JPH0235497B2 - MUSENSOSHINDENRYOKUSEIGYOSOCHI - Google Patents

MUSENSOSHINDENRYOKUSEIGYOSOCHI

Info

Publication number
JPH0235497B2
JPH0235497B2 JP16009985A JP16009985A JPH0235497B2 JP H0235497 B2 JPH0235497 B2 JP H0235497B2 JP 16009985 A JP16009985 A JP 16009985A JP 16009985 A JP16009985 A JP 16009985A JP H0235497 B2 JPH0235497 B2 JP H0235497B2
Authority
JP
Japan
Prior art keywords
output
level
reference voltage
transmission
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16009985A
Other languages
Japanese (ja)
Other versions
JPS6221336A (en
Inventor
Kenzo Urabe
Yoichi Ookubo
Hiroshi Haga
Kanemi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Kokusai Electric Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Kokusai Electric Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16009985A priority Critical patent/JPH0235497B2/en
Publication of JPS6221336A publication Critical patent/JPS6221336A/en
Publication of JPH0235497B2 publication Critical patent/JPH0235497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は周波数分割多重(以下FDMという)
狭帯域無線通信システムにおいて、システム内外
に対する電波干渉を軽減するために設備される無
線送信電力の制御装置の改良に関するものであ
る。
[Detailed description of the invention] (Technical field to which the invention pertains) The present invention is directed to frequency division multiplexing (hereinafter referred to as FDM).
The present invention relates to an improvement in a wireless transmission power control device installed in a narrowband wireless communication system to reduce radio wave interference inside and outside the system.

(従来の技術) FDM狭帯域無線通信システムにおいては、隣
接チヤネル間の周波数ピツチが12.5kHz以下であ
つて隣接チヤネルへの干渉防止のための対策が必
要である。特に移動通信システムの分野では、通
信トラフイツクの大容量化、周波数の有効利用の
観点から同一周波数を空間的に繰返し使用するい
わゆる小ゾーン方式が採用される場合が多く、電
波の干渉頻度を下げるため送信電力の最適化をダ
イナミツクに行うことが必要である。
(Prior Art) In an FDM narrowband wireless communication system, the frequency pitch between adjacent channels is 12.5 kHz or less, and measures are required to prevent interference with adjacent channels. Particularly in the field of mobile communication systems, a so-called small zone method is often adopted in which the same frequency is repeatedly used spatially in order to increase the capacity of communication traffic and make effective use of frequencies, and to reduce the frequency of radio wave interference. It is necessary to dynamically optimize transmission power.

このような無線送信電力の制御を行うに当つて
従来の装置では、目標とする送信電力に対応する
基準電圧レベルを矩形変化で与えると共に、送信
電力増幅部からその出力レベルを検出し、その検
出出力と上記基準電圧との差信号を高利得で増幅
し、ループフイルタ(低域波器)を通じて送信
電力増幅部の電力制御端子へ帰還する負帰還ルー
プを構成することによつて、基準電圧に追従する
送信電力を得ている。
In order to control such wireless transmission power, conventional devices provide a reference voltage level corresponding to the target transmission power by rectangular variation, detect the output level from the transmission power amplification section, and detect the output level. By configuring a negative feedback loop that amplifies the difference signal between the output and the reference voltage with high gain and returns it to the power control terminal of the transmission power amplification section through a loop filter (low frequency filter), the difference signal between the output and the reference voltage is adjusted to the reference voltage. Obtaining transmit power to follow.

この負帰還ループ構成において前記ループフイ
ルタは一般に1次ラグフイルタが用いられている
が、送信出力の立上り、立下り時の包絡線波形は
指数補関数波形〔1−exp(−t/τ)〕となる。
しかし上記の構成では次のような問題がある。す
なわち送信出力の立上り、立下り時点にスペクト
ラムの瞬時的な広がりを生じることはよく知られ
ているが、一般に送信出力の包絡線波形を不連続
関数が出現するまで時間微分を行うことができる
回数をn回とし、送信中心周波数を基準にした相
対周波数をfとすると、送信パワースペクトラム
の瞬時的広がり(パワースペクトラムの包絡線)
は1/f2(n+1)に比例する。このため指数補関数に
おいてはn=1となり、送信パワースペクトラム
の広がりは1/f4に比例する。
In this negative feedback loop configuration, a first-order lag filter is generally used as the loop filter, but the envelope waveform at the rise and fall of the transmission output is an exponential complement waveform [1-exp(-t/τ)]. Become.
However, the above configuration has the following problems. In other words, it is well known that instantaneous spread of the spectrum occurs at the rise and fall points of the transmission output, but in general, the envelope waveform of the transmission output can be differentiated over time until a discontinuous function appears. When is n times and f is the relative frequency with respect to the transmission center frequency, the instantaneous spread of the transmission power spectrum (envelope of the power spectrum)
is proportional to 1/f 2(n+1) . Therefore, in the exponential complement function, n=1, and the spread of the transmission power spectrum is proportional to 1/f 4 .

第1図はこの場合の隣接チヤネルへの妨害波レ
ベルのシミユレーシヨンの結果の一例を示すもの
で、従来の装置の送信立上り時点でのスペクトラ
ムの広がりにより送信周波数より12.5kHz離れた
隣接チヤネルの受信局が受信する妨害波の時間波
形を示している。図の横軸はms単位の時間、縦
軸は所要受信レベルを基準にした相対妨害受信レ
ベル(単位はdB)である。なおパラメータとし
て指数補関数の時定数τ1=70μs(90%立上り点は
160μs)、受信側フイルタは15次TBT(チエビシエ
フ・バタワース特性)バンドパスフイルタ、(m
=0.4)帯域幅は8kHzとしている。
Figure 1 shows an example of the simulation result of the interference wave level to the adjacent channel in this case.The receiving station of the adjacent channel is located 12.5kHz away from the transmission frequency due to the spread of the spectrum at the start of transmission in the conventional equipment. shows the time waveform of the interference wave received by The horizontal axis of the figure is time in ms, and the vertical axis is the relative interference reception level (in dB) based on the required reception level. As a parameter, the time constant of the exponential complement function τ 1 = 70 μs (90% rising point is
160μs), the receiving filter is a 15th-order TBT (Tievisiev-Butterworth characteristic) bandpass filter, (m
=0.4) Bandwidth is 8kHz.

このシミユレーシヨンの結果によれば実測値と
ほぼ同等の値を示しており、最悪の妨害波レベル
は−250dBに達している。この値は所要波レベル
自体に数10dBの変化があることを考慮すると極
めて好ましくない値である。またこれを改善する
ためにループフイルタの次数を上げることが考え
られるが、ループフイルタの次数を増やせば負帰
還の過渡応答の不安定化を生じると共に、立上
り、立下り時間の絶対値が大きくなるという欠点
がある。
The simulation results show values that are almost the same as the actual measurements, with the worst interference wave level reaching -250 dB. This value is extremely undesirable considering that the required wave level itself varies by several tens of dB. In order to improve this, it is possible to increase the order of the loop filter, but if the order of the loop filter is increased, the transient response of negative feedback will become unstable, and the absolute values of the rise and fall times will increase. There is a drawback.

(発明の具体的な目的) 本発明は上記欠点を除くために行つたもので、
送信電力の立上りと立下り時間を延長することな
く瞬時的なスペクトラムの広がりを抑制し、隣接
チヤネルの妨害レベルを小さくできることが特徴
である。
(Specific Object of the Invention) The present invention has been made to eliminate the above-mentioned drawbacks.
It is characterized by suppressing the instantaneous spread of the spectrum without extending the rise and fall times of the transmission power, and reducing the interference level of adjacent channels.

(発明の構成と動作) 第2図は本発明を実施した無線送信電力制御装
置の構成例ブロツク図である。この図中の記号1
は目標とする送信電力に対応する目標レベル信号
(2進値)LAに滑らかに追従する基準電圧波形R
を発生する平滑波形発生器、Tは目標値を与える
タイミング信号、2は2つの入力の差信号を出力
する差分器で、1の出力Rは2の一方の入力(正
極)に接続される。差分器2の出力は伝達関数F
(S)のループフイルタ3に入力される。4はレ
ベル増幅器で、3の出力を増幅利得Kで増幅し、
その出力は送信電力を制御する制御信号Cとな
る。5は可変利得電力増幅器で、送信搬送波信号
TXINを入力し、これを制御信号Cに対応する利
得で電力増幅し送信出力信号TXOUTを出力す
る。6はこのHXOUTに粗結合して送信出力レ
ベルより減衰したモニタ信号Mを得るためのモニ
タ結合器、7は整流回路で、モニタ信号Mを増幅
整流し送信レベルに比例する直流電圧の帰還信号
Fを差分器2の他方の入力(負極)に送出する。
(Configuration and Operation of the Invention) FIG. 2 is a block diagram of an example configuration of a wireless transmission power control device embodying the present invention. Symbol 1 in this diagram
is the reference voltage waveform R that smoothly follows the target level signal (binary value) L A corresponding to the target transmission power.
T is a timing signal that provides a target value, 2 is a differentiator that outputs a difference signal between two inputs, and the output R of 1 is connected to one input (positive electrode) of 2. The output of the differentiator 2 is the transfer function F
(S) is input to the loop filter 3. 4 is a level amplifier that amplifies the output of 3 with an amplification gain of K,
Its output becomes a control signal C that controls transmission power. 5 is a variable gain power amplifier, which transmits a carrier wave signal.
It inputs TXIN, power amplifies it with a gain corresponding to control signal C, and outputs a transmission output signal TXOUT. 6 is a monitor coupler that is roughly coupled to this HXOUT to obtain a monitor signal M attenuated from the transmission output level, and 7 is a rectifier circuit that amplifies and rectifies the monitor signal M to provide a DC voltage feedback signal F that is proportional to the transmission level. is sent to the other input (negative electrode) of the differentiator 2.

このように2〜7によつて構成される回路は、
基準電圧波形出力Rに追従する負帰還ループを構
成している。Rに対する送信出力レベルの応答を
規定する閉ループ伝達関数H(S)は6と7によ
る帰還利得をBとすれば、第2図についての簡単
な考察によつて次式が得られる。
In this way, the circuit composed of 2 to 7 is
A negative feedback loop that follows the reference voltage waveform output R is configured. The closed loop transfer function H(S) that defines the response of the transmission output level to R is given by the following equation by simple consideration of FIG. 2, where B is the feedback gain due to 6 and 7.

H(S)∝KF(S)/1+KB・F(S) ……(1) ∝は比例関係を示しKはレベル増幅器4の利得で
ある。また定常(直流)特性は(1)式においてS=
0として得られ、 H(0)∝K/1+KB ……(2) となるが、一般に負帰還ループによる追値能力を
保持するためにはK・B≫1となるように設定さ
れるので、H(0)は1/Bに比例し、1/Bか
らのずれ分は定常誤差となり、Kが増大すると共
に小さくなる。なおここで閉ループ伝達関数H
(S)のループ時定数は平滑波形発生器1の出力
の変化時間に比べて十分小さく設定するものとす
る。
H(S)∝KF(S)/1+KB·F(S)...(1) ∝ indicates a proportional relationship, and K is the gain of the level amplifier 4. In addition, the steady state (DC) characteristic is S=
0, and H(0)∝K/1+KB...(2) However, in order to maintain the follow-up ability due to the negative feedback loop, it is generally set so that KB≫1, H(0) is proportional to 1/B, and the deviation from 1/B becomes a steady error, which becomes smaller as K increases. Note that here, the closed loop transfer function H
The loop time constant of (S) is set to be sufficiently smaller than the change time of the output of the smooth waveform generator 1.

次に第3図は第2図中の平滑波形発生器1の回
路構成例図である。図中の11は追値カウンタ
で、そのカウント出力LB(この例では2進9ビツ
トとする)が目標信号レベルLA(この例では2進
3ビツトとする)を上位ビツトとし、下位ビツト
に0を付加した値に等しくなるまで+1または−
1の歩進をタイミング信号Tの立上りに同期して
実行する。以上のような機能を持つ追値カウンタ
11を構成するには、LAに0を付加した値とLB
とを比較し歩進の極性(+1または−1)を判定
する比較器とアツプダウン(可逆)カウンタとを
用いて、タイミング信号Tの立上りをフリツプフ
ロツプでとらえ、所定のクロツク(数MHz)をア
ツプダウンカウンタに入力するなどの簡単な構成
で容易に実現できる。
Next, FIG. 3 is a diagram showing an example of the circuit configuration of the smoothing waveform generator 1 in FIG. 2. Numeral 11 in the figure is a follow value counter, whose count output L B (in this example, 9 bits in binary) uses the target signal level L A (in this example, 3 bits in binary) as the upper bit and the lower bit. +1 or - until equal to 0 added to
A step of 1 is executed in synchronization with the rise of the timing signal T. To configure the additional value counter 11 with the above-mentioned functions, a value obtained by adding 0 to L A and a value L B
Using a comparator and an up-down (reversible) counter to determine the polarity of the step (+1 or -1), a flip-flop captures the rising edge of the timing signal T and up-downs a predetermined clock (several MHz). This can be easily realized with a simple configuration such as inputting to a counter.

12,13はレジスタで、それぞれLA,LB
上位ビツトをタイミング信号Tの立上りに同期し
て記憶し、その出力L′A,L′Bはタイミング信号T
に関してL′B、はL′Aよりも1トリガ時間だけ遅延
した関係にある。14はリードオンリメモリ
(ROM、その容量はこの例では32Kバイトとす
る)で、L′A,L′Bをアドレス信号の上位ビツトと
して入力し、メモリ空間のうちの所要の区間を指
定すると共に、追値カウンタ11の出力LBをア
ドレス信号の下位ビツトとして入力し、LBの歩
進に従つてメモリ空間を順次走査しながら記憶値
Dを出力する。
12 and 13 are registers that store the upper bits of L A and L B , respectively, in synchronization with the rising edge of the timing signal T, and their outputs L' A and L' B are stored in accordance with the timing signal T.
Regarding L' B , there is a relationship where L' B is delayed by one trigger time from L' A. Reference numeral 14 denotes a read-only memory (ROM, whose capacity is 32K bytes in this example), and inputs L' A and L' B as the upper bits of the address signal to specify the desired section of the memory space. , the output L B of the additional value counter 11 is inputted as the lower bit of the address signal, and the stored value D is output while sequentially scanning the memory space in accordance with the increment of L B.

15はD/A変換器で記憶値Dをアナログ値に
変換する。16は低域波器で追値カウンタ11
によるROM14の走査クロツク周波数成分を除
去し、その出力が第2図の閉ループに対する基準
電圧波形Rになる。
15 is a D/A converter which converts the stored value D into an analog value. 16 is a low frequency device and a follow value counter 11
The scanning clock frequency component of the ROM 14 is removed, and the output becomes the reference voltage waveform R for the closed loop in FIG.

次に第2図および第3図の本発明装置の動作を
第4図および第5図を用いて説明する。第4図は
送信電力の起動、上昇、停止の制御動作例のタイ
ムチヤートであつて、図の上段は第3図について
説明したL′A,L′B,L′Bの2進数値の変化を縦軸
にとり、横軸には時間の経過をとつている。この
中でLBは追値カウンタ11の歩進出力で、実際
は階段波形であるが、そのアナログ近似による変
化を破線で示してある。L′AおよびL′Bはそれぞれ
実線および一点鎖線で示してある。また第4図の
下段は第3図のLPF16の出力Rの変化を上段
と同様の様式で示したもので、図中のL′A1,LB1
L′B1,R1…等の記号は各時間区間における一定値
を表わしている。
Next, the operation of the apparatus of the present invention shown in FIGS. 2 and 3 will be explained using FIGS. 4 and 5. Figure 4 is a time chart of an example of control operations for starting, increasing, and stopping transmission power, and the upper part of the figure shows changes in the binary values of L' A , L' B , and L' B explained in Figure 3. is plotted on the vertical axis, and the passage of time is plotted on the horizontal axis. Among these, L B is the step output of the follow value counter 11, which is actually a step waveform, but its change due to analog approximation is shown by a broken line. L′ A and L′ B are shown by solid lines and dashed-dotted lines, respectively. In addition, the lower part of Figure 4 shows the change in the output R of the LPF 16 in Figure 3 in the same manner as the upper part, and L' A1 , L B1 ,
Symbols such as L′ B1 , R 1 , etc. represent constant values in each time interval.

いま第4図の時刻t1において電力の目標値を与
えるタイミング信号Tの立上りによりL′Aの値が
0からL′A1に変化したとすると、L′BはL′B1(=0)
に保持されているから、ROM14に対してL′A
L′A1,L′B=L′B1(=0)のメモリ区間が指定され、
またLBは0からLA1へ向かつて+1ずつ歩進し、
時刻t′1においてL′A1の値に達するまで上昇動作を
続ける。ここでROM14の該当メモリ区間では
下位アドレス0からL′A1に渡り、順次0からR1
での滑らかに単調増加する値をあらかじめ書込ん
でおく(ただし滑らかとはその変化の微分が連続
であることを意味する)ものとすると、R1の値
はたとえば第4図下段の時刻t1〜t′1の区間のよう
な滑らかな上昇変化を呈し、時刻t′1からt2までは
LBが変化しないのでR1にとどまる。
Now, suppose that the value of L' A changes from 0 to L' A1 due to the rise of the timing signal T that gives the target value of power at time t 1 in Fig. 4, then L' B becomes L' B1 (=0).
Since it is held in ROM14, L′ A =
The memory section of L′ A1 , L′ B = L′ B1 (=0) is specified,
Also, L B advances by +1 as it moves from 0 to L A1 ,
The rising operation continues until the value of L′ A1 is reached at time t′ 1 . Here, in the corresponding memory section of the ROM 14, a value that increases smoothly and monotonically from lower address 0 to L' A1 from 0 to R1 is written in advance (however, smooth means that the differential of the change is continuous). ), then the value of R 1 exhibits a smooth upward change, for example, in the interval from time t 1 to t' 1 in the lower part of Figure 4, and from time t' 1 to t 2 .
Since L B does not change, R remains at 1 .

次に時刻t2においてL′Aの値がL′A1からさらに
L′A2に上昇すると、L′BはL′B2(=L′A1)に変化し

LBはL′A1からL′A2に向かつて同様の歩進を開始す
るので、この場合もL′A=L′A2,L′B=L′B2(=
L′A1)がROM14の別のメモリ区間を指定し、
下位アドレスL′A1からL′A2に渡る一連の書込みデ
ータが時刻t1〜t′1の区間の場合と同様とすれば、
Rの変化もまた同様であつてR1からR2に至る滑
らかな上昇曲線となる。
Next, at time t 2 , the value of L′ A further increases from L′ A1 .
When it rises to L′ A2 , L′ B changes to L′ B2 (=L′ A1 ),
Since L B starts a similar step from L' A1 to L' A2 , in this case as well, L' A = L' A2 , L' B = L' B2 (=
L′ A1 ) specifies another memory section of ROM14,
Assuming that the series of write data from lower address L′ A1 to L′ A2 is the same as in the interval from time t 1 to t′ 1 ,
The change in R is also similar, resulting in a smooth upward curve from R 1 to R 2 .

次に時刻t3においてL′Aの値がL′A2からL′A3(=
0)に変化するとL′BはL′B3(=L′A2)に変化し、
LBはL′A2からL′A3(=0)に向かつて−1ずつ歩
進を開始するので、時刻t′3にて0に達するまで
下降動作を続ける。この場合はL′A=L′A3(=0),
L′B=L′B3(=L′A2)がROM14のさらに上記とは
異なるメモリ区間を指定し、下位アドレスL′A2
らL′A3(=0)に渡り、逆に滑らかに単調減少す
る値が書き込まれておれば、Rの値は時刻t3〜t′3
の区間の様に滑らかな下降変化をする。
Next, at time t 3 , the value of L′ A changes from L′ A2 to L′ A3 (=
0), L′ B changes to L′ B3 (=L′ A2 ),
Since L B starts stepping by -1 from L' A2 to L' A3 (=0), it continues its downward movement until it reaches 0 at time t' 3 . In this case, L′ A =L′ A3 (=0),
L' B = L' B3 (= L' A2 ) specifies a memory section of the ROM 14 that is different from the above, and it smoothly monotonically decreases from lower address L' A2 to L' A3 (=0). If the value has been written, the value of R will be changed from time t 3 to t′ 3
There is a smooth downward change like in the section.

以上に説明したRの値の滑らかな変化は既に説
明したように、第2図の閉ループ伝達関数のルー
プ時定数に比べて十分緩慢であるから、(1)式より
可変利得増幅器の出力はほぼ正確にRの値に比例
して追従変化し、Rの値が一定値(第4図の時刻
0〜t1間、t′1〜t2間、t′2〜t3間およびt′3以上の区
間)の場合は、同じく一定の目標値に追値制御さ
れることは明らかである。上記のRの滑らかな変
化に追従する送信出力による隣接チヤネルへの妨
害波レベルの軽減効果を第5図を用いて次に説明
する。
As explained above, the smooth change in the value of R is sufficiently slow compared to the loop time constant of the closed-loop transfer function shown in Figure 2, so from equation (1), the output of the variable gain amplifier is approximately The value of R changes accurately in proportion to the value of R, and the value of R is a constant value (between times 0 and t1 , between t'1 and t2 , between t'2 and t3 , and between t'3 and t'3 in Fig. 4). It is clear that in the case of the above section), additional value control is similarly performed to a constant target value. The effect of reducing the level of interference to adjacent channels by the transmission output that follows the smooth change in R will be described below with reference to FIG.

第5図は第1図と同じく送信周波数より12.5k
Hz離れた隣接チヤネルの受信局が受信する妨害波
の時間波形であつて、Rおよび送信出力レベルの
変化が滑らかな関数の一例であるsaised、cosine
波形 1/2(1−cosπt/2τ2) に従う場合のシミユレーシヨンの例であり、縦
軸、横軸のスケールおよび受信系パラメータは第
1図と同じである。ただし50%立上りまたは立下
り時間τ2は125μsとしている。第5図によれば最
悪の妨害波レベルは約−44dBであつて第1図の
場合に比べて約19dBの干渉軽減効果があること
がわかる。他方第1図と第5図それぞれの送信出
力の90%立上り(立下り)時間はそれぞれ160μs
および200μsで大差はない。
Figure 5 is 12.5k lower than the transmission frequency as in Figure 1.
Said, cosine is the time waveform of an interference wave received by a receiving station on an adjacent channel Hz apart, and is an example of a function in which changes in R and transmission output level are smooth.
This is an example of a simulation when the waveform is 1/2 (1-cosπt/2τ 2 ), and the scales of the vertical and horizontal axes and the receiving system parameters are the same as in FIG. 1. However, the 50% rise or fall time τ 2 is 125 μs. According to FIG. 5, the worst interference wave level is about -44 dB, and it can be seen that the interference reduction effect is about 19 dB compared to the case of FIG. On the other hand, the 90% rise (fall) time of the transmission output in Figures 1 and 5 is 160 μs.
and 200μs, there is no big difference.

次に第3図に示した平滑波形発生器1の構成図
中のROM14に必要な性能についてさらに吟味
する。まず設定できる送信レベルの目標値はLA
が2進3ビツトであつて23=8レベルとなる。こ
れはレベル間の差を5dBとすると40dBのダイナ
ミツクレンジに相当し、実用に適するものであ
る。
Next, the performance required for the ROM 14 in the block diagram of the smooth waveform generator 1 shown in FIG. 3 will be further examined. First, the target value of the transmission level that can be set is L A
is 3 binary bits and has 2 3 =8 levels. This corresponds to a dynamic range of 40 dB when the difference between levels is 5 dB, and is suitable for practical use.

次に発生する波形の量子化ステツプ数はLB
2進9ビツトであるから最大は29=512ステツプ、
最小は上位か3ビツトを除いた残り6ビツトによ
る変化26=64ステツプとなり滑らかな波形を近似
するのに十分なステツプ数である。以上から
ROM14の容量はL′A+L′B+LB=15ビツトのア
ドレス空間となり32Kバイトあれば十分であり、
市販の32Kバイト1チツプROMが使用できる。
Since L B is 9 binary bits, the maximum number of quantization steps for the next generated waveform is 2 9 = 512 steps.
The minimum change due to the remaining 6 bits excluding the upper 3 bits is 2 6 =64 steps, which is a sufficient number of steps to approximate a smooth waveform. From the above
The capacity of the ROM14 is L' A + L' B + L B = 15-bit address space, and 32 Kbytes is sufficient.
A commercially available 32K byte 1-chip ROM can be used.

また波形発生速度は最大512ステツプを第5図
の例のように250μsで発生するには、250/512=
0.49μs/ステツプ以内のアクセス時間でよく(追
値カウンタ11のクロツクは約2MHzとなる)、低
消費電力のCMOSのROMでも十分使用できる速
度である。
In addition, the waveform generation speed is 250/512 = 250/512 to generate the maximum 512 steps in 250 μs as in the example in
The access time is sufficient to be within 0.49 μs/step (the clock of the additional value counter 11 is approximately 2 MHz), and is fast enough to be used even with a low power consumption CMOS ROM.

(発明の効果) 上記の説明のように本発明の無線送信電力制御
装置によれば、複数の送信電力目標値を有する可
変電力制御において、1つの送信出力レベルから
他の送信出力レベルへ移行する出力の変化が、あ
らかじめROMに書込まれきている滑らかに単調
増加または減少する数値列によつて発生される時
間波形に追従するので、送信出力が変化するとき
のスペクトルの瞬時的な広がりが少なく、隣接チ
ヤネルを含む他チヤネルへの干渉を軽減すると共
に、送信電力が変化しない時間区間においては従
来同様の安定した負帰還制御電力を得ることがで
きる。またROMを使用しているので選択できる
平滑波形の自由度が高く、閉ループのステツプ応
答の理想値からのずれに対する補正にも応用でき
るという利点がある。
(Effects of the Invention) As described above, according to the wireless transmission power control device of the present invention, in variable power control having a plurality of transmission power target values, a transition from one transmission output level to another transmission output level is possible. Since the change in the output follows the time waveform generated by the sequence of smoothly monotonically increasing or decreasing numerical values written in advance in the ROM, the instantaneous spread of the spectrum when the transmitting output changes is reduced. It is possible to reduce interference with other channels including adjacent channels, and to obtain stable negative feedback control power similar to the conventional one in a time period in which the transmission power does not change. Furthermore, since ROM is used, there is a high degree of freedom in selecting smooth waveforms, which has the advantage of being applicable to correction of deviations from the ideal value of the closed-loop step response.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の装置の送信立上り時点における
隣接チヤネルへの妨害波レベルの時間波形例図、
第2図は本発明を実施した無線送信電力制御装置
の回路構成例図、第3図は第2図中の平滑波形発
生器の回路構成例図、第4図は送信電力の起動、
上昇、停止の動作例タイムチヤート、第5図は本
発明装置による送信立上り時点での隣接チヤネル
妨害波レベルの時間波形例図である。 1…平滑波形発生器、2…差分器、3…ループ
フイルタ、4…レベル増幅器、5…可変電力増幅
器、6…粗結合器、7…整流回路、11…追値カ
ウンタ、12,13…レジスタ、14…ROM、
15…D/A変換器、16…低域波器、LA
目標レベル信号、L′A…LAをサンプルした信号、
LB…追値カウンタ11のカウント値出力、L′B
LBの上位3ビツトをサンプルした信号、C…制
御信号、D…ROM14の記憶値、F…帰還信
号、M…モニタ信号、R…基準電圧波形、T…目
標値を与えるタイミング信号、TXIN…送信搬送
波信号、TXOUT…送信出力信号、t…時間。
FIG. 1 is an example of the time waveform of the interference wave level to the adjacent channel at the time of the rise of transmission in a conventional device.
FIG. 2 is an example circuit diagram of a wireless transmission power control device embodying the present invention, FIG. 3 is an example circuit diagram of a smooth waveform generator in FIG. 2, and FIG.
FIG. 5 is a time chart showing an example of rising and stopping operation, and is a time waveform example of the adjacent channel interference wave level at the time of rising of transmission by the apparatus of the present invention. DESCRIPTION OF SYMBOLS 1...Smooth waveform generator, 2...Differentiator, 3...Loop filter, 4...Level amplifier, 5...Variable power amplifier, 6...Rough combiner, 7...Rectifier circuit, 11...Additional value counter, 12, 13...Register , 14...ROM,
15...D/A converter, 16...Low frequency device, L A ...
Target level signal, L′ A ...signal sampled from L A ,
L B ...Count value output of the follow-up counter 11, L' B ...
Signal obtained by sampling the upper 3 bits of L B , C...control signal, D...memory value of ROM14, F...feedback signal, M...monitor signal, R...reference voltage waveform, T...timing signal that provides target value, TXIN... Transmission carrier signal, TXOUT...transmission output signal, t...time.

Claims (1)

【特許請求の範囲】[Claims] 1 無線送信機の送信信号出力の制御を行うため
目標とする送信出力に対する基準電圧レベルを発
生するために、その時間微係数が連続となる滑ら
かな変化によつて1つの基準電圧値から他の基準
電圧値へ移行する波形を発生する平滑波形発生器
と、その出力を正極側に入力させる2信号の差分
器と、その差分器の出力より低周波成分を抽出す
るループフイルタと、その出力を増幅するレベル
増幅器と、入力端子よりの入力から前記レベル増
幅器の出力レベルに比例する送信出力を出力する
可変利得電力増幅器と、この電力増幅器の出力に
粗結合しその出力に比例する信号出力を取り出す
結合器およびこの結合器よりの信号を整流し送信
出力レベルに比例する直流電圧を前記差分器の負
極側に入力させる整流回路によつて構成される負
帰還ループ回路を具備し、前記平滑波形発生器の
出力を基準電圧として前記可変利得電力増幅器の
送信信号出力を基準電圧の変化に対応して追従変
化させることを特徴とする無線送信電力制御装
置。
1. In order to generate a reference voltage level for the target transmission output in order to control the transmission signal output of a wireless transmitter, one reference voltage value is changed from one reference voltage value to another by a smooth change whose time derivative is continuous. A smoothing waveform generator that generates a waveform that transitions to a reference voltage value, a two-signal differentiator that inputs the output to the positive side, a loop filter that extracts low frequency components from the output of the differentiator, and a loop filter that extracts the low frequency component from the output of the differentiator. a level amplifier for amplification, a variable gain power amplifier for outputting a transmission output proportional to the output level of the level amplifier from an input from an input terminal, and a signal output that is loosely coupled to the output of the power amplifier to take out a signal output proportional to the output. A negative feedback loop circuit constituted by a coupler and a rectifier circuit that rectifies the signal from the coupler and inputs a DC voltage proportional to the transmission output level to the negative electrode side of the differentiator, and generates the smooth waveform. 1. A wireless transmission power control device, characterized in that the output of the variable gain power amplifier is used as a reference voltage, and the transmission signal output of the variable gain power amplifier is changed to follow changes in the reference voltage.
JP16009985A 1985-07-22 1985-07-22 MUSENSOSHINDENRYOKUSEIGYOSOCHI Expired - Lifetime JPH0235497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16009985A JPH0235497B2 (en) 1985-07-22 1985-07-22 MUSENSOSHINDENRYOKUSEIGYOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16009985A JPH0235497B2 (en) 1985-07-22 1985-07-22 MUSENSOSHINDENRYOKUSEIGYOSOCHI

Publications (2)

Publication Number Publication Date
JPS6221336A JPS6221336A (en) 1987-01-29
JPH0235497B2 true JPH0235497B2 (en) 1990-08-10

Family

ID=15707827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16009985A Expired - Lifetime JPH0235497B2 (en) 1985-07-22 1985-07-22 MUSENSOSHINDENRYOKUSEIGYOSOCHI

Country Status (1)

Country Link
JP (1) JPH0235497B2 (en)

Also Published As

Publication number Publication date
JPS6221336A (en) 1987-01-29

Similar Documents

Publication Publication Date Title
US4546326A (en) Fast automatic gain control arrangement
US6868279B2 (en) Power characteristic of a radio transmitter
EP0468507B1 (en) Automatic power control apparatus
KR960008329B1 (en) Gain control circuit for radio transmitter
EP0407135B1 (en) Apparatus for controlling transmission output level for burst signal
CN1509554B (en) Amplifier control circuit and method, and wireless communication device
US6968166B2 (en) Method and apparatus of a fast digital automatic gain control circuit
EP0688109A2 (en) Output power control for a pulsed transmitter and envelope shaping of power
GB2317284A (en) A transceiver in which the gains of the transmitter and receiver are controlled in a timed relation to the transmit/receive switching
JPH09275361A (en) Receiver and transmitter-receiver
EP1368917B1 (en) Method for power detection of multicarrier signals and radio transmission unit
EP1415410B1 (en) Power control for non-constant envelope modulation
JP2000078096A (en) Transmission method for continuous time slot
JPH0235497B2 (en) MUSENSOSHINDENRYOKUSEIGYOSOCHI
EP0895363A2 (en) Control of spurious emissions during transient states
CN109462431A (en) A kind of signal gain compensation method and equipment
JP3197467B2 (en) Transmission output control device
JPS6377205A (en) Transmission power control circuit
JP3125804B2 (en) Received signal strength measurement device
EP1365606A1 (en) The apparatus and method for power control in digital mobile communication system broadband multi-carrier base station
EP1163728A1 (en) Radio transmitters
JPH01133441A (en) Clock synchronizing system
JPH11112364A (en) Transmitting circuit
JPH0414335A (en) Gain control circuit for time division multiplex communication
EP1592129B1 (en) Ramp circuit