JPH0236234B2 - - Google Patents

Info

Publication number
JPH0236234B2
JPH0236234B2 JP62034109A JP3410987A JPH0236234B2 JP H0236234 B2 JPH0236234 B2 JP H0236234B2 JP 62034109 A JP62034109 A JP 62034109A JP 3410987 A JP3410987 A JP 3410987A JP H0236234 B2 JPH0236234 B2 JP H0236234B2
Authority
JP
Japan
Prior art keywords
pullulanase
acid
glucoamylase
starch
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62034109A
Other languages
Japanese (ja)
Other versions
JPS63202381A (en
Inventor
Hitoshi Iwahashi
Yoshuki Takasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62034109A priority Critical patent/JPS63202381A/en
Publication of JPS63202381A publication Critical patent/JPS63202381A/en
Publication of JPH0236234B2 publication Critical patent/JPH0236234B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、プルラナーゼの安定化方法に関する
ものである。 〔従来技術〕 プルラナーゼは、プルランのα―1,6―グル
コシド結合を切断し、最終的にマルトトリオース
を生成する酵素であり、これまで種々の細菌、放
線菌などの多種類の微生物により生産されること
が知られている。 プルラナーゼは、アミロペクチン、澱粉、ある
いはこれらの微生物に存在するα―1,6―グル
コシド結合も分解することができるため、α―
1,6―グルコシド結合分解能を持たないβ―ア
ミラーゼや各種のα―1,6―アミラーゼなどと
併用して澱粉に作用させること、これらアミラー
ゼを単独に作用させる場合よりも高い収量で各ア
ミラーゼの生産物を得ることができる。例えば、
β―アミラーゼを単独に澱粉作用させたときのマ
ルトースの収量は約55%であるが、プルラナーゼ
の存在下で作用させると、約90%の極めて高い収
量でマルトースを生産できる。 最近、プルラナーゼはグルコアミラーゼと併用
すると、グルコアミラーゼ単独の場合よりも高い
収量でグルコースが生産できることが明らかにな
つた(特公昭54−29570、特公昭57−39、特公昭
57−174089他)。 この場合のプルラナーゼは、グルコアミラーゼ
の持つα―1,6―グルコシド結合切断能を補う
ことにより、澱粉糖化反応を促進し、グルコース
の増収に有効な働きをするものと考えられてい
る。 しかしながら、グルコアミラーゼは微生物起源
によつても、若干、異なるが一般的にはPH4〜
5、温度55〜60℃の範囲において、最も効率的に
作用する酵素である。これに対し、これまで知ら
れている多くのプルラナーゼは、PH6〜7、温度
50〜55℃に最適作用域があるため、グルコアミラ
ーゼの作用域と一致しない。このため、いずれか
の酵素活性を犠牲にして反応しなければならなか
つた。 〔目的及び効果〕 本発明者らは、グルコアミラーゼの好適作用域
で、プルラナーゼを作用させるためのプルラナー
ゼの安定化方法について、種々、検討を加えてき
た結果、プルラナーゼを炭素数5以上10以下のジ
カルボン酸、特に炭素数6個のアジピン酸(ヘキ
サンジオイツク アシド)処理すると、プルラナ
ーゼが顕著に安定されることを認めた。本発明
は、この知見に基づいてなされたものである。 〔構成〕 すなわち、本発明はプルラナーゼをジカルボン
酸で処理することを特徴とするプルラナーゼの安
定化法に関するものである。 以下に、本発明の内容を更に具体的に説明す
る。 本発明を、例えばグルコアミラーゼと併用する
プルラナーゼに適用する場合、プルラナーゼとし
ては、少なくとも最適温度が50℃以上(1%プル
ラン濃度)、PH5においても作用することが要求
される。このような酵素は、バシルス属、クレブ
シラ(エーロバクタ)属、ストレプトマイセス属
など種々の微生物により生産され、例えば、クレ
ブラシ・ニユーモニア(Klebsilla pneumonia)
のプルラナーゼやジシルス・ズブチルス
(Bacillus subtilis)のプルラナーゼが使用され
る。 本発明において使用されるジカルボン酸は、例
えばアジピン酸(炭素数6)、ピメリン酸(炭素
数7)、スベリン酸(炭素数8)、アゼライン酸
(炭素数9)、ゼバシン酸(炭素数10)など、一般
式CnH2n(CooH)2で表される飽和ジカルボン酸
であり、炭素数として5〜10程度のものが有効で
あるが、特に、アジピン酸は効果的である。 プルラナーゼのアジピン酸による処理は、通常
該酵素1単位当り0.5〜5ミリモル量のジカルボ
ン酸を加えて、あらかじめプルラナーゼ剤を処理
するか、あるいは該酵素反応液中に添加される。 このような処理をされたプルラナーゼ剤はグル
コアミラーゼ、特にアスペルギルス・ニガー
(Aspergillus niger)のグルコアミラーゼの好適
な作用条件である、PH4.3〜4.5、温度57〜60℃に
おいて有効に作用し、無処理のプルラナーゼに比
べグルコースを0.5〜3%増収することができる。 次に、実施例により、本発明の詳細を説明す
る。 実施例 1 可溶性澱粉2%、尿素0.35%、K2HPO40.05%
MgSO4・7H2O0.05%、KCl0.5%、MnCl2
10-5M、Cal2l×10-3Mからなる培地50mlを200ml
容三角フラスコに入れ、常法により殺菌後、クレ
ブシラ・ニユーモニア(Klebsiella、
pneumoniae)FERMP―7387を接種し、30℃で
2日間振盪培養した。培養後、遠心分離して得た
上澄のプルラナーゼ活性は、培地1ml当たり6.0
単位であつた。 該プルラナーゼ1単位当たり、アジピン酸を2
ミリモル量加え、室温で30分間処理した後、糖化
反応酵素として使用した。 市販デキストリン(参松工業株式会社製 粉末
水飴SLD)3.8g、グルコアミラーゼ(デンマー
ク ノボ社製アミログルコシダーゼAMG300)
2.2×10-3ml、塩化カルシウム1×10-2M、上記
のアジピン酸処理、または無処理のプルラナーゼ
を澱粉g当たり0.75単位を加え、水で全量10mlと
し、PH4.5、温度60℃で反応を行つた。 反応開始後、55時間目おけるグルコースの収量
を高速液体クロマトグラフで分析した結果は第
表に示す通りであつた。
[Technical Field] The present invention relates to a method for stabilizing pullulanase. [Prior art] Pullulanase is an enzyme that cleaves the α-1,6-glucoside bond of pullulan and ultimately produces maltotriose. It is known that Pullulanase can also degrade α-1,6-glucoside bonds present in amylopectin, starch, and these microorganisms;
By acting on starch in combination with β-amylase and various α-1,6-amylases that do not have the ability to decompose 1,6-glucoside bonds, each amylase can be used in a higher yield than when these amylases are used alone. You can get products. for example,
When β-amylase acts alone on starch, the yield of maltose is about 55%, but when it acts in the presence of pullulanase, maltose can be produced with an extremely high yield of about 90%. Recently, it has been revealed that when pullulanase is used in combination with glucoamylase, glucose can be produced at a higher yield than when glucoamylase is used alone.
57−174089 and others). In this case, pullulanase is thought to act effectively to increase the yield of glucose by promoting the starch saccharification reaction by supplementing the α-1,6-glucoside bond cleaving ability of glucoamylase. However, glucoamylase differs slightly depending on its microbial origin, but generally has a pH of 4 to 4.
5. It is an enzyme that acts most efficiently in the temperature range of 55-60°C. On the other hand, many of the pullulanases known so far have a pH of 6 to 7, a temperature of
The optimal action range is between 50 and 55°C, which does not match the action range of glucoamylase. Therefore, the reaction had to be carried out at the expense of some enzyme activity. [Purpose and effect] The present inventors have conducted various studies on methods for stabilizing pullulanase to make it act in the preferred action range of glucoamylase. It was found that pullulanase was significantly stabilized when treated with dicarboxylic acid, particularly adipic acid (hexane dioxylic acid) having 6 carbon atoms. The present invention has been made based on this knowledge. [Structure] That is, the present invention relates to a method for stabilizing pullulanase, which is characterized by treating pullulanase with a dicarboxylic acid. The contents of the present invention will be explained in more detail below. When the present invention is applied to, for example, pullulanase used in combination with glucoamylase, the pullulanase is required to act at least at an optimum temperature of 50° C. or higher (1% pullulan concentration) and at a pH of 5. Such enzymes are produced by various microorganisms such as Bacillus, Klebsilla (Aerobacter), and Streptomyces; for example, Klebsilla pneumonia.
Bacillus subtilis pullulanase and Bacillus subtilis pullulanase are used. Examples of dicarboxylic acids used in the present invention include adipic acid (6 carbon atoms), pimelic acid (7 carbon atoms), suberic acid (8 carbon atoms), azelaic acid (9 carbon atoms), and zebacic acid (10 carbon atoms). It is a saturated dicarboxylic acid represented by the general formula CnH 2 n (CooH) 2 such as 5 to 10 carbon atoms, and adipic acid is particularly effective. When treating pullulanase with adipic acid, the pullulanase agent is usually treated in advance by adding dicarboxylic acid in an amount of 0.5 to 5 mmol per unit of the enzyme, or it is added to the enzyme reaction solution. The pullulanase agent treated in this way acts effectively at pH 4.3-4.5 and temperature 57-60°C, which are the preferred action conditions for glucoamylase, especially Aspergillus niger glucoamylase, and is non-active. Glucose yield can be increased by 0.5 to 3% compared to treatment with pullulanase. Next, the details of the present invention will be explained with reference to Examples. Example 1 Soluble starch 2%, urea 0.35%, K 2 HPO 4 0.05%
MgSO47H2O0.05 %, KCl0.5%, MnCl2
200 ml of 50 ml of medium consisting of 10 -5 M, Cal 2 l x 10 -3 M
Pour into an Erlenmeyer flask, sterilize using a conventional method, and remove Klebsiella pneumonia.
pneumoniae) FERMP-7387 was inoculated and cultured with shaking at 30°C for 2 days. After culturing, the pullulanase activity of the supernatant obtained by centrifugation was 6.0 per ml of medium.
It was a unit. 2 units of adipic acid per unit of pullulanase.
After adding millimolar amount and treating at room temperature for 30 minutes, it was used as a saccharification reaction enzyme. Commercially available dextrin (Powdered starch syrup SLD manufactured by Sanmatsu Kogyo Co., Ltd.) 3.8 g, glucoamylase (Amyloglucosidase AMG300 manufactured by Novo, Denmark)
Add 2.2 x 10 -3 ml, calcium chloride 1 x 10 -2 M, the above adipic acid treatment or untreated pullulanase at 0.75 units per g of starch, make the total volume 10 ml with water, pH 4.5, temperature 60℃. The reaction was carried out. The yield of glucose 55 hours after the start of the reaction was analyzed by high performance liquid chromatography, and the results are shown in Table 1.

【表】 表から明らかなように、アジピン酸処理したプ
ルラナーゼは無処理のものに比べグルコースの増
収に対し顕著な効果を示した。 実施例 2 大豆粕5%、コーン、ステイーブ・リカー0.6
%肉エキス0.4%、リン酸二カリ0.3%、硫酸マグ
ネシウム(7水塩)0.1%、可溶性澱粉2%、尿
素0.3%、ソデイウム・ドデシル・サルフエート
0.1%、硫酸銅5×10-5、硫酸亜鉛1×10-4M、
硫酸鉄1×10-5からなる培地(PH7.2)30mlを200
ml容三角フラスコに入れ、常法により殺菌後、バ
シルス・ズブチルスTU(Bacillus subtilit TU)
(FERM BP684)を接種し、30℃で4日間培養
した。培養後、遠心分離して得た上澄中のプルラ
ナーゼ活性は、培地1ml10.5単位であつた。 該プルラナーゼ1単位当り、アジピン酸、ピメ
リン酸、スベリン酸、アゼライン酸、ゼバシン酸
を各4ミリモル量添加し、室温で30分間処理した
後、糖化に使用した。 澱粉糖化反応は、上記プルラナーゼを用いる以
外、実施例1に記載の方法と同じ組成で、PH4.4、
60℃で反応を行つた。 糖化開始後53時間目におけるグルコースの収量
を高速液体クロマトグラフ法により測定した結果
は、第2表に示す通りであつた。
[Table] As is clear from the table, pullulanase treated with adipic acid had a remarkable effect on increasing glucose yield compared to untreated pullulanase. Example 2 Soybean meal 5%, corn, stave liquor 0.6
% meat extract 0.4%, dipotassium phosphate 0.3%, magnesium sulfate (heptahydrate) 0.1%, soluble starch 2%, urea 0.3%, sodium dodecyl sulfate
0.1%, copper sulfate 5×10 -5 , zinc sulfate 1×10 -4 M,
200ml of 30ml medium (PH7.2) consisting of iron sulfate 1×10 -5
Pour into a ml Erlenmeyer flask, sterilize it by a conventional method, and add Bacillus subtilit TU.
(FERM BP684) was inoculated and cultured at 30°C for 4 days. After culturing, the pullulanase activity in the supernatant obtained by centrifugation was 10.5 units per ml of medium. Adipic acid, pimelic acid, suberic acid, azelaic acid, and zebacic acid were added in an amount of 4 mmol each per unit of pullulanase, and the mixture was treated at room temperature for 30 minutes before being used for saccharification. The starch saccharification reaction was performed using the same composition as the method described in Example 1 except for using the above-mentioned pullulanase.
The reaction was carried out at 60°C. The yield of glucose measured 53 hours after the start of saccharification by high performance liquid chromatography was as shown in Table 2.

【表】 表から明らかなように、各ジカルボン酸処理し
たものは、無処理のものに比べ有効性が認めら
れ、特にアジピン酸処理したものは顕著な効果を
示した。 実施例 3 実施例2で調製した酵素液各1単位に、アジピ
ン酸をそれぞれ1、2、3、4ミリモル量添加
し、室温で30分間処理後、実施例1と同様の組
成、PH4.4、60℃で2日間反応を行つた。得られ
た糖化液の糖組成は第3表に示す通りであつた。
[Table] As is clear from the table, those treated with each dicarboxylic acid were found to be more effective than those not treated, and those treated with adipic acid showed particularly remarkable effects. Example 3 Adipic acid was added in amounts of 1, 2, 3, and 4 mmol to each unit of the enzyme solution prepared in Example 2, and after treatment at room temperature for 30 minutes, the composition was the same as in Example 1, pH 4.4. The reaction was carried out at 60°C for 2 days. The sugar composition of the obtained saccharified liquid was as shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 プルラナーゼをジカルボン酸で処理すること
を特徴とするプルラナーゼの安定化方法。
1. A method for stabilizing pullulanase, which comprises treating pullulanase with a dicarboxylic acid.
JP62034109A 1987-02-17 1987-02-17 Stabilization of enzyme Granted JPS63202381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62034109A JPS63202381A (en) 1987-02-17 1987-02-17 Stabilization of enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034109A JPS63202381A (en) 1987-02-17 1987-02-17 Stabilization of enzyme

Publications (2)

Publication Number Publication Date
JPS63202381A JPS63202381A (en) 1988-08-22
JPH0236234B2 true JPH0236234B2 (en) 1990-08-16

Family

ID=12405110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034109A Granted JPS63202381A (en) 1987-02-17 1987-02-17 Stabilization of enzyme

Country Status (1)

Country Link
JP (1) JPS63202381A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE705348T1 (en) * 1993-06-21 2000-10-05 Roche Diagnostics Corp STABILIZER FOR DIAGNOSTIC REAGENTS

Also Published As

Publication number Publication date
JPS63202381A (en) 1988-08-22

Similar Documents

Publication Publication Date Title
EP0875585B1 (en) Method for the production of isomalto-oligosaccharide rich syrups
JPH0118717B2 (en)
JPS6318480B2 (en)
JPH0236234B2 (en)
EP0354828A1 (en) Process for the production of lactic acid
JPH05236959A (en) Pullulanase, its production and saccharification of starch using the same
JPH0547199B2 (en)
JP2964042B2 (en) Maltotriose-forming amylase, its production and use
JPH10271992A (en) Purified alpha-amylase stable to acid and obtained from fungi
JP2652049B2 (en) Method for producing galactooligosaccharide
JPH0369510B2 (en)
NAKAKUKI et al. Production of Extracellular exo-maltohexaohydrolase and pullulanase from a mutant of Aerobacter aerogenes
JPH03236787A (en) Production of thick malt syrup
JPH0155877B2 (en)
JP2843110B2 (en) Pullulanase
JPH0246195B2 (en)
JP4328482B2 (en) Method for producing non-reducing disaccharide containing α-galactosyl group
JPH0681598B2 (en) Method for producing glucose by saccharification of starch
JPH0378990B2 (en)
JPH04148693A (en) Production of transfer product of glucose
JPH062071B2 (en) Saccharide manufacturing method
JPH0329391B2 (en)
JPH0351398B2 (en)
JPS6339234B2 (en)
JPS61162197A (en) Method of saccharifying starch

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term