JPH023594B2 - - Google Patents

Info

Publication number
JPH023594B2
JPH023594B2 JP55079549A JP7954980A JPH023594B2 JP H023594 B2 JPH023594 B2 JP H023594B2 JP 55079549 A JP55079549 A JP 55079549A JP 7954980 A JP7954980 A JP 7954980A JP H023594 B2 JPH023594 B2 JP H023594B2
Authority
JP
Japan
Prior art keywords
signal
recording
head
delay line
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55079549A
Other languages
Japanese (ja)
Other versions
JPS574683A (en
Inventor
Kozo Kurashina
Katsuhiko Yamamoto
Chojuro Yamamitsu
Kunio Sekimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7954980A priority Critical patent/JPS574683A/en
Priority to US06/272,372 priority patent/US4399472A/en
Priority to DE8181302583T priority patent/DE3169131D1/en
Priority to EP81302583A priority patent/EP0041872B1/en
Publication of JPS574683A publication Critical patent/JPS574683A/en
Publication of JPH023594B2 publication Critical patent/JPH023594B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/825Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the luminance and chrominance signals being recorded in separate channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Description

【発明の詳細な説明】 本発明は、映像信号の記録再生装置に関し、高
品質の再生画像を得るために、輝度信号トラツク
と色信号トラツクを分離して記録媒体に記録し、
再生時に輝度信号と色信号との間の時間差がない
ように自動補正し、高品質の画像を得んとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a video signal recording and reproducing device, which separates a luminance signal track and a color signal track and records them on a recording medium in order to obtain a high-quality reproduced image.
The purpose is to automatically correct the time difference between the luminance signal and color signal during playback, and to obtain a high-quality image.

現在、磁気録画再生装置(以下VTRと称す)
の主流は、回転ヘツドでテープに斜めに映像トラ
ツクを形成するヘリカルスキヤン型である。特に
家庭用VTRでは小型、高密度化されており、例
えばVHS方式VTRでは、直径62mmの回転シリン
ダに互に180゜割出し角で配置された2つのビデオ
ヘツドでビデオ信号を1/2インチ巾のテープに対
し斜めに記録されている。また、放送用VTRに
おいても、ニユース取材用(BNG)ポータブル
VTRでは、小型、軽量化が切望され、3/4インチ
U規格VTRもかなり進出している。ENG用
VTRでは、小型、軽量であるとともに、放送用
であるため高品質の画質が要求され、又、編集を
しやすくするためのサーチ機能も重要である。
3/4インチU規格VTRは、シリンダ径110mm、
テープ巾3/4インチであるため、小型化にも限
度があり、又、映像信号の記録方法として、輝度
信号を周波数変調波とし、その低減を除去して、
低域に周波数変換された搬送色信号を重畳する方
法を用いるため、輝度信号および色信号の帯域が
制限され、画質としても放送用として必ずしも十
分ではない。
At present, magnetic recording and reproducing devices (hereinafter referred to as VTR)
The mainstream is the helical scan type, in which a rotating head forms an image track diagonally on the tape. In particular, home VTRs are smaller and have higher density. For example, in a VHS system VTR, two video heads arranged at an index angle of 180 degrees to each other on a rotating cylinder with a diameter of 62 mm transmit video signals in a 1/2-inch width. is recorded diagonally to the tape. In addition, for broadcasting VTRs, we also use portable news coverage (BNG)
There is a strong demand for smaller and lighter VTRs, and 3/4-inch U-standard VTRs are now widely available. For ENG
VTRs are required to be small and lightweight, as well as to have high image quality because they are used for broadcasting, and a search function is also important to make editing easier.
3/4 inch U standard VTR has a cylinder diameter of 110 mm.
Since the tape width is 3/4 inch, there is a limit to miniaturization, and as a recording method for video signals, the luminance signal is made into a frequency modulated wave and its reduction is removed.
Since a method of superimposing a frequency-converted carrier chrominance signal on a low frequency band is used, the bands of the luminance signal and chrominance signal are limited, and the image quality is not necessarily sufficient for broadcasting.

但し、輝度信号と色信号は同一トラツクに同時
に記録再生するため、輝度信号と色信号の時間差
は、回路処理系で生ずる一定時間差だけであり、
再生時の状況により変動することはない。従つて
固定遅延線を用いて時間差を補正することができ
る。
However, since the luminance signal and the chrominance signal are recorded and reproduced simultaneously on the same track, the time difference between the luminance signal and the chrominance signal is only a certain time difference that occurs in the circuit processing system.
It does not change depending on the conditions during playback. Fixed delay lines can therefore be used to compensate for time differences.

次に本発明を説明する。第1図にシリンダ上で
のヘツド配置の平面図、第2図にそのヘツドの前
面図、第3図に本方式VTRの一実施例のブロツ
ク図、第4図に第3図における記録信号のスペク
トラム図を示す。第5図に本発明の記録における
時間基準信号の挿入波形図、第6図は本装置の全
体のブロツク図、第7図は再生輝度信号より時間
基準信号を分離する波形図、第8図は時間基準信
号の後のエツジの説明図、第9図は時間差信号を
作成する波形図、第10図は+、−判別回路の説
明図、第11図はカウンタ回路の説明図、第12
図はタツプ型遅延線の構成図、第13図はタツプ
型遅延線の動作説明図、第14図はタツプ型遅延
線の信号通過説明図を示す。
Next, the present invention will be explained. Fig. 1 is a plan view of the head arrangement on the cylinder, Fig. 2 is a front view of the head, Fig. 3 is a block diagram of an embodiment of this system VTR, and Fig. 4 shows the recording signal in Fig. 3. A spectrum diagram is shown. FIG. 5 is a waveform diagram of the time reference signal inserted in recording according to the present invention, FIG. 6 is a block diagram of the entire device, FIG. 7 is a waveform diagram of separating the time reference signal from the reproduced luminance signal, and FIG. An explanatory diagram of the edge after the time reference signal, FIG. 9 is a waveform diagram for creating a time difference signal, FIG. 10 is an explanatory diagram of the +/− discrimination circuit, FIG. 11 is an explanatory diagram of the counter circuit, and FIG.
13 is a diagram illustrating the operation of the tap delay line, and FIG. 14 is a diagram illustrating signal passage through the tap delay line.

第1図および第2図において、A,A′および
B,B′はシリンダ円周上で互いに同じ高さで180゜
の割出し角で配置された2組のヘツドを表わす。
そして、カラー映像信号を記録再生する方法とし
て、A,A′ヘツドで周波数変調された輝度信号
を、又、B,B′ヘツドで周波数変調された色信
号をそれぞれ記録、再生する方法がある。このよ
うにすると、輝度信号のトラツク巾を大きくで
き、かつ、色信号を重畳しないので帯域も広くと
れて、高S/Nおよび高解像度の再生画を得るこ
とができる。また、色信号についてもベースバン
ド信号(例えばI信号とQ信号)を周波数変調し
て記録できるため、高帯域で高S/Nの再生信号
を得ることができる。
In FIGS. 1 and 2, A, A' and B, B' represent two sets of heads arranged at the same height and at an index angle of 180 DEG on the circumference of the cylinder.
As a method for recording and reproducing color video signals, there is a method of recording and reproducing a frequency-modulated luminance signal in the A and A' heads, and a frequency-modulated color signal in the B and B' heads, respectively. In this way, the track width of the luminance signal can be increased, and since the color signal is not superimposed, the band can be widened, and a reproduced image with high S/N and high resolution can be obtained. Further, since the baseband signals (for example, I signal and Q signal) can be frequency-modulated and recorded as color signals, it is possible to obtain a reproduced signal with a high S/N in a high band.

以下に記録再生装置の構成について第3図およ
び第4図を用いて詳しく説明する。
The configuration of the recording and reproducing apparatus will be explained in detail below with reference to FIGS. 3 and 4.

1は輝度信号入力端子、2はI信号入力端子、
3はQ信号入力端子、4,5,6は周波数変調器
7は帯域ろ波器、8は低域ろ波器、9は加算器、
10,11は記録増幅器、12,13はビデオヘ
ツド、14,15は再生増幅器、16は帯域ろ波
器、17は低域ろ波器、18,19,20は周波
数復調器、21は輝度信号出力端子、22はI信
号出力端子、23はQ信号出力端子である。ま
た、第4図イは輝度信号の記録スペクトラムを、
第4図ロは色信号の記録スペクトラムを示すもの
で、26はI信号、27はQ信号である。
1 is a luminance signal input terminal, 2 is an I signal input terminal,
3 is a Q signal input terminal, 4, 5, 6 are frequency modulators, 7 is a bandpass filter, 8 is a low-pass filter, 9 is an adder,
10 and 11 are recording amplifiers, 12 and 13 are video heads, 14 and 15 are regenerative amplifiers, 16 is a bandpass filter, 17 is a low-pass filter, 18, 19, and 20 are frequency demodulators, and 21 is a luminance signal. Output terminals 22 are I signal output terminals, and 23 are Q signal output terminals. In addition, Fig. 4A shows the recorded spectrum of the luminance signal,
FIG. 4B shows the recording spectrum of the color signal, where 26 is the I signal and 27 is the Q signal.

輝度信号入力端子1に印加された輝度信号は、
周波数変調器4で変調され、記録増幅器10で増
幅された後、ヘツド12によりテープに記録され
る。輝度信号は約4MHzの帯域をもち、この信号
を性能よく記録再生するため、変調の周波数偏移
は例えば4.4MHz〜6MHzのように設定される。
この記録信号周波数スペクトラムは、第4図イの
ようになる。I信号入力端子2に印加されたI信
号は周波数変調器5で変調され、帯域ろ波器7で
約3MHz〜8MHzに帯域制限され、加算器9に導
かれる。また、Q信号信号入力端子3に印加され
たQ信号は周波数変調器6で変調され、低域ろ波
器8で約2MHzに帯域制限され、加算機9に導か
れる。帯域ろ波器7および低域ろ波器8は、I信
号およびQ信号の周波数変調波のスペクトラムが
重ならないよう帯域制限する働きをする。加算器
9で加えられた両信号は記録増幅器11で増幅さ
れた後、ヘツド13によりテープに記録される。
I信号は約1.5MHzの、また、Q信号は0.5MHz
の帯域をもつため、例えばI信号については周波
数偏移を5MHz〜6MHzとし、帯域を約3MHz〜
8MHzに設定し、Q信号については周波数偏移を
0.75MHz〜1.25MHzとし、帯域を約2MHzまで
とすれば十分な帯域とS/Nを得ることができ
る。I信号の帯域は1MHz程度にしてもほぼ十分
な画質を得ることができる。この色信号の記録ス
ペクトラムは第4図ロのようになる。このように
輝度信号と色信号を前述のような構造をもつて対
のヘツドで記録する。
The luminance signal applied to the luminance signal input terminal 1 is
After being modulated by a frequency modulator 4 and amplified by a recording amplifier 10, it is recorded on a tape by a head 12. The luminance signal has a band of approximately 4 MHz, and in order to record and reproduce this signal with good performance, the frequency shift of modulation is set, for example, from 4.4 MHz to 6 MHz.
The recorded signal frequency spectrum is as shown in FIG. 4A. The I signal applied to the I signal input terminal 2 is modulated by a frequency modulator 5, band-limited by a bandpass filter 7 to about 3 MHz to 8 MHz, and guided to an adder 9. Further, the Q signal applied to the Q signal input terminal 3 is modulated by a frequency modulator 6, band-limited to about 2 MHz by a low-pass filter 8, and guided to an adder 9. The bandpass filter 7 and the lowpass filter 8 function to limit the band so that the spectra of the frequency modulated waves of the I signal and the Q signal do not overlap. Both signals added by adder 9 are amplified by recording amplifier 11 and then recorded on tape by head 13.
The I signal is approximately 1.5MHz, and the Q signal is 0.5MHz.
For example, for the I signal, the frequency deviation is 5 MHz to 6 MHz, and the band is approximately 3 MHz to 6 MHz.
8MHz and the frequency deviation for the Q signal.
If the frequency is 0.75MHz to 1.25MHz and the bandwidth is up to about 2MHz, a sufficient bandwidth and S/N can be obtained. Almost sufficient image quality can be obtained even if the I signal band is set to about 1 MHz. The recorded spectrum of this color signal is as shown in FIG. 4B. In this way, the luminance signal and the chrominance signal are recorded by a pair of heads having the above-described structure.

再生時、ヘツド12より再生された輝度信号は
再生増幅器14で増幅され、周波数復調器18に
導かれて復調され、出力端子21に再生輝度信号
が得られる。一方、ヘツド13より再生された色
信号は、再生増幅器15で増幅され、帯域ろ波器
16および低域ろ波器17に導かれる。帯域ろ波
器16でI信号のみが、低域ろ波器17でQ信号
のみが取り出され、それぞれ周波数復調器19お
よび20で復調され、I信号出力端子22に再生
I信号が、Q信号出力端子23に再生Q信号が得
られる。
During reproduction, the luminance signal reproduced from the head 12 is amplified by a regenerative amplifier 14, guided to a frequency demodulator 18 and demodulated, and a reproduced luminance signal is obtained at an output terminal 21. On the other hand, the color signal reproduced from the head 13 is amplified by a regenerative amplifier 15 and guided to a bandpass filter 16 and a low-pass filter 17. Only the I signal is extracted by the bandpass filter 16, and only the Q signal is extracted by the low-pass filter 17, which are demodulated by the frequency demodulators 19 and 20, respectively, and the reproduced I signal is output to the I signal output terminal 22, and the Q signal is output. A reproduced Q signal is obtained at terminal 23.

本発明は、前述のように独立した輝度信号ヘツ
ドと、色信号ヘツドとの間には、再生時の状態に
より時間軸変動がそれだけ違う事、又、ビデオヘ
ツドドラムにビデオヘツドを取付ける時の取付け
誤差が例えば3ミクロンあると、互換再生時の輝
度信号と色信号の時間差は、約500nsぐらい発生
する。このような原因により輝度信号と色信号間
の時間軸補正器を提案する。
The present invention is characterized in that, as mentioned above, the time axis fluctuations between the independent luminance signal head and the chrominance signal head differ accordingly depending on the state during playback, and also in the installation process when the video head is attached to the video head drum. For example, if the error is 3 microns, the time difference between the luminance signal and color signal during compatible playback will be about 500 ns. Due to these reasons, we propose a time axis corrector between the luminance signal and the color signal.

次に詳細な説明をする。第5図に記録時のI信
号に合成する時間基準信号の波形図。第6図に時
間軸補正器のブロツク図。第7図に各部の波形図
を示す。
Next, a detailed explanation will be provided. FIG. 5 is a waveform diagram of a time reference signal synthesized with the I signal during recording. FIG. 6 is a block diagram of the time axis corrector. FIG. 7 shows waveform diagrams of each part.

まず記録時から説明する。記録時の輝度信号波
形は、第5図の28は輝度信号の垂直同期信号近
辺の波形を示している。次にI信号波形を30に
示しているが、垂直ブランキング期間は、無信号
である。ここに、輝度信号の中の同期信号に同期
した時間基準信号を第5図29のように無信号レ
ベルの上側に加算する。この基準信号29の加算
位置については、この時間軸補正器がテレビジヨ
ン(以後TVと称す)フイルドごとの大きな時間
軸変動を取り除く為、垂直ブランキング期間内
で、比較及びタツプ型遅延線を切換えているため
である。なお、小型VTR等においては、1つの
ビデオヘツドが記録再生で受け持つ時間は、1フ
イルドであるので、この最初の部分の垂直ブラン
キング期間において、基準信号を合成する方がよ
い。但し、ヘツド切換え位置が、垂直ブランキン
グより3〜4水平期間前である為、あまり近くに
すると切換えトランジエト等の影響で再生時に抽
出するのがむずかしくなる。又、基準信号を上側
にあえて加算したのは、I信号とQ信号間のモワ
レ成分が少ない為である。なお、輝度信号トラツ
クの基準信号は同期信号を流用する。これは、
TVデイスプレー、他のVTRへダビングする時、
および、放送用の補正器へ信号送出する場合、輝
度信号に関係外の信号があると正常動作をいちざ
るしく不安定にする為である。
First, we will explain the recording process. Regarding the luminance signal waveform during recording, reference numeral 28 in FIG. 5 shows a waveform near the vertical synchronization signal of the luminance signal. Next, the I signal waveform is shown at 30, and there is no signal during the vertical blanking period. Here, a time reference signal synchronized with the synchronization signal in the luminance signal is added above the no-signal level as shown in FIG. 5, 29. Regarding the addition position of this reference signal 29, this time base corrector switches the comparison and tap type delay lines within the vertical blanking period in order to eliminate large time base fluctuations for each television field (hereinafter referred to as TV). This is because Note that in a small VTR or the like, the time that one video head is responsible for recording and reproducing is one field, so it is better to synthesize the reference signal during this initial vertical blanking period. However, since the head switching position is 3 to 4 horizontal periods before the vertical blanking, if it is too close, it will be difficult to extract during reproduction due to the effects of switching transients, etc. Further, the reason why the reference signal is intentionally added to the upper side is because there is little moiré component between the I signal and the Q signal. Note that the synchronization signal is used as the reference signal for the luminance signal track. this is,
When dubbing to a TV display or other VTR,
Furthermore, when a signal is sent to a broadcasting corrector, the presence of an unrelated signal in the luminance signal will make normal operation unstable.

以上のようにI信号へ時間基準信号を加算した
信号を第3図の入力端子2に加え、他の輝度信号
およびQ信号も入力端子1,3に加えて、変調
し、ビデオヘツド12,13でテープに記録され
る。再生された信号は、第3図で説明したとお
り、再生出力端子21,22,23へそれぞれ再
現されて、記録時と同じ波形となる。そして、第
6図のような時間軸補正器の入力端子31へ輝度
信号が、32へQ信号が、33へI信号が、それ
ぞれ入る。
As described above, the signal obtained by adding the time reference signal to the I signal is applied to input terminal 2 in FIG. recorded on tape. As explained with reference to FIG. 3, the reproduced signals are reproduced to the reproduction output terminals 21, 22, and 23, respectively, and have the same waveform as at the time of recording. Then, a luminance signal is input to the input terminal 31 of the time axis corrector as shown in FIG. 6, a Q signal is input to 32, and an I signal is input to 33.

次に第6図の説明をする。34は輝度信号の固
定遅延線、35は時間基準信号の抽出回路、36
は抽出された輝度信号と、色信号の基準信号の比
較回路、37は比較された差の信号巾をカウント
して計測する計測回路、38は、時間巾を計測す
る為の基準周波数の発振器、39はカウントされ
た計数値を遅延線切換え用のアナログ値に変換す
るデコーダー回路、40,41はQ信号及びI信
号のタツプ型切換え遅延線回路である。
Next, FIG. 6 will be explained. 34 is a fixed delay line for the luminance signal, 35 is a time reference signal extraction circuit, 36
37 is a measurement circuit that counts and measures the signal width of the compared difference; 38 is a reference frequency oscillator for measuring the time width; 39 is a decoder circuit that converts the counted value into an analog value for delay line switching, and 40 and 41 are tap type switching delay line circuits for Q and I signals.

第6図にそつてその動作説明する。まず、輝度
信号は入力端子31から固定遅延線回路34と時
間基準信号抽出回路35へと分岐される。固定遅
延線回路34では、時間軸補正範囲の半分の時間
を遅らせる遅延線が必要である。例えば+500ns、
−500nsでトータル1000nsを補正する為には500ns
の遅延線が必要である。そして、この回路34の
出力は出力端子42へ導かれる。一方、時間基準
信号抽出回路35で同期信号成分のみ分離され
る。その後、積分回路を用いて垂直同期信号を第
7図46のように取り出し後縁のエツジ等化パル
ス除去用のモノステーブルマルチを動作させ、第
7図47の波形を得、次に基準信号を得る為のモ
ノステーブルマルチを、47の後縁のエツジで同
期をかけ動作させ48の波形を得て、前記、輝度
信号より分離した同期信号にゲートをかけ、基準
信号49を得る。一方、I信号も入力端子33よ
り時間基準信号抽出回路35に入り前記第7図波
形48により時間基準信号が分離される。
The operation will be explained with reference to FIG. First, the luminance signal is branched from the input terminal 31 to the fixed delay line circuit 34 and the time reference signal extraction circuit 35. The fixed delay line circuit 34 requires a delay line that delays half the time of the time axis correction range. For example +500ns,
-500ns to correct a total of 1000ns
delay line is required. The output of this circuit 34 is then led to an output terminal 42. On the other hand, the time reference signal extraction circuit 35 separates only the synchronization signal component. After that, the vertical synchronizing signal is taken out using an integrating circuit as shown in Fig. 7, 46, and the monostable multi for removing the trailing edge edge equalization pulse is operated to obtain the waveform shown in Fig. 7, 47, and then the reference signal is A monostable multi is operated in synchronization with the trailing edge of 47 to obtain a waveform 48, and a reference signal 49 is obtained by applying a gate to the synchronization signal separated from the luminance signal. On the other hand, the I signal also enters the time reference signal extraction circuit 35 from the input terminal 33, and the time reference signal is separated by the waveform 48 in FIG.

以上で輝度信号及び色信号の時間基準信号が得
られる。第7図では3つの同期信号を用いて基準
信号としているが、これは、ドロツプアウト等に
よつて1つの基準信号より比較が出来ない時は、
後の基準信号を用いるためである。
The time reference signals of the luminance signal and the color signal are obtained in the above manner. In Fig. 7, three synchronization signals are used as the reference signal, but when comparison cannot be made with one reference signal due to dropout etc.
This is because a later reference signal is used.

次に第8図の50のような基準信号が得られた
が輝度信号と色信号の比較信号として最低限必要
な情報は、基準信号の前縁でも後縁でもどちらで
もよく、立上り、立下り特性がよくシヤープであ
ることが、測定時間誤差を少なくする手法であ
る。これは第8図の50のようにI信号の上側へ
時間基準信号を加算した場合の波形である。信号
は、S/Nをよくする為上側の信号レベルの最大
値50%までレベルを大きくしておき、変調する前
にエンフアシスをかけると51のような波形にな
ることは周知のとおりである。この状態では、エ
ンフアシスされたエツジ成分は大きくなりすぎ、
ヘツドテープ系を通過する時いろいろ問題を起こ
す。従つてクリツプをかけて問題ない範囲におさ
えることが必要である。例えば、信号成分を100
パーセントとし、クリツプを200%でかけるとす
れば、前縁の方はエンフアシス後の余裕は50パー
セントしかなくクリツプされる。ところが、後縁
の方は100パーセントあるわけでクリツプされず、
再生時、復調後デエンフアシスした時シヤープな
エツジを再現出来る。従つて波形の立上り、立下
り特性からくる時間軸エラーが少なくなる。以上
のことは輝度信号にも実証出来る。従つて基準信
号の後縁を比較回路に用いる。次に比較器36
は、輝度信号の基準信号を微分し後縁のみ得た波
形第9図52と、同じく色信号の基準信号の後縁
のみの波形53が得られ、△Tだけ時間軸変動が
あつた時、両者のエツジでフリツプ・フロツプを
動作させ54のような波形を作成する。これは非
常に狭い為にフリツプ・フロツプ動作がむずかし
いが、最近では高周波のIC技術が進んでおり、
ECLのIC等を用いれば10ns巾のパルスを作るこ
とができる。
Next, a reference signal such as 50 in Figure 8 was obtained, but the minimum information necessary for a comparison signal between a luminance signal and a chrominance signal is either the leading edge or the trailing edge of the reference signal, and the rising and falling edges. Having well-sharp characteristics is a method for reducing measurement time errors. This is the waveform obtained when the time reference signal is added to the upper side of the I signal as shown at 50 in FIG. It is well known that in order to improve the signal-to-noise ratio, the level of the signal is increased to a maximum value of 50% of the upper signal level, and if emphasis is applied before modulation, a waveform like 51 is obtained. In this state, the emphasized edge component becomes too large,
It causes various problems when passing through the head tape system. Therefore, it is necessary to keep the clip within a range that does not cause problems. For example, convert the signal component to 100
If we assume that the clip is multiplied by 200%, the leading edge will only have a 50% margin after emphasis and will be clipped. However, since the trailing edge is 100%, it is not clipped.
During playback, sharp edges can be reproduced when de-emphasized after demodulation. Therefore, time axis errors resulting from the rise and fall characteristics of the waveform are reduced. The above can also be demonstrated for luminance signals. Therefore, the trailing edge of the reference signal is used for the comparison circuit. Next, comparator 36
When the waveform 52 in FIG. 9 is obtained by differentiating the reference signal of the luminance signal and only the trailing edge is obtained, and the waveform 53 of only the trailing edge of the reference signal of the chrominance signal is obtained, and there is a time axis fluctuation by ΔT, Flip-flops are operated at both edges to create a waveform like 54. This is extremely narrow, making flip-flop operations difficult, but recently, high-frequency IC technology has advanced.
If you use an ECL IC or the like, you can create a pulse with a width of 10 ns.

一方別の方法としては、輝度信号の最初のエツ
ジと次のエツジでフリツプ・フロツプを動作さ
せ、波形55を作成し、同じようにして色信号の
波形56を作成しAND回路を通過させれば、差
の57のような波形が得られる。又、この比較器
36では、輝度信号に対して色信号が進んでいる
か、遅れているかの判別をして、デコーダー回路
39に情報伝達する。これは、輝度信号の基準信
号第9図52の波形でモノステーブルマルチ第1
0図60を動作させ、動作時間巾は補正範囲より
若干広くとる。そして色信号の基準信号53を端
子59より入れゲート回路61を通過させ、色基
準信号があるかないかを判別回路62で検知し、
出力端子81に導く。この信号はデコーダ回路3
9に入る。
On the other hand, another method is to operate a flip-flop on the first edge and the next edge of the luminance signal to create a waveform 55, and create a chrominance signal waveform 56 in the same way and pass it through an AND circuit. , a waveform like 57 of the difference is obtained. The comparator 36 also determines whether the color signal is ahead or behind the luminance signal and transmits the information to the decoder circuit 39. This is the reference signal of the luminance signal, the waveform of which is shown in Figure 9, 52, and the monostable multi first
60 is operated, and the operating time width is set slightly wider than the correction range. Then, a reference signal 53 of the color signal is inputted from a terminal 59 and passed through a gate circuit 61, and a discrimination circuit 62 detects whether or not there is a color reference signal.
It leads to the output terminal 81. This signal is the decoder circuit 3
Enter 9.

次に基準周波数発振器38について述べる。輝
度信号と色信号間の時間差は、通常のVTRでは
30nsぐらいである。この時間差は、固定であるか
らあまり目立たないが、本方式のようなVTRで、
フイルドごとに輝度信号と色信号の時間補正する
場合、検知限のレベルを100ns間隔とか荒くする
と色フリツカのようになり目立つ為、放送用
VTRと同程度の10nsの巾まで吸収することとし
た。このようにすれば色フリツカは、目の積分効
果で追従出来なく良好な画質が得られる。従つ
て、10nsの巾まで検出する為には、基準周波数を
100MHzに選んだ。発振器38より発振された信
号は、カウンター回路37へ導かれる。
Next, the reference frequency oscillator 38 will be described. In a normal VTR, the time difference between the luminance signal and the chrominance signal is
It is about 30ns. This time difference is not very noticeable because it is fixed, but with a VTR like this method,
When time-correcting the luminance signal and color signal for each field, if the detection limit level is made rough, such as at 100ns intervals, color flicker will become noticeable, so it is not suitable for broadcasting.
We decided to absorb up to a width of 10 ns, which is about the same as a VTR. In this way, color flicker cannot be tracked due to the integral effect of the eye, and good image quality can be obtained. Therefore, in order to detect up to a width of 10 ns, the reference frequency must be
I chose 100MHz. The signal oscillated by the oscillator 38 is guided to the counter circuit 37.

次にカウンター37は、比較器36より時間差
信号を受けて、このカウンターをON、OFFして
いる。差信号のある時間のみ、基準周波数をカウ
ントするものである。例えば、ここでは2つのカ
ウンターを用いており、0〜90nsの間を10ns間隔
にカウントするカウンターと、0〜900nsの間を
100ns間隔にカウントするカウンターを持つてい
る。こうすれば、+1000nsから−1000nsまでの時
間軸補正ができる。第11図82にカウンターの
ON、OFF信号が入り、一方端子83から基準周
波数100MHzが入り、デケードカウンター84は
動作する。ここで10ns間隔のカウントをし、カウ
ント出力をBCDコードで、出力端子86に導く、
一方ターミナル端子88には、10カウントに1コ
の出力が得られ、次段のデケードカウンター85
に導かれ、100ns間隔のカウントをし、出力端子
87へ導かれる。
Next, the counter 37 receives the time difference signal from the comparator 36 and turns it on and off. The reference frequency is counted only during times when there is a difference signal. For example, two counters are used here: one that counts between 0 and 90 ns at 10 ns intervals, and one that counts between 0 and 900 ns.
It has a counter that counts at 100ns intervals. This allows time axis correction from +1000ns to -1000ns. Figure 11 82 shows the counter
ON and OFF signals are input, and a reference frequency of 100 MHz is input from the terminal 83, and the decade counter 84 operates. Here, it counts at 10ns intervals and leads the count output to the output terminal 86 with a BCD code.
On the other hand, one output per 10 counts is obtained from the terminal terminal 88, and the next stage decade counter 85
, counts every 100 ns, and is led to an output terminal 87.

デコーダー回路39は、カウンター回路37か
らの出力がBCDコードである為これを10進法の
コード変換をする。その後タツプ型遅延線の駆動
回路に入り、第12図のようなタツプ型遅延線の
駆動出来るように、+−判別信号を用いて入替え
を行なう。例えば第13図のように輝度信号より
色信号が進んだ位相で再生された場合、輝度信号
回路には、固定遅延線34が入つており、色信号
系にも固定遅延線101が入つている。そして色
信号入力端子98に色信号が入り、10ns遅延線を
カウンターが測定した数値まで遅延した後、
100ns遅延線に100ns測定したカウンタ値に切換え
られて、固定遅延線を通過後、出力されると輝度
信号と同じ時間値となる。
Since the output from the counter circuit 37 is a BCD code, the decoder circuit 39 converts it into a decimal code. After that, it enters the tap-type delay line drive circuit and performs switching using the +/- discrimination signal so that the tap-type delay line as shown in FIG. 12 can be driven. For example, when the chrominance signal is reproduced in a phase that is ahead of the luminance signal as shown in FIG. 13, the luminance signal circuit includes a fixed delay line 34, and the chrominance signal system also includes a fixed delay line 101. . Then, the color signal enters the color signal input terminal 98, and after delaying the 10ns delay line to the value measured by the counter,
It is switched to the counter value measured for 100 ns by the 100 ns delay line, passes through the fixed delay line, and when output, it has the same time value as the luminance signal.

一方、輝度信号より色信号が遅れた場合は、第
13図下部に示すように、入力端子102から色
信号が入り、10ns遅延線を測定値と実際遅延量は
逆の関係で、いかなければならない。そして切換
えた後、100ns遅延線に入り同様の動作をし、そ
の出力には、固定遅延線を入れない。この場合
に、固定遅延線101と一側100nsタツプ型遅延
線の全遅延量が同量であれば、第14図のような
10ns遅延線108を、色信号の進み及び遅れ位相
の両者の時、スイツチングの結線を入替えて共用
出出るようにし、100ns遅延線109と110を
一体として考えた場合の回路構成が第12図のよ
うになる。以上のような方法で作成したスイツチ
ング信号を、第12図92,97のそれぞれに
10nsタツプ型遅延線スイツチング信号を、100ns
タツプ型遅延線スイツチング信号を入れ、色信号
を入力端子89により入れ、10nsタツプ型遅延線
に信号が通り、10nsごとの各タツプには遅延した
色信号が出てスイツチング回路91に入る。一方
92からのスイツチング信号で色信号を切換え、
その出力は100ns遅延線に入る。各タツプに遅延
された出力はスイツチング回路95に入り、スイ
ツチング信号により切換えられて出力端子96に
導かれる。
On the other hand, if the chrominance signal lags behind the luminance signal, as shown in the lower part of Figure 13, the chrominance signal is input from the input terminal 102, and the measured value and the actual delay amount are inversely related to each other through the 10ns delay line. It won't happen. After switching, it enters a 100ns delay line and performs the same operation, but does not include a fixed delay line at its output. In this case, if the total delay amount of the fixed delay line 101 and the 100 ns tap type delay line on one side is the same, then
The circuit configuration when the 10ns delay line 108 is shared by switching the switching connections when the chrominance signal is in both leading and lagging phases, and the 100ns delay lines 109 and 110 are considered as one unit, is shown in FIG. It becomes like this. The switching signals created in the above manner are shown in Figure 12, 92 and 97, respectively.
10ns tap delay line switching signal, 100ns
A tap-type delay line switching signal is input, a color signal is input through an input terminal 89, the signal passes through the 10ns tap-type delay line, and a delayed color signal is output to each tap every 10ns and input to the switching circuit 91. On the other hand, the color signal is switched by the switching signal from 92,
Its output goes into a 100ns delay line. The output delayed by each tap enters a switching circuit 95, is switched by a switching signal, and is led to an output terminal 96.

このような2つの信号間の時間軸補正をする場
合、水平同期間隔で比較し、CCD等の素子を使
つた補正も容易に考えられる。
When performing time axis correction between such two signals, it is easily possible to compare them at horizontal synchronization intervals and use an element such as a CCD for correction.

本発明によれば、輝度信号、色信号を別ヘツド
で記録するために高品質画像が得られ、しかも、
輝度信号ヘツド、色信号ヘツドの取付誤差等によ
り生ずる遅延時間誤差を精度よく自動的に取り除
くことができ画質を向上させることが出来る。特
に放送局等において、ダビングが必須である用途
にはこの様な機能は非常に有効である。
According to the present invention, a high quality image can be obtained because the luminance signal and color signal are recorded in separate heads, and furthermore,
Delay time errors caused by installation errors of the luminance signal head and color signal head can be automatically and accurately removed, thereby improving image quality. In particular, such a function is very effective in applications where dubbing is essential, such as in broadcasting stations.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は
ヘツドシリンダ上のヘツド配置を示す平面図、第
2図は同要部正面図、第3図は本発明の記録再生
系の概略を示すグロツク図、第4図は記録スペク
トラムを示す図、第5図は基準信号の1例を示す
図、第6図は本発明の要部のブロツク図、第7図
は輝度信号より基準信号を得るための動作説明波
形図、第8図は基準信号の波形図、第9図は時間
差信号を作成するための波形図、第10図は+、
−判別回路の説明図、第11図はカウンター回路
の説明図、第12図はタツプ型遅延線の構成図、
第13図はタツプ型遅延線の動作説明図、第14
図はタツプ型遅延線の信号通過説明図である。 31,32,33…入力端子、34…固定遅延
線、35…時間基準信号抽出器、36…比較器、
37…カウンター、38…発振器、39…デコー
ダ、40,41…タツプ型遅延線。
The drawings show an embodiment of the present invention; FIG. 1 is a plan view showing the arrangement of heads on a head cylinder, FIG. 2 is a front view of the main parts, and FIG. 4 is a diagram showing the recording spectrum, FIG. 5 is a diagram showing an example of the reference signal, FIG. 6 is a block diagram of the main part of the present invention, and FIG. 7 is a diagram showing the reference signal from the luminance signal. FIG. 8 is a waveform diagram of the reference signal, FIG. 9 is a waveform diagram for creating a time difference signal, and FIG.
- An explanatory diagram of the discrimination circuit, Fig. 11 is an explanatory diagram of the counter circuit, Fig. 12 is a configuration diagram of the tap type delay line,
Fig. 13 is an explanatory diagram of the operation of the tap type delay line, Fig. 14
The figure is an explanatory diagram of signal passage through a tap-type delay line. 31, 32, 33...Input terminal, 34...Fixed delay line, 35...Time reference signal extractor, 36...Comparator,
37... Counter, 38... Oscillator, 39... Decoder, 40, 41... Tap type delay line.

Claims (1)

【特許請求の範囲】 1 第1のヘツドにより一定周期の第1の基準信
号を含む輝度信号を記録媒体に記録する手段と、
第2のヘツドにより前記第1の基準信号に位相同
期した第2の基準信号を含む色信号を前記記録媒
体に記録する手段と、再生時に再生された前記輝
度信号および色信号よりそれぞれ前記第1、第2
の基準信号を抽出する手段と、両信号の位相差
を、固定の基準発振器の出力信号をもとにカウン
トするカウンタと、前記カウンタのカウンタ結果
に基づき、前記再生された輝度信号と色信号の少
なくとも一方を遅延せしめて、両再生信号間の時
間差を補正する、遅延手段とを設けたことを特徴
とする映像信号の記録再生装置。 2 カウンタおよび遅延手段は、それぞれ粗いも
のと細かいものを有し、粗いカウンタの出力によ
り粗い遅延手段を制御し、細かいカウンタの出力
により細かい遅延手段を制御することを特徴とす
る特許請求の範囲第1項に記載の映像信号の記録
再生装置。 3 第1のヘツドおよび第2のヘツドはそれぞれ
同一回転上に、その回転軸方向に高さを異にして
配設されていることを特徴とする特許請求の範囲
第1項に記載の映像信号の記録再生装置。
[Scope of Claims] 1. means for recording a luminance signal including a first reference signal with a constant period on a recording medium by a first head;
means for recording a color signal including a second reference signal phase-synchronized with the first reference signal on the recording medium by a second head; , second
a counter for counting the phase difference between the two signals based on the output signal of a fixed reference oscillator; 1. A video signal recording and reproducing apparatus, comprising a delay means for correcting a time difference between both reproduced signals by delaying at least one of the reproduced signals. 2. The counter and the delay means each have a coarse one and a fine one, and the output of the coarse counter controls the coarse delay means, and the output of the fine counter controls the fine delay means. The video signal recording and reproducing device according to item 1. 3. The video signal according to claim 1, wherein the first head and the second head are arranged on the same rotation but at different heights in the direction of the rotation axis. recording and reproducing equipment.
JP7954980A 1980-06-11 1980-06-11 Recording and reproducing device of video signal Granted JPS574683A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7954980A JPS574683A (en) 1980-06-11 1980-06-11 Recording and reproducing device of video signal
US06/272,372 US4399472A (en) 1980-06-11 1981-06-10 Phase difference compensation between separately recorded luminance and chrominance signals
DE8181302583T DE3169131D1 (en) 1980-06-11 1981-06-10 Phase difference compensation between separately recorded luminance and chrominance signals
EP81302583A EP0041872B1 (en) 1980-06-11 1981-06-10 Phase difference compensation between separately recorded luminance and chrominance signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7954980A JPS574683A (en) 1980-06-11 1980-06-11 Recording and reproducing device of video signal

Publications (2)

Publication Number Publication Date
JPS574683A JPS574683A (en) 1982-01-11
JPH023594B2 true JPH023594B2 (en) 1990-01-24

Family

ID=13693081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7954980A Granted JPS574683A (en) 1980-06-11 1980-06-11 Recording and reproducing device of video signal

Country Status (1)

Country Link
JP (1) JPS574683A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842389A (en) * 1981-09-07 1983-03-11 Sony Corp Recorder
JPH0799873B2 (en) * 1982-06-22 1995-10-25 松下電器産業株式会社 Video signal magnetic recording / reproducing device

Also Published As

Publication number Publication date
JPS574683A (en) 1982-01-11

Similar Documents

Publication Publication Date Title
US4021852A (en) Signal defect compensation
US4007485A (en) Color video signal reproducing apparatus
EP0289046B1 (en) Jitter-detecting apparatus for a video tape recorder
US4719518A (en) Magnetic recording apparatus for carrying out recording by selectively using one of two kinds of recording systems
JPS589485A (en) Video recorder
JPS5827716B2 (en) Jikikiro Kuuchi
JPS6123910B2 (en)
JPH023594B2 (en)
US4193085A (en) Apparatus for removing jitter in color television signal
JPH084349B2 (en) Color video signal recording method and reproducing method thereof
JPH06500438A (en) Video recorder for television signals with additional signals
JPH0217996B2 (en)
US5598274A (en) Image signal recording and reproducing system
JPH0195692A (en) Magnetic recording/reproducing device
JPH028518B2 (en)
JPS635957B2 (en)
JPH0245398B2 (en)
JPS60191588A (en) Magnetic picture recording device
JPS62262587A (en) Video signal reproducing device of rotary head type
JPS5812793B2 (en) Eizoushingouno Kirokusaiseiki
JPS6029276B2 (en) Recording and playback device
JPS5929033B2 (en) SECAM color video signal recording device
JPS63233685A (en) Segment recording system tape recording and reproducing device
JPH02241286A (en) Chrominate signal processing circuit
JPH0362797A (en) Magnetic recording and reproducing device