JPH0236359B2 - KOKODOKOJINSEIFEECOKINIKUMORIGOKIN - Google Patents
KOKODOKOJINSEIFEECOKINIKUMORIGOKINInfo
- Publication number
- JPH0236359B2 JPH0236359B2 JP29169285A JP29169285A JPH0236359B2 JP H0236359 B2 JPH0236359 B2 JP H0236359B2 JP 29169285 A JP29169285 A JP 29169285A JP 29169285 A JP29169285 A JP 29169285A JP H0236359 B2 JPH0236359 B2 JP H0236359B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- hardness
- toughness
- alloys
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000956 alloy Substances 0.000 claims description 44
- 229910045601 alloy Inorganic materials 0.000 claims description 43
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910017061 Fe Co Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 235000019589 hardness Nutrition 0.000 description 33
- 239000000463 material Substances 0.000 description 9
- 229910001339 C alloy Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910000676 Si alloy Inorganic materials 0.000 description 5
- 238000009863 impact test Methods 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005552 hardfacing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001347 Stellite Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/3093—Fe as the principal constituent with other elements as next major constituents
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
〔産業上の利用分野〕
本発明は機械部品、器具等の表面硬化のために
用いる高硬度高靭性のFe−Co基肉盛合金に関す
るものである。特に、射出成形機等のスクリユー
摩耗部分の硬化肉盛材に適している。
〔従来の技術〕
プラスチツクの成形機、押出機等のスクリユー
は稼働時にシリンダー内面との摩擦や樹脂または
樹脂に加えた添加材による摩耗を受けるため耐摩
耗性が要求されている。
従来、鋼製のスクリユーの摩耗対策は焼入れ、
窒化等の熱処理やハードクロメツキ等の表面処理
が施されていたが、最近の成形圧力上昇や添加物
等により摩耗が激しくなつている。このような摩
耗対策として、最近スクリユー山部にステライト
などのCo−Cr−W−C系合金や自性合金などNi
−Cr−B−Si系合金を肉盛する方法が取られだ
している。ところで、Co−Cr−W−C系合金は
比較的低い硬さ(HRC40〜45)では靭性が高い
が、高硬度(HRC45〜54)では靭性が低く、肉盛
層中にクラツクが発生するなどして使用や困難で
ある。従つて実際のスクリユーに肉盛可能なCo
−Cr−W−C系合金の材質は硬さHRC40〜44と
低いものである。このため、Co−Cr−W−C系
合金の肉盛スクリユーも耐摩耗性が十分とは言え
ない。一方、Ni−Cr−B−Si系合金は硬さが高
く耐摩耗性も良好だが靭性に欠けることにより、
肉盛溶接時又は使用時に肉盛層の割れや欠け落ち
などが起きるため、スクリユーへの肉盛材として
はあまり使用されていない。
〔本発明が解決しようとする問題点〕
本発明は上記従来の肉盛合金の欠点を解消しよ
うとするもので、硬さが高く、靭性に富んだ肉盛
合金を提供することを目的とし、従来公知の肉盛
合金より衝撃値の高い、新規な合金を種々検討し
た。その結果、Co基合金にFeを添加することに
より、硬さと靭性が向上することを見出し、組成
の検討を行つた結果、硬さ、靭性のいずれも満足
する合金を得たものである。さらにこの合金は耐
摩耗性や機械的強度等についても従来公知の肉盛
合金よりも優れていることが明らかになつた。
〔問題を解決するための手段〕
本発明の合金は、
(1) 重量でCr6.0〜14.0%、B0.8〜2.4%、Si0.5〜
5.0%、W0.5〜15%、Co10〜40%、残部40%以
上のFe及び不可避的不純物から成ることを特
徴とする高硬度高靭性Fe−Co基肉盛合金。
(2) 重量でCr6.0〜14.0%、B0.8〜2.4%、Si0.5〜
5.0%、W0.5〜15%、Co10〜40%を含み、更に
Ni1.5%以下及び/またはC0.5%以下を含み、
残部40%以上のFe及び不可避的不純物から成
ることを特徴とする高硬度高靭性Fe−Co基肉
盛合金。
である。
〔作用〕
本発明の成分限定理由を以下に述べる。以下%
は重量%を表すものとする。
Cr 6.0〜14.0%
CrはFe−Coを主体とする合金のマトリツクス
に固溶して、靭性の向上に寄与するが、6%未満
ではその効果が少ない。一方、14%を超えると硬
さの低下を招くのでその含有量を6.0〜14.0%に
定めた。
B 0.8〜2.4%
Bは高硬度の硼化物を形成し、組織中に析出さ
せるので、合金の硬さと耐摩耗性を向上させる。
0.8%未満では、硬さが不十分であり、2.4%を超
えると硬さ、耐摩耗性は向上するが脆性が増大す
るので、その含有量を0.8〜2.4%に定めた。
また、Bの添加は肉盛時の作業性を向上させる
効果がある。
Si 0.5〜5.0%
Siは合金は硬さ及び靭性を向上させる元素であ
るが、0.5%未満ではその効果が十分でなく、5.0
%を超えると硬さは向上するが脆性が増大するの
で、その含有量を0.5〜5.0%に定めた。
W 0.5〜15%
Wは少量の添加で合金の靭性を向上させるが、
0.5%未満ではその効果がない。一方、多量の添
加では15%を超えると合金の硬さ、靭性ともに低
下する。従つてその含有量を0.5〜15%とした。
Co 10〜40%
CoはFeとともに合金のマトリツクスを形成す
る元素である。Coの添加により合金の靭性が向
上するが、10%未満ではその効果が少なく、また
40%を超えると硬さが急激に低下し、同時に靭性
もやや低下する。従つてその範囲を10〜40%と定
めた。
Ni 1.5%以下
NiはCo中に少量含まれることが多いため、Ni
の影響を調べた。その結果、Ni1.5%までは合金
の靭性、硬さともにやや改善されるが、Niが1.5
%を超えると靭性、硬さともに急激に低下する。
従つてその含有量を1.5%以下とした。
C 0.5%以下
Cは原材料中や、溶製時のカーボンピツクアツ
プなどで入ることもあるのでその影響を調べた。
その結果C0.5%までは合金の硬さを上げ、靭性は
やや低下するもさほど悪影響を示さないが、0.5
%を超えると硬さが上がるものの靭性が急激に低
下する。従つて、その含有量を0.5%以下とした。
〔実施例〕
まず、本発明の合金(試料No.1〜13)と従来合
金としてCo−Cr−W−C系合金(試料No.14)及
びNi−Cr−B−Si系合金(試料No.15)について、
硬さ及び衝撃試験を行つた。
表−1は試験した合金組成と硬さ及び衝撃値を
示している。
試験は下記の通り行つた。
試料No.1〜13については原料にFe、Co、Cr、
Fe−B、Fe−W、Si、Ni、Cr−C等を用い、表
−1の組成になるように配合し、電気炉でAr雰
囲気中1450℃で溶解し、合金化した。次いで合金
化した溶湯を12×12×60mmのシエル鋳型に鋳造
し、鋳造後、鋳造欠陥除去を目的としてHIP処理
を行つた。(HIP条件・温度;固相線温度−30℃、
圧力;1000Kgf/cm2、保持時間;2H)この鋳造
片を研削により10×10×55mmの試片に加工した。
比較例の試料No.14、15については市販の溶接棒
を上記と同様の条件で溶解、鋳造、HIP処理し、
研削により10×10×55mmの試片に加工した。
衝撃試験はシヤルピー衝撃試験機を用い、上記
の10×10×55mm試片(ノツチなし)を用いて行つ
た。硬さ試験片はロツクウエル硬度計(Cスケー
ル)を用い、シヤルピー衝撃試験後の破断試験片
を用いて行つた。
図−1は硬さと衝撃値の関係を示しているが、
図中1〜13は試料No.1〜13に対応しており、1
4は従来合金のCo−Cr−W−C系合金、15は
同様にNi−Cr−B−Si系合金である。
表−1、図−1からわかるごとく、本発明の合
金は従来合金のCo−Cr−W−C系合金やNi−Cr
−B−Si系合金に比べ、同じ硬さでの衝撃値はお
よそ2倍以上高い値を示し、硬さもHRC46以上で
高い硬さを示している。
以上のごとく本発明の合金が高い硬さと靭性に
富んでいることがわかる。
[Industrial Application Field] The present invention relates to a high hardness and high toughness Fe--Co based overlay alloy used for surface hardening of machine parts, instruments, etc. It is particularly suitable as a hardfacing material for the screw parts of injection molding machines and the like. [Prior Art] Screws in plastic molding machines, extrusion machines, etc. are subject to wear from friction with the inner surface of cylinders and from resin or additives added to the resin during operation, and are therefore required to have wear resistance. Conventionally, measures against wear of steel screws include quenching,
Heat treatments such as nitriding and surface treatments such as hard chrome plating have been applied, but wear has become more severe due to recent increases in molding pressure and additives. As a countermeasure against such wear, recently Ni (Ni) alloys such as Co-Cr-W-C alloys such as stellite and autogenous alloys have been added to the screw crest.
-Methods of overlaying Cr-B-Si alloys are being used. By the way, Co-Cr-W-C alloys have high toughness at relatively low hardnesses (H R C40-45), but have low toughness at high hardnesses (H R C45-54), causing cracks in the overlay layer. It may be difficult to use or use. Therefore, Co can be overlaid on the actual screw.
-Cr-W-C alloy material has a low hardness of H R C40 to 44. For this reason, the overlay screw made of Co-Cr-W-C alloy cannot be said to have sufficient wear resistance. On the other hand, Ni-Cr-B-Si alloys have high hardness and good wear resistance, but lack toughness.
Because the overlay layer cracks or falls off during overlay welding or use, it is not often used as an overlay material for screws. [Problems to be Solved by the Invention] The present invention aims to eliminate the drawbacks of the conventional overlay alloys, and aims to provide an overlay alloy with high hardness and high toughness. Various new alloys with higher impact values than conventionally known overlay alloys were investigated. As a result, they found that hardness and toughness can be improved by adding Fe to a Co-based alloy, and as a result of studying the composition, they obtained an alloy that satisfies both hardness and toughness. Furthermore, it has been revealed that this alloy is superior to conventionally known overlay alloys in terms of wear resistance, mechanical strength, etc. [Means for solving the problem] The alloy of the present invention has (1) Cr6.0~14.0%, B0.8~2.4%, Si0.5~
A high hardness and high toughness Fe-Co based overlay alloy characterized by comprising 5.0% W, 0.5 to 15% W, 10 to 40% Co, and the balance 40% or more of Fe and unavoidable impurities. (2) Cr6.0~14.0%, B0.8~2.4%, Si0.5~ by weight
Contains 5.0%, W0.5~15%, Co10~40%, and more
Contains Ni1.5% or less and/or C0.5% or less,
A high-hardness, high-toughness Fe-Co-based overlay alloy characterized by comprising the balance of 40% or more of Fe and unavoidable impurities. It is. [Operation] The reasons for limiting the ingredients of the present invention will be described below. below%
shall represent weight %. Cr 6.0 to 14.0% Cr is dissolved in the matrix of the alloy mainly composed of Fe-Co and contributes to improving toughness, but if it is less than 6%, the effect is small. On the other hand, if it exceeds 14%, the hardness decreases, so the content is set at 6.0 to 14.0%. B 0.8-2.4% B forms a highly hard boride and precipitates in the structure, improving the hardness and wear resistance of the alloy.
If it is less than 0.8%, the hardness will be insufficient, and if it exceeds 2.4%, the hardness and wear resistance will improve, but the brittleness will increase, so the content was set at 0.8 to 2.4%. Moreover, the addition of B has the effect of improving workability during overlaying. Si 0.5~5.0% Si is an element that improves the hardness and toughness of alloys, but if it is less than 0.5%, its effect is not sufficient, and 5.0%
If the content exceeds 0.5% to 5.0%, hardness improves but brittleness increases, so the content was set at 0.5 to 5.0%. W 0.5-15% W improves the toughness of the alloy when added in small amounts, but
Less than 0.5% has no effect. On the other hand, if a large amount of addition exceeds 15%, both the hardness and toughness of the alloy will decrease. Therefore, its content was set at 0.5 to 15%. Co 10-40% Co is an element that forms the alloy matrix together with Fe. The addition of Co improves the toughness of the alloy, but if it is less than 10%, the effect is small and
When it exceeds 40%, the hardness decreases rapidly and at the same time, the toughness also decreases slightly. Therefore, the range was set at 10-40%. Ni 1.5% or less Ni is often contained in small amounts in Co, so Ni
We investigated the influence of As a result, up to 1.5% Ni, both the toughness and hardness of the alloy are slightly improved;
%, both toughness and hardness decrease rapidly.
Therefore, its content was set to 1.5% or less. C 0.5% or less C may be present in raw materials or during carbon pick-up during melting, so we investigated its effects.
As a result, up to 0.5% C, the hardness of the alloy increases, and although the toughness slightly decreases, it does not show much negative effects;
%, the hardness increases but the toughness rapidly decreases. Therefore, its content was set to 0.5% or less. [Example] First, alloys of the present invention (sample Nos. 1 to 13) and conventional alloys such as Co-Cr-W-C alloy (sample No. 14) and Ni-Cr-B-Si alloy (sample No. Regarding .15),
Hardness and impact tests were conducted. Table 1 shows the tested alloy compositions, hardness and impact values. The test was conducted as follows. For samples No. 1 to 13, the raw materials were Fe, Co, Cr,
Fe-B, Fe-W, Si, Ni, Cr-C, etc. were blended to have the composition shown in Table 1 and melted in an electric furnace at 1450°C in an Ar atmosphere to form an alloy. Next, the alloyed molten metal was cast into a 12 x 12 x 60 mm shell mold, and after casting, HIP treatment was performed for the purpose of removing casting defects. (HIP conditions/temperature; solidus temperature -30℃,
Pressure: 1000Kgf/cm 2 , Holding time: 2H) This cast piece was processed into a sample of 10×10×55 mm by grinding. For comparative samples No. 14 and 15, commercially available welding rods were melted, cast, and HIP-treated under the same conditions as above.
It was processed into a specimen of 10×10×55mm by grinding. The impact test was conducted using a Sharpie impact tester using the above 10 x 10 x 55 mm specimen (without notch). The hardness test piece was carried out using a Rockwell hardness meter (C scale), using a fracture test piece after a Charpy impact test. Figure 1 shows the relationship between hardness and impact value.
1 to 13 in the figure correspond to sample Nos. 1 to 13, and 1
4 is a conventional Co-Cr-W-C alloy, and 15 is a Ni-Cr-B-Si alloy. As can be seen from Table 1 and Figure 1, the alloy of the present invention is similar to the conventional Co-Cr-W-C alloy and the Ni-Cr alloy.
Compared to -B-Si alloys, the impact value at the same hardness is approximately twice as high, and the hardness is also high at H R C46 or higher. As described above, it can be seen that the alloy of the present invention is rich in high hardness and toughness.
【表】
次ぎに本発明の合金の機械的強度と耐摩耗性に
ついて、従来合金と比較して試験した。試験は表
−1の試料No.4と比較材として試料No.14、15につ
いて行つた。
機械的強度は引張試験を行つた。試片は前記、
硬さ−衝撃試験と同様の方法で溶解し、12φ×
120mmの黒鉛鋳型鋳造後、前記同様のHIP処理を
施した。この鋳造棒をJIS2号試験片(平行部径
6φmmツバ付)に切削加工し試験片とした。
引張試験はオートグラフ式引張試験機を用い、
室温、400℃、600℃について測定した。
耐摩耗性は金属との摺動摩擦試験を行つた。試
験片は硬さ−衝撃試験で用いた硬さ試験後の試料
を用い、試験面は耐水研摩紙#1200まで研摩し、
さらにバフ研摩した。相手材は特殊チル鋳鉄リン
グ(外径30φ×巾5mm)を用い、これに試験面を
押し付けて摺動させ、この摩耗痕を比較した。条
件は荷重;40Kgf、回転数;3370rpm、潤滑油;
モーターオイル10W−30、温度;70℃、時間;
5hrである。
表−2に試験結果を示す。
表−2からわかるごとく、本発明の合金は従来
合金に比べて、抗張力、伸びともに優れ、さらに
耐摩耗性にも優れている。[Table] Next, the mechanical strength and wear resistance of the alloy of the present invention were tested in comparison with conventional alloys. The test was conducted on sample No. 4 in Table 1 and samples No. 14 and 15 as comparative materials. Mechanical strength was determined by a tensile test. The specimen is as described above.
Hardness - Dissolved in the same manner as the impact test, 12φ×
After casting a 120 mm graphite mold, the same HIP treatment as above was performed. This cast bar was used as a JIS No. 2 test piece (parallel part diameter
A specimen with a 6φmm collar was cut into a specimen. The tensile test was carried out using an autograph tensile tester.
Measurements were made at room temperature, 400°C, and 600°C. Wear resistance was determined by a sliding friction test with metal. The test piece used was the sample used in the hardness-impact test after the hardness test, and the test surface was polished to #1200 waterproof abrasive paper.
It was further buffed. A special chilled cast iron ring (outer diameter 30φ x width 5mm) was used as the mating material, and the test surface was pressed against it and slid, and the wear marks were compared. Conditions are load: 40Kgf, rotation speed: 3370rpm, lubricant;
Motor oil 10W-30, temperature: 70℃, time;
It is 5 hours. Table 2 shows the test results. As can be seen from Table 2, the alloy of the present invention is superior to conventional alloys in both tensile strength and elongation, and is also superior in wear resistance.
以上、実施例で述べたごとく、本発明の合金は
高い硬さでかつ靭性に富み、その機械的強度と耐
摩耗性に優れていることから、機械部品等の耐摩
耗性を必要とする部位への硬化肉盛材として最適
である。
従来のCo−Cr−W−C系合金を肉盛したスク
リユーで摩耗が発生していた押出機のスクリユー
に本発明の合金を肉盛し、実用試験を行つた結
果、摩耗や肉盛層の割れ、欠け落ち等の問題は全
く起こらず、順調に稼働し、十分満足する結果を
示した。このことから、射出成形機スクリユーの
ごとく肉盛溶接時に割れの発生しやすい母材であ
ることや、かつ稼働時にシリンダー内面との摩擦
や樹脂及び添加剤による摩耗に耐え、さらに強い
ねじり作用による母材の変形に耐える肉盛層を形
成するための硬化肉盛材として適している。
なお、本発明の合金は鋳造棒として通常の肉盛
溶接の他に、アトマイジング法などによつて粉末
状として、プラズマ粉末肉盛溶接などにも利用で
きる。
As described above in the examples, the alloy of the present invention has high hardness and toughness, and has excellent mechanical strength and wear resistance. Ideal as a hardfacing material for The alloy of the present invention was overlaid on the screw of an extruder, where wear had occurred with the screw overlaid with a conventional Co-Cr-W-C alloy, and a practical test was conducted. There were no problems such as cracking or chipping, and the machine operated smoothly and showed fully satisfactory results. This means that the base material is prone to cracking during build-up welding, such as in injection molding machine screws, and that it can withstand friction with the inner surface of the cylinder and abrasion due to resin and additives during operation, and is also susceptible to strong torsional action. It is suitable as a hardfacing material to form a built-up layer that can withstand the deformation of materials. The alloy of the present invention can be used not only as a cast rod for ordinary overlay welding, but also for plasma powder overlay welding after being made into a powder form by atomizing or the like.
図−1は本発明の合金及び比較材として従来合
金の硬さと衝撃値の関係を示したものである。図
中、1〜13は本発明の合金、14及び15は従
来合金を示している。
Figure 1 shows the relationship between hardness and impact value of the alloy of the present invention and a conventional alloy as a comparative material. In the figure, 1 to 13 are alloys of the present invention, and 14 and 15 are conventional alloys.
Claims (1)
5.0%、W0.5〜15%、Co10〜40%、残部40%以上
のFe及び不可避的不純物から成ることを特徴と
する高硬度高靭性Fe−Co基肉盛合金。 2 重量でCr6.0〜14.0%、B0.8〜2.4%、Si0.5〜
5.0%、W0.5〜15%、Co10〜40%を含み、更に
Ni1.5%以下及び/またはC0.5%以下を含み、残
部40%以上のFe及び不可避的不純物から成るこ
とを特徴とする高硬度高靭性Fe−Co基肉盛合金。[Claims] 1. Cr6.0~14.0%, B0.8~2.4%, Si0.5~
A high hardness and high toughness Fe-Co based overlay alloy characterized by comprising 5.0% W, 0.5 to 15% W, 10 to 40% Co, and the balance 40% or more of Fe and unavoidable impurities. 2 Cr6.0~14.0%, B0.8~2.4%, Si0.5~ by weight
Contains 5.0%, W0.5~15%, Co10~40%, and more
A high-hardness, high-toughness Fe-Co-based overlay alloy containing 1.5% or less of Ni and/or 0.5% or less of C, with the balance consisting of 40% or more of Fe and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29169285A JPH0236359B2 (en) | 1985-12-23 | 1985-12-23 | KOKODOKOJINSEIFEECOKINIKUMORIGOKIN |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29169285A JPH0236359B2 (en) | 1985-12-23 | 1985-12-23 | KOKODOKOJINSEIFEECOKINIKUMORIGOKIN |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62148098A JPS62148098A (en) | 1987-07-02 |
JPH0236359B2 true JPH0236359B2 (en) | 1990-08-16 |
Family
ID=17772169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29169285A Expired - Lifetime JPH0236359B2 (en) | 1985-12-23 | 1985-12-23 | KOKODOKOJINSEIFEECOKINIKUMORIGOKIN |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0236359B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4207614C1 (en) * | 1992-03-10 | 1993-09-23 | Pall Corp., Glen Cove, N.Y., Us |
-
1985
- 1985-12-23 JP JP29169285A patent/JPH0236359B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62148098A (en) | 1987-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4900806B2 (en) | Cylinder for molding machine | |
US20070110610A1 (en) | Hot work tool steel and mold member excellent resistance to melting loss | |
JP2007154295A (en) | Wear resistant cast steel and its production method | |
JP3304021B2 (en) | Copper alloy with excellent high-temperature wear resistance | |
JPH0615708A (en) | High-temperature corrosion-resistant bimetal cylinder for injection molding machine | |
JPH0236359B2 (en) | KOKODOKOJINSEIFEECOKINIKUMORIGOKIN | |
EP0356615B1 (en) | Piston ring material and piston ring | |
JPS626737B2 (en) | ||
JPS626736B2 (en) | ||
JP3483529B2 (en) | High toughness inner hardening material for cylinder | |
JPS6326295A (en) | Corrision-and wear-resistant alloy and composite cylinder thereof | |
SU1691419A1 (en) | Cast iron | |
JP2001279369A (en) | Wear resistant and corrosion resistant alloy and cylinder for molding machine | |
JPH06145887A (en) | Composite high-speed steel sleeve roll and its production | |
US3799765A (en) | Free-machining stainless steel | |
JPH0128826B2 (en) | ||
JPH01139737A (en) | Internal hardening material for cylinder | |
JPS5937742B2 (en) | High wear resistance sintered high speed steel | |
JP5358897B2 (en) | Cylinder for molding machine | |
JPS6013043A (en) | Wear- and corrosion-resistant alloy | |
JPH0243342A (en) | High-hardness austenitic cast iron | |
JP3417227B2 (en) | Aluminum-based composite material with excellent wear resistance and machinability | |
JPS6013042A (en) | Wear- and corrosion-resistant alloy | |
JP2021004400A (en) | Flaky graphite cast iron material and method for machining the same, and flaky graphite cast iron member and method of producing the same | |
JPS63274735A (en) | Aluminum alloy for wear resistant die casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |