JPH0235554B2 - DENRYOKUHENKANSOCHINOSEIGYOSOCHI - Google Patents

DENRYOKUHENKANSOCHINOSEIGYOSOCHI

Info

Publication number
JPH0235554B2
JPH0235554B2 JP4480583A JP4480583A JPH0235554B2 JP H0235554 B2 JPH0235554 B2 JP H0235554B2 JP 4480583 A JP4480583 A JP 4480583A JP 4480583 A JP4480583 A JP 4480583A JP H0235554 B2 JPH0235554 B2 JP H0235554B2
Authority
JP
Japan
Prior art keywords
power supply
period
output voltage
pulse
switching means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4480583A
Other languages
Japanese (ja)
Other versions
JPS59169365A (en
Inventor
Akio Kataoka
Kazuto Kawakami
Toshiaki Kurosawa
Akiteru Ueda
Hiromi Inaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4480583A priority Critical patent/JPH0235554B2/en
Publication of JPS59169365A publication Critical patent/JPS59169365A/en
Publication of JPH0235554B2 publication Critical patent/JPH0235554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電力変換装置に係り、特に電源の第5
次又は第7次高調波を低減した電力変換装置に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a power conversion device, and particularly to a fifth
The present invention relates to a power conversion device that reduces the next or seventh harmonic.

〔発明の背景〕[Background of the invention]

従来、サイリスタ等を用いて交流電源から直流
電圧を得る電力変換装置は一般に力率が悪い欠点
があつたが、近年トランジスタやゲート、ターン
オフ、サイリスタ(GTO)等の電流遮断機能を
用いた制御素子(以下、トランジスタをも含めて
GTOと呼称する)を用い力率を改善できる電力
変換装置が提案されている。
Conventionally, power converters that obtain DC voltage from AC power sources using thyristors, etc. generally have the disadvantage of poor power factor, but in recent years, control elements using current interrupting functions such as transistors, gates, turn-offs, and thyristors (GTO) have been developed. (Hereinafter, including transistors)
A power conversion device that can improve the power factor using a GTO (referred to as GTO) has been proposed.

その1の方法として第1図に示す回路構成があ
る。第1図におい、EU〜EWは交流電源、lS,rS
電源側のインダクタンス、抵抗、G1〜G6
GTO、D1〜D6は逆電圧阻止用ダイオード(GTO
自身が逆電圧の阻止能力を有する場合は省略でき
る)、L,RLは負荷側のインダクタンス、抵抗、
1は電流指令ICと直流帰還電流INFとの偏差を求め
る比較器、2は偏差入力と電源電圧の情報fSから
各GTOにゲート信号を与える、ゲート信号発生
装置である。
One method is the circuit configuration shown in FIG. In Figure 1, E U to E W are AC power supplies, l S and r S are inductance and resistance on the power supply side, and G 1 to G 6 are
GTO, D 1 to D 6 are reverse voltage blocking diodes (GTO
(Can be omitted if the device itself has reverse voltage blocking ability), L and R L are the inductance and resistance on the load side,
1 is a comparator that determines the deviation between the current command IC and the DC feedback current INF , and 2 is a gate signal generator that provides a gate signal to each GTO from the deviation input and power supply voltage information fS .

この回路構成で、たとえば、第2図で示すよう
なU相電圧EUのとき、第1図のGTO G5に常に
ゲートパルスを与えG5を導通させておき、GTO
G1及びG2を開閉する、G1が導通すればEU−LS
rS−G1−D1−L−RL−D5−G5−rS−LS−EVの電
路によつて電源電圧は負荷(L−RL)に供給さ
れ、G1が遮断、G2が導通すれば負荷のインダク
タンスLによりL−RL−D5−G5−G2−D2−Lの
電路で環流電流が流れ電源電流は流れない。この
ような動作をパルス周期TCで電源供給期間λTC
(λは通流率)を等間隔で繰返し制御すると、1
相当りの電源電流ISは第2図に示すようになる。
With this circuit configuration, for example, when the U-phase voltage EU is as shown in Figure 2, a gate pulse is always applied to GTO G5 in Figure 1 to keep G5 conductive, and GTO
G 1 and G 2 open and close; if G 1 conducts, E U − L S
The power supply voltage is supplied to the load (L-R L ) by the electric path r S −G 1 −D 1 −L−R L −D 5 −G 5 −r S −L S −EV , and G 1 If G 2 is cut off and conductive, a circulating current flows in the electrical path L-R L -D 5 -G 5 -G 2 -D 2 -L due to the inductance L of the load, and no power supply current flows. This kind of operation is performed with a pulse period T C and a power supply period λT C
(λ is the conductivity) is controlled repeatedly at equal intervals, 1
The corresponding power supply current IS is as shown in FIG.

上記のように構成された装置では、電源供給期
間λTCすなわち通流率λを調整すれば電力変換装
置の出力電圧を制御することができ、又電源電圧
EUに対して電源電流ISの基本波成分を一致させる
ことにより基本波力率も1となるように調整され
るから高力率電力変換装置が得られる。
In the device configured as described above, the output voltage of the power conversion device can be controlled by adjusting the power supply period λTC , that is, the conduction rate λ, and the power supply voltage
By matching the fundamental wave component of the power supply current IS with respect to EU , the fundamental wave power factor is also adjusted to 1, so that a high power factor power converter can be obtained.

しかしながら、上記のように電源供給期間を等
間隔で与える方式では電源電流ISは矩形波状にな
るので高調波電流が大きくなり、たとえばパルス
周期TCを電源電圧の半周期を6分割した場合の
電源電流の第5次、第7次高調波成分I5、I7は基
本波成分I1に対して、第3図に示すように通流率
λにより変化するが、おおむね20%程度発生す
る。
However, when the power supply period is given at equal intervals as described above, the power supply current I S becomes a rectangular waveform, so the harmonic current becomes large. The 5th and 7th harmonic components I 5 and I 7 of the power supply current vary with the conduction rate λ as shown in Figure 3, but they occur approximately 20% of the fundamental wave component I 1 . .

第5次又は第7次のように低次の高調波をフイ
ルタで低減することは、さらに高次の高調波を低
減するのに比べ困難である。又、並設装置への障
害や、負荷として電動機が接続された場合の電磁
音の発生という問題があり好ましくない。
It is more difficult to reduce lower harmonics such as the 5th or 7th order with a filter than to reduce higher harmonics. Further, there are problems such as interference with the parallel equipment and generation of electromagnetic noise when an electric motor is connected as a load, which is undesirable.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みてなされたもので、その目
的とするところは、第5次又は第7次の高調波電
流成分を低減できる電力変換装置の制御装置を提
供することである。
The present invention has been made in view of the above, and an object of the present invention is to provide a control device for a power conversion device that can reduce fifth-order or seventh-order harmonic current components.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、全アームに接続したGTOの
正側および負側の一方の側の1つのGTOと他方
の側の2つのGTOを出力電圧の大きさに応じて
制御して、電源電流をより正弦波に近づけるよう
にしたものである。
A feature of the present invention is that one GTO on one side of the positive side and the negative side of the GTO connected to all arms and two GTOs on the other side are controlled according to the magnitude of the output voltage to control the power supply current. This makes it more similar to a sine wave.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に従い説明する。 Hereinafter, the present invention will be explained according to examples.

第1図に示した全波整流回路の各GTOに第4
図で示すゲート信号をG1〜G6に印加(黒色部が
GTO導通期間を示す)するものとする。なお、
パルス同期は、電源周波数Sと電源の半周期当り
の分割数Nとしたとき、TC=1/(2・S・N)
で表わされる時間である。
A fourth
Apply the gate signal shown in the figure to G 1 to G 6 (the black part is
(indicates the GTO conduction period). In addition,
For pulse synchronization, when the power supply frequency S and the number of divisions per half cycle of the power supply are N, T C = 1/(2・S・N)
It is the time expressed as .

電源電圧波形の斜線部は直流出力電圧波形で、
パルス周期TCの中央部に出力電圧発生期間λTC
が位置する。
The shaded part of the power supply voltage waveform is the DC output voltage waveform,
The output voltage generation period λT C is at the center of the pulse period T C
is located.

このとき、図で示したように各GTOにゲート
信号を加えGTOの導通、遮断を行うと、W相電
圧が正の期間での各相電源電流ISは図に示すよう
に不等パルスとなり、より正弦波に近づくように
制御される。なお通流期間T1、T2、T3は次の関
係とする。
At this time, if a gate signal is applied to each GTO to turn it on or off as shown in the figure, the power supply current I S for each phase during the period when the W-phase voltage is positive becomes an unequal pulse as shown in the figure. , is controlled to be closer to a sine wave. Note that the flow periods T 1 , T 2 , and T 3 have the following relationship.

ここで、λは通流率、αは分担率であり以下に
説明する。
Here, λ is the conduction rate and α is the sharing rate, which will be explained below.

第4図で示した動作を、第5図を用いて、さら
に詳細に説明する。
The operation shown in FIG. 4 will be explained in more detail using FIG. 5.

第5図は、第4図で示したパルス周期TC1
TC3の期間の直流出力電圧W相のみの電源電流を
示したものである。図に示すようにパルス周期
TCの中央部に出力電圧が発生する期間λTCがあ
り、TC1及びTC3の終端部より前後に分担期間αTC
がある。
Figure 5 shows the pulse period T C1 ~ shown in Figure 4.
It shows the power supply current of only the DC output voltage W phase during the period T C3 . Pulse period as shown in figure
There is a period λT C in which the output voltage is generated in the center of T C , and a shared period αT C before and after the terminal parts of T C1 and T C3 .
There is.

第4図で述べたゲートパルス印加の関係より、
第5図で示すt0〜t12の期間の出力電圧及びW相の
電源電流を説明すれば次のようになる。
From the relationship of gate pulse application described in Fig. 4,
The output voltage and W-phase power supply current during the period t 0 to t 12 shown in FIG. 5 will be explained as follows.

t0〜t1の期間、G2とG5が導通状態であり環流と
なり出力電圧、電源電流ともに零。
During the period from t 0 to t 1 , G 2 and G 5 are in a conductive state, causing free circulation, and both the output voltage and power supply current are zero.

t1〜t1の期間、G2とG4が導通状態であり、出力
電圧はV−U線間電圧、W相電源電流は零。
During the period from t1 to t1 , G2 and G4 are in a conductive state, the output voltage is the V-U line voltage, and the W-phase power supply current is zero.

t2〜t3の期間、G3とG4が導通状態であり、出力
電圧はW−U線間電圧、W相電源電流が流れる。
During the period from t2 to t3 , G3 and G4 are in a conductive state, the output voltage is the W-U line voltage, and the W-phase power supply current flows.

t3〜t4〜t5の期間、G1とG4が導通状態であり環
流となり出力電圧、電源電流ともに零。
During the period from t 3 to t 4 to t 5 , G 1 and G 4 are in a conductive state, causing free circulation, and both the output voltage and power supply current are zero.

t5〜t6の期間、G2とG4が導通状態であり、出力
電圧はV−U線間電圧、W相電源電流は零。
During the period from t5 to t6 , G2 and G4 are in a conductive state, the output voltage is the V-U line voltage, and the W-phase power supply current is zero.

t6〜t7の期間、G3とG4が導通状態であり、出力
電圧はW−U線間電圧、W相電源電流が流れる。
During the period from t6 to t7 , G3 and G4 are in a conductive state, the output voltage is the W-U line voltage, and the W-phase power supply current flows.

t7〜t9の期間、G1とG4が導通状態であり環流と
なり出力電圧、電源電流ともに零。
During the period from t 7 to t 9 , G 1 and G 4 are in a conductive state, causing free circulation, and both the output voltage and power supply current are zero.

t9〜t10の期間、G3とG4が導通状態であり、出
力電圧はW−U線間電圧、W相電源電流が流れ
る。
During the period from t9 to t10 , G3 and G4 are in a conductive state, the output voltage is the W-U line voltage, and the W-phase power supply current flows.

t10〜t11の期間、G3とG5が導通状態であり、出
力電圧はW−V線間電圧、W相電源電流が流れ
る。
During the period from t10 to t11 , G3 and G5 are in a conductive state, the output voltage is the W-V line voltage, and the W-phase power supply current flows.

t11〜t12の期間、G3とG6が導通状態であり環流
となり出力電圧、電源電流ともに零。
During the period from t 11 to t 12 , G 3 and G 6 are in a conductive state, causing free circulation, and both the output voltage and power supply current are zero.

さらにTC4以降及び他相の電源電流の関係は第
4図の関係より容易に理解できよう。
Furthermore, the relationship between the power supply currents after T C4 and other phases can be easily understood from the relationship shown in Figure 4.

以上述べたように、各パルス周期TC中には直
流出力を発生する期間λTCと、このλTC期間中に
1相の電源電流に着目し、分担期間αTCの設定に
よりその相電流をより正弦波に近づけるように電
源電流の通流期間T1、T2、T3を制御して高調波
の低減を図る。
As mentioned above, during each pulse period T C , we focus on the period λT C in which DC output is generated and the power supply current of one phase during this λT C period, and the phase current can be controlled by setting the sharing period αT C. The harmonics are reduced by controlling the power supply current conduction periods T 1 , T 2 , and T 3 so as to approximate a sine wave more closely.

このとき、出力電圧の大きさ、すなわち通流率
λの大きさに対して分担率αを最適に制御して(1)
式に示した関係で電源の通流期間T1、T2、T3
調整すれば、特定の高調波成分を発生させないよ
うにできる。
At this time, the sharing ratio α is optimally controlled with respect to the magnitude of the output voltage, that is, the magnitude of the conduction ratio λ.(1)
By adjusting the power supply conduction periods T 1 , T 2 , and T 3 according to the relationship shown in the equation, it is possible to prevent generation of specific harmonic components.

実験によれば、第5次又は第7次の高調波を低
減するにはλに対するαの関係を第6図の点線で
示すαI5=0又はαI7=0の特性とすればよいこと
が知られた。αI5=0の特性、λが0のときαを
0.5、λが1.0のときαを約0.4と可変する曲線を用
いれば第5次高調波成分を零にでき、又αI7=0
の特性、λが0のときαを0.5、λが1.0のときα
を約0.3と可変する曲線を用いれば第7次高調波
成分を零になるように制御できる。
According to experiments, in order to reduce the 5th or 7th harmonics, the relationship between α and λ should be set to α I5 = 0 or α I7 = 0, as shown by the dotted line in Figure 6. known. Characteristics of α I5 = 0, when λ is 0, α is
0.5, and when λ is 1.0, the 5th harmonic component can be made zero by using a curve that varies α to about 0.4, and α I7 = 0
When λ is 0, α is 0.5, and when λ is 1.0, α is the characteristic of
By using a curve that varies the value to about 0.3, it is possible to control the seventh harmonic component to zero.

又、他の方法として、第5次及び第7次高調波
成分をともに零とすることはできないが両方の高
調波成分を共に大巾な低減を図ることができる。
As another method, although it is not possible to reduce both the 5th and 7th harmonic components to zero, it is possible to significantly reduce both harmonic components.

第6図において実線で示すmの曲線、λが0の
ときαを0.5、λが1.0のときαを約0.35と可変す
る曲線を用いれば、第5次、第7次高調波
(I5/I1)、(I7/I1)は第6図に示したようになり、
両 高調波とも零にすることはできないが8%程度に
なり、従来に比較して1/3に改善できることが知
られた。
If we use the m curve shown by the solid line in Figure 6, which is a curve in which α is varied to 0.5 when λ is 0 and α is approximately 0.35 when λ is 1.0, the fifth and seventh harmonics (I 5 / I 1 ), (I 7 /I 1 ) are as shown in Figure 6,
Although it is not possible to reduce both harmonics to zero, it is known that they can be reduced to about 8%, which is an improvement to 1/3 compared to the conventional method.

このように通流率λの大きさに対して分担率α
を最適に可変すれば、特定の高調波成分を低減す
ることができる。
In this way, for the magnitude of conductivity λ, the sharing rate α
By optimally varying , specific harmonic components can be reduced.

それでは次に具体的にどのような回路でパルス
発生制御が実現するのかを第7図以後で説明す
る。第7図はゲート信号発生装置2の構成を詳細
に示した図である。210は電流偏差によつて定
まる通流率λを入力として分担率αを出力とする
λ−αデータテーブルであり、ここではλに対し
て高調波が最小になるようにαは第6図で示す関
係が採用される。入出力関係は入力をアドレス端
子に、出力をデーター端子に接続してなるリード
オンリーメモリである。このように通流率λと分
担率αの関係をテーブル化しておくことによつ
て、電流指令によつて通流率が決つた時、この通
流率を元に演算することなく、直ちに分担率αを
得ることができる。そのため、即応性が良く、電
流指令が変つても、高調波をほとんど含まない出
力を直ちに得ることができる。220は同期電源
Sを入力としてカウンタ230,240にクロツ
ク、UPカウントかDNカウントかを示すフラグを
出力するクロツク&タイミングパルスジエネレー
ターである。カウンタ230,240はクロツ
ク、カウント方向以外にλとαという情報をそれ
ぞれ入力し、第8図のPL1、PL2、PA1、PA2のよう
な波形を発生させる。つまり時点A0で4コのカ
ウンタ(230,240の中にそれぞれ2つのカ
ウンタが入つている)にデータとして1−λ/2 TC、1+λ/2TC、αTC、(1−α)TCの時間に相 当するデータをセツトして起動すると、それぞれ
のカウンタはA1、A4、A2、A3でカウント終了し
て出力は“0”から“1”に変化し搬送波周期間
は値を保持し、時点A5で又同様の動作をくり返
す、つまり第8図には2周期分の波形を示した。
このλとαの情報より作成されるPL1、PL2、PA1
PA2はゲートパルスパターンを作成するための材
料となる信号であり、構成器250に入力されて
いる。
Next, what kind of circuit specifically implements pulse generation control will be explained with reference to FIG. 7 and subsequent figures. FIG. 7 is a diagram showing the configuration of the gate signal generator 2 in detail. 210 is a λ-α data table in which the conduction rate λ determined by the current deviation is input and the sharing ratio α is output. Here, α is set as shown in FIG. The relationship shown is adopted. The input/output relationship is a read-only memory where the input is connected to the address terminal and the output is connected to the data terminal. By creating a table of the relationship between the conduction rate λ and the distribution rate α in this way, when the conduction rate is determined by the current command, it is possible to immediately divide the conduction rate without calculating it based on the conduction rate. The rate α can be obtained. Therefore, it has good responsiveness, and even if the current command changes, an output containing almost no harmonics can be immediately obtained. 220 is a synchronous power supply
This is a clock and timing pulse generator that receives S as an input and outputs a clock to counters 230 and 240 and a flag indicating whether it is an UP count or a DN count. Counters 230 and 240 input information λ and α in addition to the clock and counting direction, respectively, and generate waveforms such as P L1 , P L2 , P A1 , and P A2 in FIG. 8. In other words, at time point A 0 , data 1-λ/2 T C , 1+λ/2 T C , αT C , (1-α) T are stored in four counters (two counters each in 230 and 240). When data corresponding to time C is set and started, each counter finishes counting at A 1 , A 4 , A 2 , and A 3 , the output changes from “0” to “1”, and the carrier frequency period changes. The value is held and the same operation is repeated again at time point A5 . That is, FIG. 8 shows waveforms for two cycles.
P L1 , P L2 , P A1 , created from this λ and α information,
P A2 is a signal used as a material for creating a gate pulse pattern, and is input to the configurator 250.

250はPL1、PL2、PA1、PA2の4信号を入力と
して第8図のA、B、C、…、X、Yの11種類の
ゲートパルスパターンを作成する論理回路であ
る。この11種類のゲートパルスパターンがあれ
ば、その中からある規則に従つてGTOにパター
ンを与えるようにセレクタを動作させればよいの
である。この構成器250で作成したゲートパル
スパターンをどのように与えるかの例を第9図に
示した。パターンを見るとGTO2はGTO1に対
して、GTO3はGTO2に対して120°遅れのゲー
トパルスパターンがくり返され、GTO5はGTO
4に対して、GTO6はGTO5に対して120°遅れ
のゲートパルスパターンがくり返されていること
がわかる。この構成器250は第10図に示すよ
うにλ、αによつて作られるPL1、PL2、PA1、PA2
を入力としてゲートパルスパターンを作成するか
らλとαが変化した場合、A、B、C、…、X、
Yの信号も変化する。従つて第8図はあるα、λ
に関するゲートパルスパターンの例を示したこと
になる。このゲートパルスパターンがたとえば第
9図の下部に示すような順序でG1〜G6に印加さ
れればよいことになる。このゲートパルスパター
ンの選択を第11図に示した分配器260内のセ
レクタ261〜266で行う。セレクタの出力は
G1〜G6のゲートに接続され、入力は構成器25
0で作成されたゲートパルスパターンA,B,
C,…,X,Yを第12図aに示すようにあらか
じめ順序づけて各セレクタ261〜266のデー
タインプツト端子E0〜E14に入力しておく。各セ
レクタ261〜266の各インプツト端子にあら
かじめ順序づけてゲートパルスパターンを接続す
るのはセレクト端子からのパルスパターンの選択
を容易にするためのくふうである。各セレクタ2
61〜266のセレクト端子A0〜A3には後述す
る指示器268のセレクトデータD0〜D7が接続
されている。
250 is a logic circuit that receives four signals P L1 , P L2 , P A1 , and P A2 as input and creates 11 types of gate pulse patterns A, B, C, . . . , X, Y shown in FIG. If you have these 11 types of gate pulse patterns, all you have to do is operate the selector to give a pattern to the GTO according to a certain rule. FIG. 9 shows an example of how to provide the gate pulse pattern created by this constructor 250. Looking at the patterns, GTO2 repeats the gate pulse pattern delayed by 120 degrees relative to GTO1, GTO3 repeats the gate pulse pattern delayed by 120 degrees relative to GTO2, and GTO5 repeats the gate pulse pattern delayed by 120° relative to GTO2.
It can be seen that in contrast to GTO 4, the gate pulse pattern of GTO 6 is repeated with a delay of 120° relative to GTO 5. As shown in FIG .
Create a gate pulse pattern with input as input, so if λ and α change, A, B, C, ..., X,
The Y signal also changes. Therefore, Fig. 8 shows certain α, λ
This shows an example of a gate pulse pattern for . This gate pulse pattern may be applied to G 1 to G 6 in the order shown in the lower part of FIG. 9, for example. Selection of this gate pulse pattern is performed by selectors 261 to 266 in the distributor 260 shown in FIG. The output of the selector is
Connected to the gates of G 1 to G 6 , the input is the configurer 25
Gate pulse patterns A, B, created with 0
C, . . . , The gate pulse patterns are connected in advance to the input terminals of the selectors 261 to 266 in order to facilitate the selection of pulse patterns from the select terminals. Each selector 2
Select terminals A0 to A3 of 61 to 266 are connected to select data D0 to D7 of an indicator 268, which will be described later.

次にセレクトデータD0〜D7がどのように作成
されるかを示す。セレクトデータは同期電源から
の時間経過情報を作成する指示器268とこの時
間経過情報を入力として各時点で各セレクタ26
1〜266のどの入力パルスパターンをGTOの
ゲートに与えるかを対応づけて記憶してある決定
器267によつて作られる。同期電源からの時間
経過情報を作成する指示器268について説明し
よう。指示器268は同期電源fSを入力し、同期
電源の1周期を12のパルス周期TCに分割し、か
つ12のうちどのパルス周期内に現在の状態が入つ
ているのかをQA〜QDとfSで示す働きをしている。
この指示器の出力波形QA〜QDを示せば第13図
のようになる。
Next, how the select data D 0 to D 7 are created will be explained. The selection data includes an indicator 268 that creates time elapsed information from the synchronous power source, and each selector 26 at each point in time with this time elapsed information as input.
It is generated by a determiner 267 which stores which input pulse pattern from 1 to 266 is to be applied to the gate of the GTO in association with each other. Let us now describe the indicator 268 that creates time elapsed information from the synchronous power supply. The indicator 268 inputs the synchronous power supply fS , divides one cycle of the synchronous power supply into 12 pulse cycles TC , and indicates in which of the 12 pulse cycles the current state is included QA to Q. D and f have the functions shown by S.
The output waveforms Q A to Q D of this indicator are shown in FIG. 13.

次に決定器267について説明する。決定器は
数10バイトのROM1コである。すなわち第14
図に示すようにROMのアドレス入力はQA〜QD
fSの5本であり、出力であるデータバスD0〜D7
8本はセレクタ261〜266のセレクト端子
A0〜A3に接続する。この間の接続については第
12図bのような手順に従えばよい。セレクタの
セレクト情報がこのように簡単化できた原因はデ
ータセレクタ261〜266のデータインプツト
E0〜E14の端子に接続するゲートパルスパターン
を261〜266ですべて同一とするのではな
く、120°ごとのくり返しをあらかじめ考慮して接
続している点にある。
Next, the determiner 267 will be explained. The decider is a ROM of several 10 bytes. That is, the 14th
As shown in the figure, the ROM address input is Q A ~ Q D ,
There are five data buses f S , and eight output data buses D 0 to D 7 are select terminals of selectors 261 to 266.
Connect to A 0 ~ A 3 . For connection during this period, the procedure shown in FIG. 12b may be followed. The reason why the selection information of the selector was simplified in this way is the data input of data selectors 261 to 266.
The gate pulse pattern connected to the terminals E 0 to E 14 is not all the same for 261 to 266, but the gate pulse pattern is connected by taking into consideration the repetition every 120 degrees in advance.

それでは第9図、第12図〜第14図を用いて
具体的にゲートパルスパターンが選択される順を
示す。第13図で同期電源が0になつた瞬間はfS
=QA=QB=QC=QD=0であるから第14図の
ROMアドレス入力はすべて0、従つて出力はD0
〜D7まですべて0、従つて第12図に示すよう
にセレクタ261〜266のA0〜A3はすべて0
入力だから、セレクタのデータインプツトE0
E14のうちE0の信号がセレクタの出力となる。す
なわちセレクタ261からはパルスパターンの
“F”が、262からは“B”が263からは
“Q”、264からは“Y”、265からは
“Y”、266からは“X”が出力される。これ
は第9図のゲートパルスパターン表の先頭の状態
を示している。次に電源半周期を6分割した第1
のパルス期間が経過すると第13図よりQAだけ
が1となりその他は前と同じ状態となつている。
するとROMデータ出力はD0〜D3=1(4桁の2
進数)、D4〜D7=1(4桁の2進数)すなわちD0
=D4=1、D1=D2=D3=D5=D6=D7=0とな
り、セレクタのインプツト端子のE1がそれぞれ
選択されパルスパターンとしては261について
は“Y”、262について“C”、263につい
て“R”、264について“A”、265につい
て“P”、266について“D”が出力される。
これは第9図の2番目のパルス周期々間のパルス
パターン表と一致している。次に6分割した第2
のパルス周期々間が終了すると指示器出力は第1
1図よりQB=1、QA=QC=QD=fS=0となり、
第12図よりD0〜D3は3すなわちD0=D1=1、
D2=D3=0、D4〜D7は2すなわちD5=1、D4
D6=D7=0となり、第12図bよりセレクタ2
61〜263についてはそれぞれのインプツト端
子E2が、セレクタ264〜266についてはそ
れぞれのインプツト端子E3が選択される。同図
aよりセレクタ261の出力は“Y”、262は
“X”、263は“Y”、264は“B”、26
5は“Q”、266は“F”となり第5図の3番
目のパルス周期々間のパルスパターン表と対応す
る。
Now, the order in which gate pulse patterns are selected will be specifically shown using FIGS. 9 and 12 to 14. In Figure 13, the moment when the synchronous power supply becomes 0 is f S
=Q A =Q B =Q C =Q D =0, so in Figure 14
All ROM address inputs are 0, so the output is D 0
~ D7 are all 0, so as shown in FIG. 12, A0 ~ A3 of selectors 261~266 are all 0.
Since it is an input, selector data input E 0 ~
The signal of E 0 among E 14 becomes the output of the selector. That is, the pulse pattern "F" is output from the selector 261, "B" from 262, "Q" from 263, "Y" from 264, "Y" from 265, and "X" from 266. Ru. This shows the state at the beginning of the gate pulse pattern table in FIG. Next, the first half cycle of the power supply is divided into six.
After the pulse period elapses, as shown in FIG. 13, only Q A becomes 1, and the other states remain the same as before.
Then, the ROM data output is D 0 ~ D 3 = 1 (4 digits 2
D 4 to D 7 = 1 (4-digit binary number), i.e. D 0
= D 4 = 1, D 1 = D 2 = D 3 = D 5 = D 6 = D 7 = 0, and E 1 of the input terminal of the selector is selected, and the pulse patterns are "Y" for 261 and "Y" for 262. "C" is output for 263, "A" for 264, "P" for 265, and "D" for 266.
This is consistent with the pulse pattern table for the second pulse period in FIG. Next, the second part divided into six
When the pulse period ends, the indicator output changes to the first
From Figure 1, Q B = 1, Q A = Q C = Q D = f S = 0, and
From FIG. 12, D 0 to D 3 are 3, that is, D 0 =D 1 =1,
D 2 = D 3 = 0, D 4 to D 7 are 2, that is, D 5 = 1, D 4 =
D 6 =D 7 =0, and from Figure 12b, selector 2
For selectors 61-263, respective input terminals E2 are selected, and for selectors 264-266, respective input terminals E3 are selected. From the figure a, the output of selector 261 is "Y", 262 is "X", 263 is "Y", 264 is "B", 26
5 is "Q" and 266 is "F", which correspond to the pulse pattern table for the third pulse period in FIG.

以上説明した通りあらかじめ指令λ、αに応じ
てGTOのパルス信号として使用する可能性のあ
る複数のゲートパルスパターンを発生する論理回
路を設け、この出力であるパターン信号をどの時
点でどのパターンをどのGTOに与えるのかを
ROMにテーブル化しておくので、ゲート回路に
与える情報としてはλと同期電源だけの単純な回
路構成とすることができたので 1 λに対してゲートパルスパターンをテーブル
化して持ち、これを選択しながら制御する方式
と比較してROM容量と処理時間がすぐれてい
ること。
As explained above, a logic circuit that generates multiple gate pulse patterns that may be used as GTO pulse signals according to the commands λ and α is provided in advance, and the output pattern signal is used at which point and in what pattern. What to give to GTO
Since the information given to the gate circuit is made into a table in the ROM, it is possible to have a simple circuit configuration with only λ and a synchronous power supply. Therefore, we have a table of gate pulse patterns for 1 λ and select this. ROM capacity and processing time are superior compared to methods that control the

2 ゲートパルスパターンの選択に関してセレク
タへの入力をあらかじめ順序化してあるのでパ
ターンの決定ROMテーブルが単純であるこ
と。
2. The pattern determination ROM table is simple because inputs to the selector are pre-sequenced for gate pulse pattern selection.

3 GTOの点弧順序の判定とモードパルスの選
択を割込み処理のたびにマイコンに行わせる方
式と比較して負荷率と信頼性の点ですぐれてい
ること。
3. Superior in terms of load factor and reliability compared to a method in which the microcontroller determines the firing order of the GTO and selects the mode pulse every time an interrupt is processed.

などの点で利点がある。There are advantages in such points.

以上の説明では力行の場合についてのべたが、
回生を行う必要のある場合については同期電源を
反転させるために180°位相をずらす処理を行えれ
ばよい。
In the above explanation, we talked about the case of power running, but
When it is necessary to perform regeneration, it is sufficient to perform processing to shift the phase by 180° in order to reverse the synchronous power supply.

さらにここでは電源半周期を6分割した場合の
制御例についてのべたが、12分割して負荷に対す
る脈動率を低減させることも容易に実現すること
ができる。この変更に関しては指示器268の周
期を上げることと決定器267のROM内容を追
加することで対応でき、ゲートパルスパターンを
作成する構成器などを変更することなく実現でき
る。なおROM内容は2倍となるがその絶対量は
たかだか24バイトになるだけで実際の問題とはな
り得ない。第15図はパルスの分割数を6から12
に上げた場合の実験結果である。
Furthermore, although a control example has been described here in which the half cycle of the power supply is divided into six, it is also possible to easily reduce the pulsation rate with respect to the load by dividing it into twelve. This change can be handled by increasing the period of the indicator 268 and adding the ROM contents of the determiner 267, and can be realized without changing the component that creates the gate pulse pattern. Note that although the ROM content is doubled, the absolute amount is only 24 bytes at most, so this is not an actual problem. Figure 15 shows the number of pulse divisions from 6 to 12.
These are the experimental results when the temperature was increased to .

〔発明の効果〕〔Effect of the invention〕

以上、述べたように本発明によれば、外部フイ
ルタ等によつて低減の困難な低次の高調波電流を
電力変換装置自体で解決できるので、電源歪の改
善が図れ、並列装置への障害や負荷として電動機
を用いた場合の電磁音等の低減を図れる効果があ
る。
As described above, according to the present invention, the power conversion device itself can solve the problem of low-order harmonic currents that are difficult to reduce with external filters, etc., so power supply distortion can be improved and disturbances to parallel devices can be solved. This has the effect of reducing electromagnetic noise, etc. when an electric motor is used as a load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する電力変換装置の全体
構成図、第2図および第3図は従来の動作説明
図、第4図〜第15図は本発明の説明図であつ
て、第4図〜第6図は本発明の動作原理説明図、
第7図はゲート信号発生装置の一実施例、第8図
および第9図は動作説明図、第10図は構成器の
一実施例、第11図は分配器の一実施例、第12
図〜第15図は動作説明図である。 G1〜G6……電流遮断機能を有する開閉素子、
2……ゲート信号発生装置、210……λ−αテ
ーブル、220……クロツク&タイミングパルス
ジエネレータ、230……λ用カウンタ、240
……α用カウンタ、250……構成器、260…
…分配器。
FIG. 1 is an overall configuration diagram of a power converter to which the present invention is applied, FIGS. 2 and 3 are explanatory diagrams of conventional operation, and FIGS. 4 to 15 are explanatory diagrams of the present invention. 6 to 6 are diagrams explaining the operating principle of the present invention,
FIG. 7 is an embodiment of the gate signal generator, FIGS. 8 and 9 are operation explanatory diagrams, FIG. 10 is an embodiment of the configurator, FIG. 11 is an embodiment of the distributor,
Figures 1 to 15 are explanatory diagrams of the operation. G 1 ~ G 6 ...Switching element with current cutoff function,
2... Gate signal generator, 210... λ-α table, 220... Clock & timing pulse generator, 230... λ counter, 240
...Counter for α, 250...Configurator, 260...
…Distributor.

Claims (1)

【特許請求の範囲】[Claims] 1 交流電源と、この交流電源に接続され、正側
および負側の全アームに電流遮断機能を有する開
閉手段を用いた全波整流回路、前記交流電源の半
周期を等分割したパルス周期ごとに出力電圧を発
生する期間を制御する回路、この出力電圧を上記
全波整流回路の正側および負側の一方の側の1つ
の開閉手段と他方の側の2つの開閉手段を用いて
制御するものにおいて、上記出力電圧が発生して
いる期間と上記パルス周期との割合である通流率
から上記他方の側の2つの開閉手段によつて通電
する分担率に変換するテーブルを備え、このテー
ブルは、通流率が0のとき分担率を0.5に、通流
率が1.0のとき分担率を0.3〜0.4の間となる曲線の
関係に通流率に対する分担率を設定しており、上
記出力電圧に応じて上記テーブルより通流率に対
応した分担率を得て上記他方の側の2つの開閉手
段の通電の分担が変えられるようになつているこ
とを特徴とする電力変換装置の制御装置。
1. An AC power supply, a full-wave rectifier circuit connected to this AC power supply, and using a switching means having a current cutoff function on all positive and negative arms, for each pulse period obtained by equally dividing the half cycle of the AC power supply. A circuit that controls the period for generating an output voltage, and this output voltage is controlled using one switching means on one side of the positive side and the negative side of the full-wave rectifier circuit, and two switching means on the other side. The table includes a table for converting a current conduction rate, which is a ratio between the period during which the output voltage is generated and the pulse period, to a sharing ratio of energization by the two switching means on the other side; When the conduction rate is 0, the distribution rate is set to 0.5, and when the conduction rate is 1.0, the distribution rate is set between 0.3 and 0.4. A control device for a power conversion device, characterized in that the distribution of energization of the two switching means on the other side can be changed by obtaining a distribution rate corresponding to the conduction rate from the table in accordance with the above table.
JP4480583A 1983-03-16 1983-03-16 DENRYOKUHENKANSOCHINOSEIGYOSOCHI Expired - Lifetime JPH0235554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4480583A JPH0235554B2 (en) 1983-03-16 1983-03-16 DENRYOKUHENKANSOCHINOSEIGYOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4480583A JPH0235554B2 (en) 1983-03-16 1983-03-16 DENRYOKUHENKANSOCHINOSEIGYOSOCHI

Publications (2)

Publication Number Publication Date
JPS59169365A JPS59169365A (en) 1984-09-25
JPH0235554B2 true JPH0235554B2 (en) 1990-08-10

Family

ID=12701638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4480583A Expired - Lifetime JPH0235554B2 (en) 1983-03-16 1983-03-16 DENRYOKUHENKANSOCHINOSEIGYOSOCHI

Country Status (1)

Country Link
JP (1) JPH0235554B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2973181B1 (en) * 2011-03-21 2014-05-16 Hispano Suiza Sa METHOD FOR SIMPLIFIED CONTROL OF A CONTINUOUS VOLTAGE TRIPLE ALTERNATIVE VOLTAGE CONVERTER

Also Published As

Publication number Publication date
JPS59169365A (en) 1984-09-25

Similar Documents

Publication Publication Date Title
AU2003256296B2 (en) Low voltage, two-level, six-pulse induction motor controller driving a medium-to-high voltage, three-or-more-level AC drive inverter bridge
US4635177A (en) Control for a neutral point clamped PWM inverter
EP0077836B1 (en) Control apparatus for electric motors
KR920004905B1 (en) Pwm control equipment
US4924373A (en) Apparatus and method for controlling switching elements in a PWN-controlled voltage source inverter
KR910009762B1 (en) Pwm power converter
JP5962804B1 (en) Power converter control device
US4153930A (en) Balanced control waveform for reducing inverter harmonics
JP2004531196A (en) Multi-stage switch circuit
US3523236A (en) Circuit to control inverter switching for reduced harmonics
JPH0235554B2 (en) DENRYOKUHENKANSOCHINOSEIGYOSOCHI
Bowes et al. Transputer-based optimal PWM control of inverter drives
US4907144A (en) Frequency converter and a method of applying same
Tzou et al. A programmable current vector control IC for AC motor drives
JP2002058251A (en) Control apparatus for power converter
Del'Aquilla et al. Novel multilevel PWM inverter implementation
Vilathgamuwa et al. FPGA-based single-phase PWM rectifiers with high power factor
JPS6084973A (en) Current controlling method for voltage type inverter
JPS58151879A (en) Control circuit for alternating current/direct current converting circuit
Gulyaev et al. Microprocessor Control System for a Three-Phase Voltage Inverter with a Modified Algorithm
Prasad et al. Versatile digital firing schemes for pulse-width modulated ac-dc converters
JPH0787697B2 (en) Control method of PWM inverter
Krah et al. Predictive Current Control with Synchronous Optimal Pulse Patterns
JPH0437670B2 (en)
JP3198212B2 (en) Hybrid phase control device and its control device