Furthermore, actinide nitrates other than uranium and plutonium require a process of thermally decomposing them to reduce their solubility and disposing of them. The present invention relates to such a thermal decomposition reactor for actinide nitrates.

本出願人は、先に硝酸ウラニルを熱分解し、三
酸化ウランを製造するにあたり、横角形流動反応
装置を用い、臨界安全形状に合致し、大量処理が
でき、良好な熱分解反応が達成できる発明につき
出願を行つた。(特願昭55−120693号(特公昭62
−3094号) アクチノイド系化合物のごとき放射性物質にあ
つては、その爆発をさけるため、多量貯蔵するに
あたつては、その容積形状を一定厚み以下に保つ
ことにより、その厚み以内であれば平面積を無限
に延ばしても爆発をさけうることが理論上、経験
上臨界安全形状として知れており、その意味で薄
角形の反応容器が好ましい。さらに流動反応状態
を良好に維持することから、縦型より横型が望ま
しく前出願はかかる発明に基づくものであつた。
The applicant first thermally decomposes uranyl nitrate to produce uranium trioxide using a horizontal rectangular flow reactor, which conforms to the criticality safety geometry, can be processed in large quantities, and achieves a good thermal decomposition reaction. An application was filed for the invention. (Special Patent Application No. 120693 (1982)
-3094) When storing radioactive substances such as actinide compounds in large quantities, in order to avoid their explosion, the volume and shape of the substances should be kept below a certain thickness; The fact that explosion can be avoided even if the area is extended to infinity is theoretically and empirically known as a critical safety shape, and in that sense, a thin rectangular reaction vessel is preferable. Further, in order to maintain a good flow reaction state, a horizontal type is more preferable than a vertical type, and the previous application was based on this invention.

しかし、さらに大量製造を行うことを考える
と、装置が著しく細長い形状となり、装置製作
上、敷地占有上不便な構造となつてくる。又、本
反応は加熱反応であるため、細長い形状であれば
熱膨脹を吸収し切れず熱変形を起す可能性も多
く、この場合機械的強度上の不安も生じてくる。
However, when mass production is considered, the device becomes extremely elongated, resulting in a structure that is inconvenient in terms of device manufacturing and site occupancy. Furthermore, since this reaction is a heating reaction, if the shape is elongated, thermal expansion cannot be fully absorbed and there is a high possibility that thermal deformation will occur, and in this case, concerns regarding mechanical strength may arise.

本発明者は、この細長い形状を円筒状にすれ
ば、敷地上の不便や、機械的強度上の不安もな
く、大容量装置を製造しうることに想到し、本発
明を完成するに至つたものである。すなわち、本
発明はアクチノイド硝酸化物を熱分解して、アク
チノイド酸化物とする流動反応装置において、臨
界安全形状を充足した二重円筒管の内筒と外筒と
の間の部分を反応部とし、該反応部には、流動層
を形成する濃厚部1、その上部近傍の稀釈部4、
アクチノイド硝酸化物を供給する複数の供給口
3,5、該反応部の下端に設けられた加熱空気吹
込口10、流動層と加熱空気吹込口を隔する分散
板6が設けられており、アクチノイド酸化物の流
動粒子12を流動層の上部から溢流させると共
に、層中で発生した粗大粒子13を下部から取り
除くことを特徴とするアクチノイド硝酸化物の熱
分解反応装置である。
The inventor of the present invention came up with the idea that if this elongated shape is made into a cylindrical shape, a large-capacity device can be manufactured without inconvenience on site or concerns about mechanical strength, and has completed the present invention. It is something. That is, the present invention provides a fluid reaction device for thermally decomposing actinide nitrates to produce actinide oxides, in which a portion between an inner tube and an outer tube of a double cylindrical tube that satisfies a critical safety shape is used as a reaction part, The reaction part includes a concentrated part 1 forming a fluidized bed, a diluted part 4 near the upper part of the concentrated part 1,
A plurality of supply ports 3 and 5 for supplying actinide nitrate, a heated air inlet 10 provided at the lower end of the reaction section, and a dispersion plate 6 separating the fluidized bed and the heated air inlet are provided, and the actinide oxidation This is a thermal decomposition reactor for actinide nitrates, which is characterized in that fluidized particles 12 of the substance overflow from the upper part of the fluidized bed, and coarse particles 13 generated in the bed are removed from the lower part.

以下図面に基づき説明する。第1図は本発明の
好ましい実施例を説明するもので、たとえばウラ
ン濃縮脱硝工程に送られてきた硝酸ウラニル溶液
は、蒸発濃縮を受けた後、1200gU/の濃度
で、約150℃の加熱空気と共に、流動層反応装置
の濃厚部(流動層)1に設けられた複数個の供給
口3および稀釈部(流動層の上部近傍)4に設け
られた複数個の供給口5から流動層内に供給され
る。供給口を複数個設け分散供給することにより
本反応における大きい吸熱による局部冷却をさけ
ることができ、また、供給口へのケーキングの発
生やそれによる巨大粒子の発生を防止することが
でき、より安定した流動状態を得ることができ
る。また、供給口を濃厚部と希薄部に設けたこと
により、さらに流動状態の調節がしやすく、上部
器壁への粉体の付着を減少せしめ、伝熱が良好と
なる。装置下部よりは、約370℃の加熱空気(矢
印A)を圧入し、加熱空気は、焼結金属製の分散
板6、流動層1、焼結金属製のフイルター7を通
り、装置上部より系外に排出される。この間、流
動層において、硝酸ウラニル溶液を加熱し、硝酸
ウラニルは約150〜300℃の温度で熱分解して三酸
化ウランを生成する。なお、流動層下部の加熱空
気吹込口10は、多室に分割しておくことによ
り、流動状態がより良好となる。流動粒子12
は、主として流動層の上部を溢流することによつ
て取出される(矢印B)。又流動層の下部は開放
可能な構造となつている。このため、たとえば図
外の堰を設け、堰自身を上下に移動可能としても
よく、下部に移動可能な補助板9を設けることと
してもよい。堰により、2以上の反応室を経由さ
せることによつて反応の完結を確実にすることが
できる。また、三酸化ウランを溢流によつて取出
すことによつて、取出口のつまりを防ぐことがで
きる。また、層中で発生した不可避的な粗大粒子
13は、下部より取除き(矢印C)、その蓄積を
防ぐことができる。さらに必要に応じ、反応室を
容易に清浄化することができる。
This will be explained below based on the drawings. FIG. 1 illustrates a preferred embodiment of the present invention. For example, a uranyl nitrate solution sent to a uranium concentration and denitrification process is evaporated and concentrated, and then heated to a concentration of 1200 gU/by air heated at about 150°C. At the same time, a plurality of supply ports 3 provided in the concentrated section (fluidized bed) 1 and a plurality of supply ports 5 provided in the dilution section (near the top of the fluidized bed) 4 of the fluidized bed reactor are supplied into the fluidized bed. Supplied. By providing multiple supply ports and dispersing the supply, it is possible to avoid local cooling due to large heat absorption in this reaction, and it is also possible to prevent the occurrence of caking at the supply ports and the generation of giant particles due to this, making it more stable. A fluid state can be obtained. Furthermore, by providing the supply ports in the rich and lean parts, the flow state can be more easily adjusted, the adhesion of powder to the upper vessel wall is reduced, and heat transfer is improved. Heated air at approximately 370°C (arrow A) is injected from the bottom of the device, and the heated air passes through a sintered metal distribution plate 6, a fluidized bed 1, and a sintered metal filter 7, and enters the system from the top of the device. is discharged outside. During this time, the uranyl nitrate solution is heated in the fluidized bed, and the uranyl nitrate is thermally decomposed at a temperature of about 150-300°C to produce uranium trioxide. Note that by dividing the heated air inlet 10 in the lower part of the fluidized bed into multiple chambers, the fluidization state becomes better. Fluid particles 12
is removed primarily by flooding the top of the fluidized bed (arrow B). Moreover, the lower part of the fluidized bed has an openable structure. For this reason, for example, a weir (not shown) may be provided and the weir itself may be movable up and down, or a movable auxiliary plate 9 may be provided at the bottom. The weir can ensure completion of the reaction by passing through two or more reaction chambers. Further, by extracting uranium trioxide by overflowing, clogging of the outlet port can be prevented. Moreover, the unavoidable coarse particles 13 generated in the layer can be removed from the bottom (arrow C) to prevent their accumulation. Furthermore, the reaction chamber can be easily cleaned if necessary.

流動層の熱分解反応は、熱の充分な供給、均一
な分布が必要である。そのため、本装置では、熱
源として、加熱空気の他に、装置外部にジヤケツ
ト14を設け、たとえば、ここに熱媒体を導入し
加熱する。また、装置上部にはマイクロウエーブ
加熱器15を設けることが好ましい。マイクロウ
エーブ加熱を行つたものは、反応生成物が活性化
されるため、たとえば三酸化ウランを弗素化する
ことが容易となり一挙両得である。
Fluidized bed pyrolysis reactions require sufficient supply and uniform distribution of heat. Therefore, in this apparatus, in addition to the heated air, a jacket 14 is provided outside the apparatus as a heat source, and for example, a heat medium is introduced here for heating. Further, it is preferable to provide a microwave heater 15 at the top of the device. Microwave heating activates the reaction product, making it easy to fluorinate, for example, uranium trioxide, which is a win-win situation.

また、円筒内壁を中性子吸収材16、たとえば
硼素化合物、特に10B濃縮化合物の繊維で被覆
すれば連鎖反応が抑制され、臨界安全形状の制約
が緩和されると共に、保温の役割を果させること
ができる。
In addition, if the inner wall of the cylinder is coated with a neutron absorbing material 16, such as fibers of a boron compound, especially a 10B concentrated compound, chain reactions can be suppressed, the restrictions on criticality safety geometry can be relaxed, and the material can serve as a heat retainer. .

流動層の上部は、適正なガス流速にするため、
扇形に開く構造を有し、この開きのテーパーθ
は、本装置においては、25゜以下好ましくは20゜以
下とすることによつて、粉末の累積を防ぎ、スク
レーパー等の粉末蓄積を防ぐ手段なしに運転可能
となる。
At the top of the fluidized bed, in order to maintain an appropriate gas flow rate,
It has a fan-shaped opening structure, and the taper θ of this opening is
In this device, by setting the angle to 25° or less, preferably 20° or less, the accumulation of powder is prevented, and the device can be operated without a means to prevent powder accumulation, such as a scraper.

なお、本発明装置の具体例を示せば、ウラン全
量に対する 235Uの含有量が4重量%で、硝酸ウ
ラニルの処理能力が6t/日の場合、外周3〜6
m、幅150〜300mm、高さ300〜600mmの流動層(濃
厚部)を用いれば、臨界安全形状に合致し、安全
流動状態が維持される。
As a specific example of the apparatus of the present invention, when the content of 235 U is 4% by weight based on the total amount of uranium and the processing capacity of uranyl nitrate is 6 tons/day, the outer circumference is 3 to 6.
If a fluidized bed (dense part) with a width of 150 to 300 mm and a height of 300 to 600 mm is used, the critical safety shape will be met and a safe fluid state will be maintained.

以上、詳述したごとき本発明装置は、比較的製
作容易な形状であるにもかかわらず、流動状態が
よく、熱の不均一が少なく、かつ安全性に富み、
連続運転が容易で、しかも大容量の処理が可能で
あり、反応効率も高く、内部清浄化の容易な硝酸
アクチノイドの熱分解反応装置である。
Although the device of the present invention as detailed above has a shape that is relatively easy to manufacture, it has good fluidity, less uneven heat, and is highly safe.
This is a nitrate actinide thermal decomposition reactor that can be easily operated continuously, can process large volumes, has high reaction efficiency, and is easy to clean internally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明装置の実施例を説明する立面
説明図である。 1……濃厚部(流動層)、3,5……供給口、
4……稀薄部、6……分散板、7……フイルタ
ー、9……補助板、10……加熱空気吹込口、1
2……流動粒子、13……粗大粒子、14……ジ
ヤケツト、15……マイクロウエーブ加熱器、1
6……中性子吸収材。
FIG. 1 is an explanatory elevation view illustrating an embodiment of the apparatus of the present invention. 1... Concentrated part (fluidized bed), 3, 5... Supply port,
4... Lean part, 6... Dispersion plate, 7... Filter, 9... Auxiliary plate, 10... Heated air inlet, 1
2... Fluid particles, 13... Coarse particles, 14... Jacket, 15... Microwave heater, 1
6...Neutron absorbing material.

Claims (1)

【特許請求の範囲】 1 アクチノイド硝酸化物を熱分解して、アクチ
ノイド酸化物とする流動反応装置において、二重
円筒管の内筒と外筒との間の部分を反応部とし、
該反応部には、 流動層を形成する濃厚部1、 その上部近傍の稀釈部4、 アクチノイド硝酸化物を供給する複数の供給口
3,5、 該反応部の下端に設けられた加熱空気吹込口1
0、 流動層と加熱空気吹込口を隔する分散板6、 が設けられており、 アクチノイド酸化物の流動粒子12を流動層の
上部から溢流させると共に、層中で発生した粗大
粒子13を下部から取り除くことを特徴とするア
クチノイド硝酸化物の熱分解反応装置。
[Scope of Claims] 1. In a fluid reaction device for thermally decomposing actinide nitrate to produce actinide oxide, a portion between an inner cylinder and an outer cylinder of a double cylindrical tube is used as a reaction part,
The reaction section includes a concentrated section 1 that forms a fluidized bed, a dilution section 4 near the top thereof, a plurality of supply ports 3 and 5 for supplying actinide nitrate, and a heated air inlet provided at the bottom end of the reaction section. 1
0. A dispersion plate 6 is provided that separates the fluidized bed and the heated air inlet, and allows the fluidized particles 12 of actinide oxide to overflow from the upper part of the fluidized bed, and the coarse particles 13 generated in the bed to the lower part. A thermal decomposition reaction device for actinide nitrates, which is characterized in that it removes actinide nitrates from
JP20659981A 1981-12-21 1981-12-21 AKUCHINOIDOSHOSANKABUTSUNONETSUBUNKAIHANNOSOCHI Expired - Lifetime JPH0236527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20659981A JPH0236527B2 (en) 1981-12-21 1981-12-21 AKUCHINOIDOSHOSANKABUTSUNONETSUBUNKAIHANNOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20659981A JPH0236527B2 (en) 1981-12-21 1981-12-21 AKUCHINOIDOSHOSANKABUTSUNONETSUBUNKAIHANNOSOCHI

Publications (2)

Publication Number Publication Date
JPS58110429A JPS58110429A (en) 1983-07-01
JPH0236527B2 true JPH0236527B2 (en) 1990-08-17

Family

ID=16526055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20659981A Expired - Lifetime JPH0236527B2 (en) 1981-12-21 1981-12-21 AKUCHINOIDOSHOSANKABUTSUNONETSUBUNKAIHANNOSOCHI

Country Status (1)

Country Link
JP (1) JPH0236527B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376219A (en) * 1991-09-26 1994-12-27 Sealed Air Corporation High speed apparatus for forming foam cushions for packaging purposes

Also Published As

Publication number Publication date
JPS58110429A (en) 1983-07-01

Similar Documents

Publication Publication Date Title
US6960311B1 (en) Radiation shielding materials and containers incorporating same
US4008050A (en) Apparatus for combining oxygen and hydrogen
US4152287A (en) Method for calcining radioactive wastes
EP0047624B1 (en) Reactor and method for preparing uranium trioxide and/or plutonium oxide
US4202861A (en) Method for dry reprocessing of irradiated nuclear fuels
JPH0236527B2 (en) AKUCHINOIDOSHOSANKABUTSUNONETSUBUNKAIHANNOSOCHI
RU2371792C2 (en) Method and plant for recycling of spent nuclear fuel
Jonke et al. The use of fluidized beds for the continuous drying and calcination of dissolved nitrate salts
US3389054A (en) Radial split flow breeder reactor
WO1998042793A1 (en) Radiation shielding materials and containers incorporating same
US4755138A (en) Fluidized bed calciner apparatus
EA034325B1 (en) Process and apparatus for producing uranium or a rare earth element
JPS58128140A (en) Reacting device with fluidized bed by microwave heating
US3671199A (en) Plutonium hexafluoride reduction
EP0084129B1 (en) Method for treating nuclear fuel scrap
RU2203225C2 (en) Uranium hexafluoride conversion method
JPS5939375B2 (en) Method for producing uranium trioxide from uranyl nitrate
US3756786A (en) Fuel elements of graphite moderated high temperature reactors process and apparatus for the recovery of nuclear fuel material from
JPS582221A (en) Denitrating apparatus for uranyl nitrate and/or plutonium nitrate
RU2252459C2 (en) Fuel element manufacturing process
JPS58194742A (en) Denitration of uranium
US3376116A (en) Fluid bed denitration of thorium nitrate
JP7440432B2 (en) Method for producing actinide salt single-phase powder and apparatus for producing the same
RU2601765C1 (en) Method of producing uranium oxide from uranyl nitrate solution and device therefor
JP4729344B2 (en) Continuous production method and continuous production apparatus for ammonium heavy uranate particles