JPH0235641A - Optical pickup using for magneto-optical disk also for draw type disk - Google Patents

Optical pickup using for magneto-optical disk also for draw type disk

Info

Publication number
JPH0235641A
JPH0235641A JP63185077A JP18507788A JPH0235641A JP H0235641 A JPH0235641 A JP H0235641A JP 63185077 A JP63185077 A JP 63185077A JP 18507788 A JP18507788 A JP 18507788A JP H0235641 A JPH0235641 A JP H0235641A
Authority
JP
Japan
Prior art keywords
optical
light
magneto
disk
write
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63185077A
Other languages
Japanese (ja)
Inventor
Akihiko Okamoto
明彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63185077A priority Critical patent/JPH0235641A/en
Priority to US07/332,749 priority patent/US5070494A/en
Publication of JPH0235641A publication Critical patent/JPH0235641A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • G11B11/10545Heads for reproducing using optical beam of radiation interacting directly with the magnetisation on the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10595Control of operating function
    • G11B11/10597Adaptations for transducing various formats on the same or different carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • G11B13/04Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for magnetically or by magnetisation and optically or by radiation, for changing or sensing optical properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To miniaturize a device, to reduce an occupant space, and to reduce a cost by fixing a rotary member having a phase contrast plate on a ball bearing. CONSTITUTION:One pickup can be used for a magneto-optical disk also for a DRAW (direct-read-after-write) type disk by switching the direction of the optical axis of the phase contrast plate 20 by rotating, and in addition to that, the direction of the optical axis of the phase contrast plate 20 can be switched by utilizing and fixing the phase contrast plate 20 on the outer ring or the inner ring of the ball bearing 30. In such a way, the ball bearing 30 can be arranged in the neighborhood of the optical axis of the pickup, and to form the constitution of an actuator for the switching of the phase contrast plate 20 compactly, therefore, the optical pickup of combination type can be formed compactly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、記録媒体が光磁気ディスクの場合であっても
追記型光ディスクの場合であっても使用することができ
る光ピックアップに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical pickup that can be used whether the recording medium is a magneto-optical disk or a write-once optical disk.

(従来の技t#) 情報信号の記録媒体として光ディスクを使用する光ピッ
クアップは、使用する光ディスクの種類に応じて各種の
形式のものに分けられる。
(Conventional Technique t#) Optical pickups that use optical disks as recording media for information signals are classified into various types depending on the type of optical disk used.

例えば、光磁気ディスクを用いるものはその一つであり
、第11回にその従来例を示す。第11図において、半
導体レーザ1から出射したレーザ光束はカップリングレ
ンズ2で平行光にされ、ビーム整形プリズム3によりビ
ーム整形される。ビーム整形プリズム3を通過した光束
はダハプリズム4により点線のように反射され、第1の
ビームスプリンタ5で光ピックアップのキャリッジ側に
反射される。キャリッジは光磁気ディスク8の半径方向
に移動自在となっている。キャリッジにはビームスプリ
ッタ5から導かれる平行光を対物レンズ7に入射させる
ための第2のビームスプリッタ6が配置されている。対
物レンズ7はビームスプリッタ6からの光束を光デイス
ク8上に約1μm径の光スポットとして集光させる。
For example, one example is one that uses a magneto-optical disk, and a conventional example thereof will be shown in Part 11. In FIG. 11, a laser beam emitted from a semiconductor laser 1 is made into parallel light by a coupling lens 2, and the beam is shaped by a beam shaping prism 3. The light flux that has passed through the beam shaping prism 3 is reflected by the roof prism 4 as shown by the dotted line, and is reflected by the first beam splinter 5 toward the carriage side of the optical pickup. The carriage is movable in the radial direction of the magneto-optical disk 8. A second beam splitter 6 is arranged on the carriage to make the parallel light guided from the beam splitter 5 enter the objective lens 7. The objective lens 7 focuses the light beam from the beam splitter 6 onto the optical disk 8 as a light spot with a diameter of about 1 μm.

光ディスク8からの反射光は、対物レンズ7を通りビー
ムスプリッタ6に至り、一部はトラック検出用受光素子
9に導かれ、残りは第1のビームスプリッタ5側に向か
って反射される。ビームスプリッタ5側に反射された光
束は同ビームスプリッタ5を通過し、集光レンズ10に
より収束光となる。この収束光は分割ミラー(ナイフェ
ツジ)11により分割され、一部はλ/2板12、ウォ
ラストンプリズム13を通過して光磁気信号検出器14
に導かれる0分割ミラー11で反射されない残りの光束
はミラー15で反射され、・フォーカス検出用受光素子
1.6に導かれる。
The reflected light from the optical disk 8 passes through the objective lens 7 and reaches the beam splitter 6. A portion of the light is guided to the track detection light receiving element 9, and the rest is reflected toward the first beam splitter 5. The light beam reflected to the beam splitter 5 side passes through the beam splitter 5 and becomes convergent light by the condenser lens 10. This convergent light is split by a splitting mirror (naifetsu) 11, and part of it passes through a λ/2 plate 12 and a Wollaston prism 13, and then passes through a magneto-optical signal detector 14.
The remaining light flux that is not reflected by the 0-divided mirror 11 is reflected by the mirror 15, and is guided to the focus detection light receiving element 1.6.

記録媒体として追記型の光ディスクを用いる光ピックア
ップもある。第12図はその従来例を示すもので、第1
1図に示した光磁気ディスク用光ピックアップの構成部
分と機能的に同じ構成部分には共通の符号を付しである
6第12図において。
There is also an optical pickup that uses a write-once optical disc as a recording medium. Figure 12 shows a conventional example.
6. In FIG. 12, components that are functionally the same as those of the optical pickup for a magneto-optical disk shown in FIG. 1 are given the same reference numerals.

半導体レーザ1からの光束は直線偏光(S偏光)であり
、カップリングレンズ2で平行光とされ、偏光ビームス
プリンタ18を透過してλ/4板19、対物レンズ7を
介して追記型光ディスク17に集光される。光ディスク
17に照射される光はλ/4板19を通過しているため
円偏光となっている。光ディスク17からの反射光もま
た円偏光である。この反射光は再びλ/4板19を通過
することにより再び直線偏光となる。その直線偏光は、
半導体レーザ1の出射光に対して位相が90度ずれたP
偏光となる。このP偏光は偏光ビームスプリッタ18に
より99%以上反射され、集光レンズ10側に導かれる
。集光レンズ1.0を通過した収束光はフォーカス検出
用受光素子16、トラック検出用受光素子9に導かれる
。各受光素子16.9は周知のように受光面が分割され
ていて、受光素子16の各分割受光面の出力を差動増幅
器50に入力することによりフォーカシング信号を検出
することができる。また、受光索子9の各分割受光面の
出力を差動増幅器51に入力することによりトラッキン
グ信号を検出することができ。
The light beam from the semiconductor laser 1 is linearly polarized light (S-polarized light), is made into parallel light by the coupling lens 2, is transmitted through the polarized beam splinter 18, and is transmitted through the λ/4 plate 19 and the objective lens 7 to the write-once optical disc 17. The light is focused on. The light irradiated onto the optical disc 17 passes through the λ/4 plate 19, and therefore becomes circularly polarized light. The reflected light from the optical disc 17 is also circularly polarized light. This reflected light passes through the λ/4 plate 19 again and becomes linearly polarized light again. The linearly polarized light is
P whose phase is shifted by 90 degrees with respect to the emitted light of the semiconductor laser 1
It becomes polarized light. More than 99% of this P-polarized light is reflected by the polarizing beam splitter 18 and guided to the condenser lens 10 side. The convergent light that has passed through the condenser lens 1.0 is guided to a focus detection light receiving element 16 and a track detection light receiving element 9. As is well known, each light-receiving element 16.9 has a divided light-receiving surface, and by inputting the output of each divided light-receiving surface of the light-receiving element 16 to the differential amplifier 50, a focusing signal can be detected. Furthermore, a tracking signal can be detected by inputting the output of each divided light-receiving surface of the light-receiving probe 9 to the differential amplifier 51.

加算器52に入力することによりディスク17に記録さ
れている情報信号を読み出すことができる。
By inputting the signal to the adder 52, the information signal recorded on the disk 17 can be read out.

(発明が解決しようとする課題) 第11図に示す光ピックアップの記録媒体としての光磁
気ディスク8上には、磁化方向の違いとして情報信号が
記録されている。上記磁化方向の違いによって生ずる微
小な偏光角の差をウォラストンプリズム13によって分
離された二つの光束の強度の差として受光素子14で検
出することにより上記情報信号を読み出すことができる
。しかるに、上記偏光角(「カー回転角」という)の差
は微小であるため、光磁気ディスク8には精度の高い直
線偏光を入射させる必要がある。そのため。
(Problems to be Solved by the Invention) Information signals are recorded as different magnetization directions on a magneto-optical disk 8 as a recording medium of an optical pickup shown in FIG. The information signal can be read out by detecting, by the light receiving element 14, a minute difference in polarization angle caused by the difference in the magnetization direction as a difference in intensity between two light beams separated by the Wollaston prism 13. However, since the difference in the polarization angle (referred to as "Kerr rotation angle") is minute, highly accurate linearly polarized light must be incident on the magneto-optical disk 8. Therefore.

光磁気ピックアップでは、追記型光ピックアップのよう
にλ/4仮と偏光ビームスプリッタを用いて入射光と反
射光とを分離するような構成にすることはできない、こ
の結果、光磁気ディスク8からの反射光がビームスプリ
ッタ5で一部反射されて半導体レーザ1に戻ってしまう
。半導体レーザ1とディスク8は、カップリングレンズ
2と対物レンズ7を介して共役な関係にあるため、半導
体レーザlからの出射光の一部が半導体レーザlに戻る
と、半導体レーザ1.カップリングレンズ2゜対物レン
ズ7、ディスク8でなる光路が共振器となって半導体レ
ーザ1の光量が変動するという現象が生じる。これを「
戻り光による半導体レーザの出力変動」という。この戻
り光による半導体レーザの出力変動は、一般に半導体レ
ーザ(LD)の出射光量に対して第13図に示すような
関係にあり、出射光量が小さいほど光量変動が大きくな
る。
In a magneto-optical pickup, unlike a write-once optical pickup, it is not possible to use a configuration in which incident light and reflected light are separated using a λ/4 beam splitter and a polarizing beam splitter. A portion of the reflected light is reflected by the beam splitter 5 and returns to the semiconductor laser 1. Since the semiconductor laser 1 and the disk 8 are in a conjugate relationship via the coupling lens 2 and the objective lens 7, when a part of the emitted light from the semiconductor laser 1 returns to the semiconductor laser 1, the semiconductor laser 1. A phenomenon occurs in which the optical path formed by the coupling lens 2°, the objective lens 7, and the disk 8 becomes a resonator, and the amount of light from the semiconductor laser 1 fluctuates. this"
"Semiconductor laser output fluctuation due to returned light." The output fluctuation of the semiconductor laser due to this returned light generally has a relationship as shown in FIG. 13 with respect to the output light amount of the semiconductor laser (LD), and the smaller the output light amount, the larger the light amount fluctuation.

また、光磁気ディスクの場合は磁化反転により情報信号
を記録するのに対し、追記型ディスクの場合は媒体の溶
融除去等により記録するようになっており、再生時の光
量をあまり上げると媒体が劣化してしまうことから、追
記型再生時の半導体レーザの出射光量は光磁気再生時に
比べて低く、約115程度である。
Also, in the case of magneto-optical disks, information signals are recorded by magnetization reversal, whereas in the case of write-once disks, information is recorded by melting and removing the medium, so if the light intensity during playback is increased too much, the medium will Because of the deterioration, the amount of light emitted by the semiconductor laser during write-once reproducing is lower than that during magneto-optical reproducing, and is about 115.

このため、第11図に示す光ピックアップを光磁気型と
追記型兼用の再生機として使用すると、光磁気再生時に
はほとんど問題にならない戻り光による光景変動が、追
記型再生時には急激に増加し、重大な問題となる。特に
、戻り光による光量変動は、光スポットがディスク上に
合焦しているときに発生するため、再生パワー設定時よ
りも、フォーカスサーボにより常に合焦状態にある実際
の再生時の方がパワーが増大してしまい、媒体の劣化を
まねくことになる。また、この光量変動は。
For this reason, when the optical pickup shown in Figure 11 is used as a dual-purpose magneto-optical and write-once type reproducing machine, the fluctuation of the scene due to the returned light, which is hardly a problem during magneto-optical playback, increases rapidly during write-once playback, causing serious problems. This becomes a problem. In particular, fluctuations in light intensity due to returned light occur when the light spot is focused on the disc, so the power is higher during actual playback when the focus servo is always in focus than when setting the playback power. increases, leading to deterioration of the medium. Also, this light amount fluctuation.

再生信号に対するノイズとなり、悪影響を及ぼすことに
なる。
This becomes noise to the reproduced signal and has an adverse effect.

本発明は、かかる従来技術の問題点を解消するためにな
されたもので、追記型再生時における戻り光による光量
変動をほとんど問題にならない程度に少なくすることに
より、光磁気ディスクの再生と追記型ディスクの再生と
を一つの光ピックアップで行わせることを可能にし、ま
た、光磁気ディスク再生と追記型ディスクの再生との切
り換えを、小型で占有スペースが少なく、かつ、コスト
の安い機構によって簡単に行うことができるようにした
光磁気・追記型兼用光ピックアップを提供することを目
的とする。
The present invention has been made in order to solve the problems of the prior art, and it is possible to improve the playback of magneto-optical disks and the write-once type by reducing the light amount fluctuation due to the return light during write-once type playback to an almost non-problematic level. It enables both disc playback and playback to be performed with a single optical pickup, and also allows easy switching between magneto-optical disc playback and write-once disc playback using a small, space-occupying, and low-cost mechanism. An object of the present invention is to provide a magneto-optical/write-once type optical pickup that can perform the following functions.

(課題を解決するための手段) 本発明は、相対回転自在の外輪と内輪を有するボールベ
アリングの上記外輪又は内輪のうちの一方に位相差板を
有する回転部材を固着し、上記外輪又は内輪のうちの他
方を光ピックアップ本体に固定し、上記回転部材の近傍
には、永久磁石とヨークとを一定間隔をおいて配置する
ことにより上記回転板の回転面に対し略垂直方向に磁界
を形成し、上記回転部材には、上記磁界内に位置させか
つ上記磁界の方向に対し略垂直方向に電流が流れるよう
に巻かれたコイルを固着して同コイルに上記磁界の方向
及び上記電流の方向に対しそれぞれ垂直な方向に推力を
発生させるようにしたことを特徴とする。
(Means for Solving the Problems) The present invention fixes a rotating member having a retardation plate to one of the outer ring and the inner ring of a ball bearing having a relatively rotatable outer ring and an inner ring, and The other of the magnets is fixed to the optical pickup main body, and a permanent magnet and a yoke are arranged at a constant interval near the rotating member to form a magnetic field approximately perpendicular to the rotating surface of the rotating plate. A coil is fixed to the rotating member and is wound so that the current flows in a direction substantially perpendicular to the direction of the magnetic field and is positioned within the magnetic field. It is characterized by generating thrust in a direction perpendicular to each other.

(作用) コイルに電流を流すと、コイルに発生する推力により回
転部材と共に位相差板が回転し、その光学軸が回転する
。コイルに流す電流の向きを切り換えることにより位相
差板の回転位置が切り換えられる0位相差板の回転位置
によって同位相差板を通る光の振動方向が変化する。デ
ィスクによって反射された光の振動方向が、ビームスプ
リッタを含み、かつ、受光素子に至る光学系の上記ビー
ムスプリッタを透過する方向となるように上記コイルの
回転位置を設定することにより、戻り光による出力変動
を抑えることができる。
(Function) When a current is passed through the coil, the thrust generated in the coil rotates the retardation plate together with the rotating member, and its optical axis rotates. The rotational position of the retardation plate is changed by switching the direction of the current flowing through the coil. The direction of vibration of light passing through the retardation plate changes depending on the rotational position of the retardation plate. By setting the rotational position of the coil so that the vibration direction of the light reflected by the disk is the direction in which the beam splitter is transmitted through the optical system that includes the beam splitter and reaches the light receiving element, Output fluctuations can be suppressed.

(実施例) 本発明にかかる光磁気・追記型兼用光ピックアップの実
施例を説明する前に、本発明の基本的な構成について説
明する。第1図は本発明の基本構成を概略的に示すもの
であり、第11図に示した従来の光ピックアップの構成
に加えて、第1のビームスプリッタ5と第2のビームス
プリンタ6との間に、位相差板である第1のλ/4板2
0が配置されると共に1分割ミラー11とλ/2板12
との間に第2のλ/4板25が配置されている。
(Embodiments) Before describing embodiments of the magneto-optical/write-once optical pickup according to the present invention, the basic configuration of the present invention will be explained. FIG. 1 schematically shows the basic configuration of the present invention, and in addition to the configuration of the conventional optical pickup shown in FIG. , a first λ/4 plate 2 which is a retardation plate
0 is arranged, and the 1-split mirror 11 and the λ/2 plate 12
A second λ/4 plate 25 is arranged between.

第2のλ/4板25は固定されているのに対し。Whereas the second λ/4 plate 25 is fixed.

第1のλ/4板20はその光学軸を光磁気モードか追記
型モードかによって切り換えることができるように回転
可能に設けられている。その他の構成は第11図に示し
た光ピックアップの構成と同様であるから、共通の構成
部分には共通の符号を付して詳細な構成の説明は省略す
る。
The first λ/4 plate 20 is rotatably provided so that its optical axis can be switched between the magneto-optical mode and the write-once mode. The rest of the configuration is similar to the configuration of the optical pickup shown in FIG. 11, so the common components are given the same reference numerals and a detailed explanation of the configuration will be omitted.

次に、上記基本構成の動作について各モードごとに説明
する。
Next, the operation of the above basic configuration will be explained for each mode.

追記型モードの場合 第2図に示すように、半導体レーザ1から出射した光は
カップリングレンズ2.整形プリズム3゜ダハプリズム
4を通り、ビームスプリッタ5に対しS偏光として入射
する。ビームスプリッタ5はS偏光の75%を反射し、
25%を透過させ、また、P偏光の99%以上を透過さ
せる。ビームスプリッタ5で反射された75%の光束は
λ/4板20を通過して円偏光となる。この追記型モー
ドではλ/4板20はその光学@56がS偏光の振動方
向に対して45度の角度になるように設置されている。
In the write-once mode, as shown in FIG. 2, the light emitted from the semiconductor laser 1 is passed through the coupling lens 2. The light passes through the shaping prism 3° and the roof prism 4, and enters the beam splitter 5 as S-polarized light. Beam splitter 5 reflects 75% of the S-polarized light,
It transmits 25% of the light, and transmits more than 99% of the P-polarized light. 75% of the light beam reflected by the beam splitter 5 passes through the λ/4 plate 20 and becomes circularly polarized light. In this write-once mode, the λ/4 plate 20 is installed so that its optical axis 56 is at an angle of 45 degrees with respect to the vibration direction of the S-polarized light.

λ/4板20を通過した円偏光は第2のビームスプリッ
タ6で上方に反射され、対物レンズ7によって追記型光
デイスク17上に集光される。ディスク17からの反射
光は再び円偏光として戻り、再びλ/4板20を通過す
ることによって直線偏光となる。この直線偏光の振動方
向は前述のS偏光に対して垂直であり、ビームスプリッ
タ5に対してP偏光となる。ビームスプリッタ5はPa
光を99%以上透過させるので、ディスク17からの反
射光は半導体レーザ1側にはほとんど戻らない。ビーム
スプリッタ5を透過した光はフォーカス検出用受光素子
16及び光磁気検出器14に導かれる6追記型情報信号
は上記検出器14の出力の和信号として検出される。こ
のように、検出器14の和信号で情報信号を検出するた
め、第2のλ/4板25とλ/2板12は情報検出には
何ら影響を与えることはない。
The circularly polarized light that has passed through the λ/4 plate 20 is reflected upward by the second beam splitter 6 and is focused onto the write-once optical disk 17 by the objective lens 7 . The reflected light from the disk 17 returns as circularly polarized light and becomes linearly polarized light by passing through the λ/4 plate 20 again. The vibration direction of this linearly polarized light is perpendicular to the S-polarized light described above, and becomes P-polarized light with respect to the beam splitter 5. Beam splitter 5 is Pa
Since 99% or more of the light is transmitted, almost no reflected light from the disk 17 returns to the semiconductor laser 1 side. The light transmitted through the beam splitter 5 is guided to the focus detection light receiving element 16 and the magneto-optical detector 14, and the 6-write-once information signal is detected as a sum signal of the outputs of the detector 14. In this way, since the information signal is detected using the sum signal of the detector 14, the second λ/4 plate 25 and the λ/2 plate 12 have no effect on information detection.

光磁気モードの場合 第3図、第4図は光磁気モードの場合の動作を示す、第
3図に示すように、光磁気モードの場合は第1のλ/4
板20を回転させてビームスプリッタ5からのS偏光の
振動方向と光学軸56とを一致させる。こうすれば、S
偏光はλ/4板20を素通りし、直線偏光として光磁気
ディスク8に照射される。この磁気ディスク8からの反
射光は記録データの磁化方向に応じてカー回転角αだけ
回転したKM偏光となる。この直線偏光が再びλ/4板
20に入射すると、この直線偏光は光学軸に対してカー
回転角αだけ微小角度傾いているため、楕円偏光となる
。ビームスプリッタ5はS偏光を75%、P偏光を99
%透過するため、上記楕円偏光は楕円率が変ねって分割
ミラー11側に到達する0分割ミラー11により反射さ
れた楕円偏光は第2のλ/4板25を通過する。λ/4
板25はこの楕円偏光を再び直線偏光に戻す役割をもっ
ており、その光学軸は第1のλ/4板20に対して90
度の角度に設置されている。もとに戻された直線偏光は
情報の磁化方向に応じて回転するから、この偏光角の差
をλ/2板12.ウォラストンプリズム13により分離
し、2分割の検出器14によって差信号として検出する
・このように、位相差板としてのλ/4@20を回転さ
せてその光学軸56の向きを変えることにより、一つの
光ピックアップを光磁気・追記型に兼用の光ピックアッ
プとして使用することができる。
In the case of magneto-optical mode, Figures 3 and 4 show the operation in magneto-optical mode.As shown in Figure 3, in the case of magneto-optical mode, the first λ/4
The plate 20 is rotated to align the vibration direction of the S-polarized light from the beam splitter 5 with the optical axis 56. In this way, S
The polarized light passes through the λ/4 plate 20 and is irradiated onto the magneto-optical disk 8 as linearly polarized light. The reflected light from the magnetic disk 8 becomes KM polarized light rotated by the Kerr rotation angle α according to the magnetization direction of the recorded data. When this linearly polarized light enters the λ/4 plate 20 again, it becomes elliptically polarized light because it is tilted by a small angle of Kerr rotation angle α with respect to the optical axis. Beam splitter 5 splits S-polarized light by 75% and P-polarized light by 99%.
%, the ellipticity of the elliptically polarized light changes and the elliptically polarized light reaches the splitting mirror 11 side.The elliptically polarized light reflected by the 0 splitting mirror 11 passes through the second λ/4 plate 25. λ/4
The plate 25 has the role of returning this elliptically polarized light to linearly polarized light again, and its optical axis is at an angle of 90° with respect to the first λ/4 plate 20.
It is installed at a degree angle. Since the returned linearly polarized light rotates according to the magnetization direction of the information, the difference in polarization angle is determined by the λ/2 plate 12. They are separated by the Wollaston prism 13 and detected as a difference signal by the two-split detector 14.In this way, by rotating the λ/4@20 as a retardation plate and changing the direction of its optical axis 56, One optical pickup can be used as a dual-purpose optical pickup for magneto-optical and write-once types.

第5図ないし第10図は、上記λ/4板20の回転機構
の例を示す。第5図ないし第9図において、符号30は
ボールベアリングを示しており、同ボールベアリング3
0は一般に周知のものと同様に、相対回転自在な外輪3
5と内輪48とを有してなる。上記ベアリング30の内
輪48の一端にはリング状の回転部材34が固着され、
回転部材34には前記λ/4板20が固着されている。
5 to 10 show examples of a rotation mechanism for the λ/4 plate 20. FIG. 5 to 9, the reference numeral 30 indicates a ball bearing, and the ball bearing 3
0 is a relatively rotatable outer ring 3, similar to the generally known one.
5 and an inner ring 48. A ring-shaped rotating member 34 is fixed to one end of the inner ring 48 of the bearing 30,
The λ/4 plate 20 is fixed to the rotating member 34.

一方、上記ベアリング30の外輪35は光ピックアップ
本体36に固定されている。従って、実質一体の内輪4
8と回転部材34とλ/4板20は、光ピックアップ本
体36及びこれに固定された外輪35に対して自由に回
転することができる。ベアリング30の中心軸線は、第
1のビームスプリッタ5と第2のビームスプリッタ6と
の間の光軸と一致するように配置されている。上記回転
部材34の外周部には枠状に巻かれたコイル31が固着
されている。回転部材34に対する・コイル31の固着
手段は適宜の手段を用いてよいが1図示の実施例では1
回転部材34の外周部に一体に突出させて形成したブロ
ック44に、コイル31の外側面に固着した逆U字状の
取付部材43を嵌合同着することにより、コイル31が
回転部材34に固着されている。光ピックアップ本体3
6には5回転部材34の近傍においてU字状に形成され
たヨーク40が固定されており、同ヨーク40の一辺が
コイル31の内方を同コイル31の内面との間に十分な
間隔をおいて貫通している。コイル31を貫通するヨー
ク40の一辺とは反対側の一辺の内側面には永久磁石3
2が固定されており、−定間隔をおいて配置された上記
ヨーク40の一辺と永久磁石32との間に磁界が形成さ
れる。この磁界は上記回転部材34の回転面に対して略
垂直方向に形成される。この磁界内には上記コイル31
が位置する。コイル31には、光磁気モードが追記型モ
ードかに応じて正方向又は逆方向に直流電流が流される
。この電流の方向は上記磁界の方向に対し略垂直方向で
ある。従って、コイル31に電流を流すことにより、ボ
イスコイルモータ又はリニアモータの原理により上記磁
界の方向及び上記電流の方向に対しそれぞれ垂直な方向
に推力を発生させ、回転部材34に固着された!/4板
2板製0軸に対し垂直な面内において回転させる。
On the other hand, the outer ring 35 of the bearing 30 is fixed to the optical pickup main body 36. Therefore, the substantially integral inner ring 4
8, the rotating member 34, and the λ/4 plate 20 can freely rotate relative to the optical pickup main body 36 and the outer ring 35 fixed thereto. The central axis of the bearing 30 is arranged to coincide with the optical axis between the first beam splitter 5 and the second beam splitter 6. A frame-shaped coil 31 is fixed to the outer circumference of the rotating member 34. Appropriate means may be used for fixing the coil 31 to the rotating member 34, but in the illustrated embodiment, 1 is used.
The coil 31 is fixed to the rotating member 34 by fitting and attaching an inverted U-shaped mounting member 43 fixed to the outer surface of the coil 31 to a block 44 formed integrally protruding from the outer periphery of the rotating member 34. has been done. Optical pickup body 3
A yoke 40 formed in a U-shape is fixed to 6 in the vicinity of the 5-rotation member 34, and one side of the yoke 40 provides a sufficient distance between the inside of the coil 31 and the inner surface of the coil 31. It penetrates through. A permanent magnet 3 is attached to the inner surface of one side opposite to one side of the yoke 40 passing through the coil 31.
2 is fixed, and a magnetic field is formed between one side of the yoke 40 and the permanent magnet 32, which are arranged at regular intervals. This magnetic field is formed in a direction substantially perpendicular to the rotating surface of the rotating member 34. The coil 31 is in this magnetic field.
is located. A direct current is passed through the coil 31 in the forward direction or in the reverse direction depending on whether the magneto-optical mode is the write-once mode. The direction of this current is approximately perpendicular to the direction of the magnetic field. Therefore, by passing a current through the coil 31, a thrust force is generated in a direction perpendicular to the direction of the magnetic field and the direction of the current according to the principle of a voice coil motor or a linear motor, and the motor is fixed to the rotating member 34! /4 made of 2 plates Rotate in a plane perpendicular to the 0 axis.

回転部材34の第6図における反時計方向への回転限界
は回転部材34の外周部に形成した突部45がピックア
ップ本体36のストッパ46に当接することによって画
され、回転部材34の第6図における時計方向への回転
限界は回転部材34の外周部の段部46がピックアップ
本体36と実質一体のストッパに当接することによって
画される。
The limit of rotation of the rotating member 34 in the counterclockwise direction in FIG. The limit of rotation in the clockwise direction is determined by the step 46 on the outer periphery of the rotating member 34 coming into contact with a stopper that is substantially integral with the pickup body 36.

この回転部材34の回転範囲の各端部がそれぞれ光磁気
モードと追記型モードに対応する。光磁気モードか追記
型モードかの判別は使用者の判断で行うようにしてもよ
いし、光デイスクカートリッジに付けたマーク等を読み
取って自動的に判断するようにしてもよい。そして、光
磁気モードか追記型モードかに応じてコイル31に流す
電流の向きを切り換える。こうすることにより、記録媒
体が光磁気ディスクの場合と追記型ディスクの場合とに
応じ1位相差板であるλ/4板20の光学軸の向きが切
り換えられ、特に、追記型モードの場合における半導体
レーザの戻り光による光量変動を防止することができる
Each end of the rotation range of the rotating member 34 corresponds to the magneto-optical mode and the write-once mode, respectively. The determination between the magneto-optical mode and the write-once mode may be made by the user's judgment, or it may be made automatically by reading a mark or the like attached to the optical disc cartridge. Then, the direction of the current flowing through the coil 31 is switched depending on whether the mode is magneto-optical mode or write-once mode. By doing this, the direction of the optical axis of the λ/4 plate 20, which is one retardation plate, is switched depending on whether the recording medium is a magneto-optical disk or a write-once disk. Fluctuations in light amount due to return light from the semiconductor laser can be prevented.

各モードでλ/4板20の光学軸の向きを正しく位置決
めするために、回転部材34が限界位置まで回転したと
き回転部材34が妄動しないようにする必要がある。そ
のためには、コイル31に通電して回転部材34を回転
させたのちもコイル31に引き続き通電させて推力を発
生させた状態にした上で、突部45又は段部46をスト
ッパに当接させた状態にしてもよい、あるいは、第10
図に示すように、コイル31の回転方向の両側に永久磁
石54を固着し、コイル31の回転限界位置において上
記永久磁石54をピックアップ本体等に吸着させるよう
にしてもよい、第10図の例の場合は、コイル31に通
電してこれを回転させたのちはコイル31に通電しつづ
ける必要はない。
In order to correctly position the optical axis of the λ/4 plate 20 in each mode, it is necessary to prevent the rotating member 34 from moving erroneously when the rotating member 34 rotates to the limit position. To do this, after the coil 31 is energized to rotate the rotating member 34, the coil 31 is continuously energized to generate thrust, and the protrusion 45 or step 46 is brought into contact with the stopper. or the 10th
As shown in the figure, permanent magnets 54 may be fixed to both sides of the coil 31 in the rotational direction, and the permanent magnets 54 may be attracted to the pickup body or the like at the rotation limit position of the coil 31, the example of FIG. 10. In this case, after the coil 31 is energized and rotated, it is not necessary to continue energizing the coil 31.

なお、ボールベアリングの内輪側を固定し、外輪側を回
転側としてこれに回転部材及び位相差板を固着してもよ
い。
Note that the inner ring side of the ball bearing may be fixed, the outer ring side may be set as the rotating side, and the rotating member and the retardation plate may be fixed to this.

前記ヨーク40は、コイル31の回転方向に沿って円弧
状に形成してもよい。
The yoke 40 may be formed in an arc shape along the rotation direction of the coil 31.

(発明の効果) 本発明によれば、位相差板を回転させてその光学軸の向
きを切り換えることにより一つのピックアップを光磁気
ディスクと追記型ディスクとに兼用させることができる
ようにした上で、ボールベアリングを利用してその外輪
又は内輪に位相差板を固着することにより位相差板の光
学軸の向きを切り換えるようにしたため、上記ボールベ
アリングはピックアップの光軸の周りに配置することが
でき1位相差板を切り換えるための7クチユエータの構
成をコンパクトにまとめることができ、もって、兼用型
の光ピックアップをコンパクトにまとめることができる
。また、上記ベアリングは市販のものを用いることがで
きるため、コストの低廉化を図ることもできる。
(Effects of the Invention) According to the present invention, by rotating the retardation plate and switching the direction of its optical axis, one pickup can be used for both a magneto-optical disk and a write-once disk. , the direction of the optical axis of the retardation plate is switched by fixing the retardation plate to the outer ring or inner ring using a ball bearing, so the ball bearing can be placed around the optical axis of the pickup. The configuration of seven cut units for switching one retardation plate can be made compact, thereby making it possible to make a dual-purpose optical pickup compact. Moreover, since a commercially available bearing can be used as the bearing, the cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる光磁気・追記型兼用光ピックア
ップの実施例を概略的に示す光学配置図。 第2図は同上実施例の追記型モードの場合の動作を示す
光学配置図、第3図は同じく光磁気モードの場合の動作
を示す光学配置図5第4図は上記実施例の光磁気モード
の場合の動作説明図、第5図は上記実施例中の位相差板
の回転機構の具体例を示す斜視図、第6図は同上正面図
、第7図は上記回転機構中の回転部材を示す正面図、第
8図は第6図中の線A−Aに沿う断面図、第9図は上記
回転機構の分解斜視図、第10図は本発明に適用可能な
位相差板の回転機構の別の例を示す正面図。 第11図は従来の光磁気型光ピックアップの例を示す光
学配置図、第12図は従来の追記型光ピックアップの例
を示す光学配置図、第13図は光ビツクアップにおける
戻り光による半導体レーザの出力変動を示す線図である
。 8・・・・光磁気ディスク 17・・・・追記型光ディ
スク 2o・・・・位相差板 30・・・・ボールベア
リング 31・・・・コイル 32・・・・永久磁石3
4・・・・回転部材 35・・・・外@ 36・・・・
光ピックアップ本体 40・・・・ヨーク 48・・・
・内輪56・・・・光学軸 ち4 うイ竺5 ヅσ  G] 形40 I あ もD 口 壱Z圓 ノク
FIG. 1 is an optical layout diagram schematically showing an embodiment of a magneto-optical/write-once optical pickup according to the present invention. FIG. 2 is an optical layout diagram showing the operation in the write-once mode of the above embodiment, and FIG. 3 is an optical layout diagram showing the operation in the magneto-optical mode. FIG. 5 is a perspective view showing a specific example of the rotation mechanism of the retardation plate in the above embodiment, FIG. 6 is a front view of the same, and FIG. 7 is a diagram showing the rotating member in the rotation mechanism. 8 is a sectional view taken along the line A-A in FIG. 6, FIG. 9 is an exploded perspective view of the rotation mechanism, and FIG. 10 is a rotation mechanism of a retardation plate applicable to the present invention. FIG. 3 is a front view showing another example. FIG. 11 is an optical layout diagram showing an example of a conventional magneto-optical optical pickup, FIG. 12 is an optical layout diagram showing an example of a conventional write-once optical pickup, and FIG. 13 is an optical layout diagram showing an example of a conventional write-once optical pickup. FIG. 3 is a diagram showing output fluctuations. 8...Magneto-optical disk 17...Writable optical disk 2o...Retardation plate 30...Ball bearing 31...Coil 32...Permanent magnet 3
4...Rotating member 35...Outside @ 36...
Optical pickup body 40... Yoke 48...
・Inner ring 56...Optical axis 4 Uijiku 5 ヅσ G] Shape 40 I Amo D Mouth 1 Z round nok

Claims (1)

【特許請求の範囲】 記録媒体が光磁気ディスクの場合と追記型ディスクの場
合とに応じ位相差板を回転させてその光学軸の向きを切
り換えるようにした光磁気・追記型兼用光ピックアップ
において、相対回転自在の外輪と内輪を有するボールベ
アリングの上記外輪又は内輪のうちの一方に上記位相差
板を有する回転部材を固着し、 上記外輪又は内輪のうちの他方を光ピックアップ本体に
固定し、 上記回転部材の近傍には、永久磁石とヨークとを一定間
隔をおいて配置することにより上記回転部材の回転面に
対し略垂直方向に磁界を形成し、上記回転部材には、上
記磁界内に位置させかつ上記磁界の方向に対し略垂直方
向に電流が流れるように巻かれたコイルを固着して同コ
イルに上記磁界の方向及び上記電流の方向に対しそれぞ
れ垂直な方向に推力を発生させるようにしたことを特徴
とする光磁気・追記型兼用光ピックアップ。
[Scope of Claims] A magneto-optical/write-once optical pickup in which the direction of the optical axis is switched by rotating a retardation plate depending on whether the recording medium is a magneto-optical disk or a write-once disk, A rotating member having the retardation plate is fixed to one of the outer ring and the inner ring of a ball bearing having a relatively rotatable outer ring and an inner ring, and the other of the outer ring and the inner ring is fixed to the optical pickup main body, and the above-mentioned A permanent magnet and a yoke are arranged at regular intervals near the rotating member to form a magnetic field in a direction substantially perpendicular to the rotating surface of the rotating member. and a coil wound so that a current flows substantially perpendicular to the direction of the magnetic field is fixed so that the coil generates a thrust in a direction perpendicular to the direction of the magnetic field and the direction of the current, respectively. A magneto-optical/write-once optical pickup that is characterized by the following:
JP63185077A 1988-04-05 1988-07-25 Optical pickup using for magneto-optical disk also for draw type disk Pending JPH0235641A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63185077A JPH0235641A (en) 1988-07-25 1988-07-25 Optical pickup using for magneto-optical disk also for draw type disk
US07/332,749 US5070494A (en) 1988-04-05 1989-04-03 Optical pickup device with dual-mode drive mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63185077A JPH0235641A (en) 1988-07-25 1988-07-25 Optical pickup using for magneto-optical disk also for draw type disk

Publications (1)

Publication Number Publication Date
JPH0235641A true JPH0235641A (en) 1990-02-06

Family

ID=16164416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63185077A Pending JPH0235641A (en) 1988-04-05 1988-07-25 Optical pickup using for magneto-optical disk also for draw type disk

Country Status (1)

Country Link
JP (1) JPH0235641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159402A (en) * 1991-12-04 1993-06-25 Sanyo Electric Co Ltd Optical recorder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159402A (en) * 1991-12-04 1993-06-25 Sanyo Electric Co Ltd Optical recorder

Similar Documents

Publication Publication Date Title
US5070494A (en) Optical pickup device with dual-mode drive mechanism
US5712842A (en) Optical pick-up device
JP3048912B2 (en) Optical head device
JP2539350B2 (en) Optical head device
JPS5826336A (en) Recorder and reproducer of magnetooptic recording system
JP2008243282A (en) Optical information recording and reproducing device
JP3726979B2 (en) Optical pickup
JPWO2002063621A1 (en) Optical device and optical storage device
JPH06101153B2 (en) Signal detector for magneto-optical disk
JPH0235641A (en) Optical pickup using for magneto-optical disk also for draw type disk
JPH07121901A (en) Optical pickup apparatus
JP2978269B2 (en) Optical disk drive
JP4160160B2 (en) Optical head device
JP3477365B2 (en) Galvano mirror holding structure
JP2624460B2 (en) Magneto-optical information recording / reproducing device
JPH0230095B2 (en)
JPH01258251A (en) Optical pickup device used for magneto-optical and draw type devices
JPS62124641A (en) Optical magnetic information recording and reproducing device
JPH03116546A (en) Information recording and reproducing device
JPS61273755A (en) Optical head
JPH11250489A (en) Optical pickup optical system
JPH116915A (en) Optical parts and optical pickup using the same
JPH09198680A (en) Biaxial actuator and optical disk device
JPH04291044A (en) Optical information reproducing device
JPH0386953A (en) Magneto-optical recording and reproducing device