JPH0235074Y2 - - Google Patents

Info

Publication number
JPH0235074Y2
JPH0235074Y2 JP1983128263U JP12826383U JPH0235074Y2 JP H0235074 Y2 JPH0235074 Y2 JP H0235074Y2 JP 1983128263 U JP1983128263 U JP 1983128263U JP 12826383 U JP12826383 U JP 12826383U JP H0235074 Y2 JPH0235074 Y2 JP H0235074Y2
Authority
JP
Japan
Prior art keywords
lubricating oil
flow path
substrate
spring block
torsional vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983128263U
Other languages
Japanese (ja)
Other versions
JPS6035944U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12826383U priority Critical patent/JPS6035944U/en
Publication of JPS6035944U publication Critical patent/JPS6035944U/en
Application granted granted Critical
Publication of JPH0235074Y2 publication Critical patent/JPH0235074Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mechanical Operated Clutches (AREA)

Description

【考案の詳細な説明】 この考案は捩り振動抑制装置の潤滑油による減
衰性能の改良に関するものである。
[Detailed Description of the Invention] This invention relates to an improvement in the damping performance of a torsional vibration suppression device using lubricating oil.

一般に捩り振動抑制装置に捩り振動を起す軸に
固定的に取付けられ、軸と一体となつて振動しな
がら回転する一次マス部と、これと間接的に結合
され、比較的大きいフライホイール効果を持つた
二次マス部とからなり、前記間接結合法として
は、相対変位量に比例した復元トルクを有するい
わゆる弾性結合のものと、相対速度に比例した粘
性トルクを有するいわゆる粘性結合のものと、こ
の両者を合わせ持つたものが知られている。
Generally, a torsional vibration suppression device is fixedly attached to a shaft that causes torsional vibration, and is indirectly connected to a primary mass part that rotates while vibrating integrally with the shaft, and has a relatively large flywheel effect. The indirect coupling methods include a so-called elastic coupling having a restoring torque proportional to the amount of relative displacement, a so-called viscous coupling having a viscous torque proportional to the relative velocity, and One that has both is known.

弾性結合を持つた捩り振動抑制装置として、従
来、二次マス部として複数の中間ピースが放射状
に設けられた基板と、潤滑油の注入孔に連絡され
た複数の溝を外周面に所定間隔で備え上記基板の
中心部に基板に対して回動自在にかつ液密的に設
けられた一次マス部としてのインナースターと、
このインナースターの上記溝に先端部を挿入して
前記中間ピース間に嵌め入れられた複数のバネブ
ロツクと、前記中間ピースとバネブロツクの全体
をおおつて前記基板とインナースター間に液密的
に取り付けられたリング及び側板とを具備し、前
記インナースターの回転をバネブロツクを介して
フライホイール効果を持つ基板側に弾性的に伝え
うるように構成されたものが知られている。
Conventionally, a torsional vibration suppressing device with elastic coupling has a substrate with a plurality of intermediate pieces provided radially as a secondary mass part, and a plurality of grooves connected to lubricating oil injection holes at predetermined intervals on the outer circumferential surface. An inner star serving as a primary mass portion is provided at the center of the substrate so as to be rotatable and liquid-tight with respect to the substrate;
A plurality of spring blocks are fitted between the intermediate pieces by inserting their tips into the grooves of the inner star, and a plurality of spring blocks are attached liquid-tightly between the substrate and the inner star by covering the entire intermediate pieces and spring blocks. A device is known that is equipped with a ring and a side plate, and is configured so that the rotation of the inner star can be elastically transmitted to the substrate side having a flywheel effect via a spring block.

上記従来の捩り振動抑制装置には、側板ないし
は中間ピースに、各バネブロツクの収容空間を相
互に連結させる狭い潤滑油交通路を形成すること
によつて、バネブロツクによる弾性結合を加え
て、潤滑油が前記狭い潤滑油流通路を通つて流動
することによる粘性結合をも生じさせるような構
成にしたものがある。すなわち、バネブロツクの
収容空間に満たされた潤滑油をトルク振動の発生
により撓められたバネブロツクによつて流通路に
押し出させ、隣りの収容空間に流動させる際に生
じる粘性抵抗を利用して振動の減衰をなすことに
より、バネブロツクによる振動減衰と合わせて減
衰量を広範囲に調整するものである。
In the conventional torsional vibration suppressing device described above, a narrow lubricating oil passageway is formed in the side plate or the intermediate piece to interconnect the housing spaces of each spring block, thereby adding elastic coupling by the spring blocks, and lubricating oil is Some lubricant oils are configured to cause viscous bonding by flowing through the narrow lubricant flow path. In other words, the lubricating oil filled in the housing space of the spring block is pushed out into the flow passage by the spring block that is bent by the generation of torque vibration, and the viscous resistance generated when the oil flows into the adjacent housing space is used to suppress the vibration. By providing damping, the amount of damping can be adjusted over a wide range in combination with vibration damping by the spring block.

ところが上記潤滑油の粘性抵抗を振動減衰に利
用する構成であると、潤滑油温の変化による油の
粘度変化により減衰能力が大幅に変化するといつ
た欠点があつた。通常、潤滑油の流通路の大きさ
や形状は機関定常運転時の潤滑油の粘性を基準に
設計してあるので、機関始動時で油温が低い(室
温)状態においては、潤滑油粘度上昇により、過
大減衰となり、軸系に過大トルクが作用する危険
がある。
However, the configuration in which the viscous resistance of the lubricating oil is utilized for vibration damping has the drawback that the damping ability changes significantly due to changes in the viscosity of the oil due to changes in the lubricating oil temperature. Normally, the size and shape of the lubricating oil flow path are designed based on the viscosity of the lubricating oil during steady engine operation. , there is a risk of excessive damping and excessive torque acting on the shaft system.

なお、上記軸系への過大トルクの作用を避ける
ために、機関始動時の潤滑油温と機関平常運転時
の潤滑油温度との温度差を考慮して流通路の大き
さや形状を設定することが行なわれる場合もある
が、通常、最適減衰状態に対し、減衰が大きい場
合も小さい場合も共振点の山は大きくなり、しか
も、減衰の大きい場合と小さい場合では共振点の
位置も異つているので、減衰値が大きく変化して
も、危険な捩り振動を全て防止するような捩り振
動抑制装置を設計することは非常に困難なものと
なる。
In addition, in order to avoid the effect of excessive torque on the shaft system mentioned above, the size and shape of the flow passage should be set in consideration of the temperature difference between the lubricating oil temperature at engine startup and the lubricating oil temperature during normal engine operation. However, the peak of the resonance point becomes larger when the attenuation is large or small, and the position of the resonance point is also different when the damping is large or small, compared to the optimum damping state. Therefore, it is extremely difficult to design a torsional vibration suppression device that prevents all dangerous torsional vibrations even if the damping value changes greatly.

この考案は上記背景に鑑みてなされたもので、
潤滑油の流通路に流通路の温度に応じて流通路の
断面積を調節する調節部材を設けて、高油温時に
は流通路を狭め、低油温時には流通路を広め得る
構成にすることにより、油温が変化しても振動減
衰能力が変化しないようにした捩り振動抑制装置
を提供することを目的とする。
This idea was made in view of the above background,
By providing an adjustment member in the lubricating oil flow path to adjust the cross-sectional area of the flow path according to the temperature of the flow path, the flow path can be narrowed when the oil temperature is high and widened when the oil temperature is low. It is an object of the present invention to provide a torsional vibration suppressing device whose vibration damping ability does not change even if the oil temperature changes.

以下この考案の図面を示す実施例に基づいて説
明する。
The invention will be described below based on embodiments showing drawings.

第1図ないし第4図はこの考案の一実施例を示
すもので、図中16は捩り振動抑制装置内の潤滑
油をシールし又外輪質量としてフライホイール効
果を持つた基板であり、この基板16の内面には
多数の中間ピース18が等間隔で放射状にボルト
19によつて止められており、これら中間ピース
18間には、先端部をインナースター1の外周の
バネ受部の縦溝1aに嵌め込まれるバネブロツク
21がその基部を隣接する中間ピース18に挾持
された状態で配置されている。このバネブロツク
21は、板バネの基端部にスプリングピン22を
挿通することによつて束ねられ構成されたもので
ある。
Figures 1 to 4 show an embodiment of this invention, and 16 in the figure is a substrate that seals the lubricating oil in the torsional vibration suppressor and has a flywheel effect as the mass of the outer ring. A large number of intermediate pieces 18 are fixed radially at equal intervals on the inner surface of the inner star 16 by bolts 19. A spring block 21, which is fitted into the spring block 21, is disposed such that its base is held between the adjacent intermediate piece 18. This spring block 21 is constructed by inserting a spring pin 22 into the proximal end of a leaf spring to bind it together.

23は上記中間ピース18とバネブロツク21
を基板16に挾み着ける円環状の側板であり、中
間ピース18を貫通する前記ボルト19によつ
て、基板16に止められている。この側板23は
その内周面がインナースター1の軸と接してい
る。
23 is the intermediate piece 18 and the spring block 21
It is an annular side plate that is clamped to the substrate 16, and is fixed to the substrate 16 by the bolt 19 passing through the intermediate piece 18. The inner peripheral surface of this side plate 23 is in contact with the axis of the inner star 1.

一方、中間ピース18とバネブロツク21の外
周面には、テーパーリング24を介して締付けリ
ング27が嵌め付けられている。また、インナー
スター1の一端は図示しないクランク軸の反出力
端フランジ部に連結されている。したがつてこの
捩り振動抑制装置は、捩り振動の共振状態におい
て外輪質量として作用する基板16、中間ピース
18、バネブロツク21の振動トルクが起動トル
クに対して逆位相でバネ受部1aインナースター
1クランク軸へと伝達され捩り振動を抑制する装
置である。
On the other hand, a tightening ring 27 is fitted onto the outer peripheral surfaces of the intermediate piece 18 and the spring block 21 via a tapered ring 24. Further, one end of the inner star 1 is connected to a flange portion of the opposite output end of a crankshaft (not shown). Therefore, in this torsional vibration suppressing device, the vibration torque of the base plate 16, the intermediate piece 18, and the spring block 21, which act as the outer ring mass, is in opposite phase to the starting torque when the torsional vibration is resonant. This is a device that suppresses torsional vibrations that are transmitted to the shaft.

そして、上記基板16の中間ピース18側の面
と、側板23の中間ピース18側の面には各々周
溝16a,23aが形成され、各周溝16a,2
3aの底部には熱膨張率の大きな樹脂材から成る
調節部材25が、中間ピース18との間に各バネ
ブロツク21の収容空間Sを相互に連通させる潤
滑油の流通路Pを形成して充填されている。な
お、バネブロツク21の収納空間Sは潤滑油の注
入孔1bに連絡され、収納空間Sと流通路Pとに
潤滑油を満たすことができるようになつている。
ところで上記調節部材25は潤滑油温に応じて膨
縮し、流通路Pの断面積を増減するものである。
Circumferential grooves 16a and 23a are formed on the surface of the substrate 16 on the intermediate piece 18 side and on the surface of the side plate 23 on the intermediate piece 18 side, respectively.
An adjustment member 25 made of a resin material with a large coefficient of thermal expansion is filled at the bottom of the spring block 3a to form a lubricating oil flow path P that communicates the housing spaces S of each spring block 21 with the intermediate piece 18. ing. The storage space S of the spring block 21 is connected to the lubricating oil injection hole 1b, so that the storage space S and the flow path P can be filled with lubricating oil.
By the way, the adjustment member 25 expands and contracts depending on the temperature of the lubricating oil, and increases or decreases the cross-sectional area of the flow path P.

次に上記のように構成されたこの考案の作用に
ついて説明する。
Next, the operation of this device configured as described above will be explained.

上記のように構成されたこの考案に係る捩り振
動抑制装置は、既に述べたようにインナースター
1をクランク軸の反出力側フランジに連結し注入
孔1bから潤滑油を捩り振動抑制装置の内部に注
入して用いる。上記においてインナースター1の
回転はバネブロツク21を介して外輪側に伝えら
れる。そして、回転伝達中にトルク変動等が生じ
ると、インナースター1がバネブロツク21をイ
ンナースターの周方向に押圧して撓ませる。ここ
でインナースター1が第3図に示す如く時計方向
に移動してバネブロツク21を撓み移動させた場
合、バネブロツク21はバネブロツク21の時計
進行方向側の収容空間Sを狭め、反対側を拡げる
ため、狭まつた収容空間S内の潤滑油圧は高圧に
なり収容空間Sより時計方向側の流通路Pを介し
て隣りの収容空間Sに移動し、拡げられた側の収
容空間S内の潤滑油圧は低圧になり高圧側の収容
空間Sより潤滑油が流入する。この際流通路Pを
流動する潤滑油の粘性抵抗とバネブロツク21が
撓む際の抵抗により振動を2重に減衰させる。な
お、バネブロツク21が反時計方向側に撓み移動
した場合も潤滑油の移動により上記と同様に振動
減衰がなされる。
The torsional vibration suppressor according to the invention configured as described above connects the inner star 1 to the non-output side flange of the crankshaft and injects lubricating oil into the torsional vibration suppressor from the injection hole 1b, as described above. Use by injecting. In the above, the rotation of the inner star 1 is transmitted to the outer ring via the spring block 21. When a torque fluctuation or the like occurs during rotation transmission, the inner star 1 presses the spring block 21 in the circumferential direction of the inner star to bend it. Here, when the inner star 1 moves clockwise as shown in FIG. 3 to flex and move the spring block 21, the spring block 21 narrows the accommodation space S on the clockwise direction side of the spring block 21 and widens the opposite side. The lubricating oil pressure in the narrowed accommodation space S becomes high pressure and moves to the adjacent accommodation space S via the flow passage P on the clockwise side from the accommodation space S, and the lubricating oil pressure in the expanded accommodation space S becomes high. The pressure becomes low and lubricating oil flows from the accommodation space S on the high pressure side. At this time, the vibration is doubly damped by the viscous resistance of the lubricating oil flowing through the flow path P and the resistance when the spring block 21 is bent. Note that even when the spring block 21 is deflected and moved counterclockwise, the vibration is damped in the same manner as described above due to the movement of the lubricating oil.

ところで、潤滑油の温度は機関停止時には常温
であるが、機関始動開始とともに上昇して機関定
常運転時には一定になる。ここで潤滑油温が低い
時の潤滑油の粘度は高く、この際の調節部材25
の体積は潤滑油温が高い場合よりも小さくなる。
したがつて潤滑油の粘度が高い時、調節部材25
は第4図の実線に示す如く流通路Pの横断面積を
広げて潤滑油を通り易くし、潤滑油の粘性が低い
時は第4図に二点鎖線に示す如く流通路Pを狭
め、通過する潤滑油量を制限する。このため潤滑
油の粘度に変化を生じても潤滑油による減衰機能
は変化せず、安定した振動減衰効果を得ることが
できる。なお、調節部材25は潤滑油の粘性抵抗
の変化割合に合わせて流通路Pの横断面積を適宜
変化させ減衰機能を安定化させるといつた条件を
満たすものである必要があるため、調節部材25
を構成する材料の選択に当つては上記条件を満た
す潤滑油の粘性抵抗に応じた所定熱膨張率(鋼に
比して10〜20倍)を有する樹脂材料のものを選定
する必要がある。
Incidentally, the temperature of the lubricating oil is at room temperature when the engine is stopped, but increases when the engine starts and becomes constant when the engine is in steady operation. Here, when the lubricating oil temperature is low, the viscosity of the lubricating oil is high, and the adjustment member 25 at this time
The volume of is smaller than when the lubricating oil temperature is high.
Therefore, when the viscosity of the lubricating oil is high, the adjustment member 25
When the viscosity of the lubricating oil is low, the cross-sectional area of the flow path P is widened as shown by the solid line in Figure 4 to make it easier for the lubricating oil to pass through. Limit the amount of lubricant used. Therefore, even if the viscosity of the lubricating oil changes, the damping function of the lubricating oil does not change, and a stable vibration damping effect can be obtained. Note that the adjustment member 25 needs to satisfy conditions such as stabilizing the damping function by appropriately changing the cross-sectional area of the flow path P in accordance with the rate of change in the viscous resistance of the lubricating oil.
When selecting the material constituting the material, it is necessary to select a resin material that satisfies the above conditions and has a predetermined coefficient of thermal expansion (10 to 20 times that of steel) in accordance with the viscous resistance of the lubricating oil.

第5図はこの考案の他の実施例を示すもので、
先の実施例の周溝23aより横断面積の大きな周
溝23a′を形成し、この周溝23a′に凹溝25a
を有する調節部材25′を嵌入して構成し、凹溝
25aを流通路P′とすることにより目的を達成し
たものである。このような構成にして調節部材の
体積を増やすと、先の実施例の調節部材25の構
成材料より熱膨張率の小さい材料で調節部材2
5′を形成しても、流通路P′の横断面積を充分な
大きさで変化させることができる。
Figure 5 shows another embodiment of this invention.
A circumferential groove 23a' having a larger cross-sectional area than the circumferential groove 23a of the previous embodiment is formed, and a concave groove 25a is formed in this circumferential groove 23a'.
This object is achieved by fitting an adjusting member 25' having a groove 25a into the groove 25a and using the groove 25a as a flow path P'. When the volume of the adjustment member is increased with such a configuration, the adjustment member 2 is made of a material having a smaller coefficient of thermal expansion than the material of the adjustment member 25 in the previous embodiment.
5', the cross-sectional area of the flow path P' can be changed by a sufficient amount.

なお、上記実施例においては、基板16と側板
23とに周溝16a,23aを形成した例につい
て説明したが、周溝を中間ピースに形成したもの
についてもこの考案を適用できるのは勿論であ
る。なお、また、調節部材をスペーサとバイメタ
ルとから構成し、バイメタルによつてスペーサを
移動させて流通路の断面積を変えるようにするこ
ともできる。
In the above embodiment, an example was described in which the circumferential grooves 16a and 23a were formed in the substrate 16 and the side plate 23, but it goes without saying that this invention can also be applied to a case in which the circumferential grooves are formed in an intermediate piece. . It is also possible to configure the adjusting member to include a spacer and a bimetal, and to change the cross-sectional area of the flow path by moving the spacer using the bimetal.

以上説明したようにこの考案は、基板とインナ
ースターのいずれか一方の回転を複数のバネブロ
ツクを介して他方に弾性的に伝えうるように構成
された捩り振動抑制装置において、バネブロツク
の収容空間に連通した潤滑油の流通路を形成し、
この流通路に潤滑油の粘性抵抗に応じた所定熱膨
張率を有する調節部材を設け、この調節部材の熱
膨張、熱収縮によつて流通路の横断面積を変更で
きる構成にして、潤滑油温の高低、つまり粘性抵
抗に応じて流通路が自動的に適宜に拡大・縮小す
るようにしたから、潤滑油温を測定したり、それ
に応じて流通路の大きさの調節を行うといつた手
間を要することなく、また時間的なロスも少なく
潤滑油温に応じて流通路の大きさの調節が行われ
る。そしてこれによつて、潤滑油温の粘度に変化
が生じても潤滑油による振動減衰効果に変化は起
こらず、安定した振動減衰をなし得るといつた優
れた効果を奏する。
As explained above, this invention is a torsional vibration suppressing device configured to elastically transmit the rotation of either the substrate or the inner star to the other via a plurality of spring blocks. forming a flow path for lubricating oil,
An adjusting member having a predetermined coefficient of thermal expansion corresponding to the viscous resistance of the lubricating oil is provided in this flow passage, and the cross-sectional area of the flow passage can be changed by thermal expansion and thermal contraction of this adjustment member. Since the flow path automatically expands or contracts as appropriate depending on the height of the lubricating oil or the viscous resistance, it is no longer necessary to measure the lubricating oil temperature and adjust the size of the flow path accordingly. The size of the flow passage can be adjusted in accordance with the lubricating oil temperature without requiring additional time and with little time loss. As a result, even if the viscosity of the lubricating oil changes, the vibration damping effect of the lubricating oil does not change, providing an excellent effect of achieving stable vibration damping.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図はこの考案の一実施例を示
すもので、第1図は縦断面図、第2図は第1図の
A−A線に沿う断面図、第3図はバネブロツクを
撓ませた状態を示す縦断面図、第4図は要部の断
面図、第5図はこの考案の他の実施例の要部の断
面図である。 1……インナースター、16……基板、16a
……周溝、18……中間ピース、21……バネブ
ロツク、23……側板、23a……周溝、25…
…調節部材、S……収容空間、P……流通路。
Figures 1 to 4 show an embodiment of this invention, with Figure 1 being a longitudinal sectional view, Figure 2 being a sectional view taken along line A-A in Figure 1, and Figure 3 showing a spring block. FIG. 4 is a sectional view of the main part, and FIG. 5 is a sectional view of the main part of another embodiment of this invention. 1... Inner star, 16... Board, 16a
... Circumferential groove, 18 ... Intermediate piece, 21 ... Spring block, 23 ... Side plate, 23a ... Circumferential groove, 25 ...
...Adjustment member, S...Accommodation space, P...Flow path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の中間ピースが放射状に設けられた基板
と、潤滑油の注入孔に連絡された複数の溝を外周
面に所定間隔で備え上記基板の中心部に基板に対
して回動自在にかつ液密的に設けられたインナー
スターと、このインナースターの上記溝に先端部
を挿入して前記中間ピースの間に嵌め入れられた
複数のバネブロツクと、前記中間ピースとバネブ
ロツクの全体をおおつて前記基板とインナースタ
ー間に液密的に取り付けられたリング及び側板と
を具備し、上記基板とインナースターのいずれか
一方の回転をバネブロツクを介して他方に弾性的
に伝えうるように構成された捩り振動抑制装置に
おいて、上記基板と側板と中間ピースの少なくと
も1つ以上に、上記各バネブロツクの収容空間に
連通した流通路が形成されるとともに、上記流通
路には、流通路内の潤滑油の温度に応じて膨張
し、流通路の一部または全部の横断面積を潤滑油
の温度は低い場合に広め、また潤滑油の温度が高
い場合に狭める潤滑油の粘性抵抗に応じた所定熱
膨張率を有する調節部材が設けられて成ることを
特徴とする捩り振動抑制装置。
A substrate having a plurality of intermediate pieces arranged radially thereon, and a plurality of grooves connected to lubricating oil injection holes arranged at predetermined intervals on the outer circumferential surface, the center of the substrate being rotatable with respect to the substrate and liquid-tight. a plurality of spring blocks whose tips are inserted into the grooves of the inner stars and fitted between the intermediate pieces; A torsional vibration suppressor comprising a ring and a side plate that are fluid-tightly attached between the inner stars, and configured to elastically transmit rotation of either the substrate or the inner star to the other via a spring block. In the apparatus, a flow path communicating with the housing space of each spring block is formed in at least one of the base plate, the side plate, and the intermediate piece, and the flow path has a flow path that communicates with the housing space of each of the spring blocks, and a flow path that corresponds to the temperature of the lubricating oil in the flow path. Adjustment having a predetermined coefficient of thermal expansion according to the viscous resistance of the lubricating oil, which expands the cross-sectional area of part or all of the flow path when the lubricating oil temperature is low, and narrows it when the lubricating oil temperature is high. A torsional vibration suppressing device characterized by comprising a member.
JP12826383U 1983-08-19 1983-08-19 Torsional vibration suppression device Granted JPS6035944U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12826383U JPS6035944U (en) 1983-08-19 1983-08-19 Torsional vibration suppression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12826383U JPS6035944U (en) 1983-08-19 1983-08-19 Torsional vibration suppression device

Publications (2)

Publication Number Publication Date
JPS6035944U JPS6035944U (en) 1985-03-12
JPH0235074Y2 true JPH0235074Y2 (en) 1990-09-21

Family

ID=30291027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12826383U Granted JPS6035944U (en) 1983-08-19 1983-08-19 Torsional vibration suppression device

Country Status (1)

Country Link
JP (1) JPS6035944U (en)

Also Published As

Publication number Publication date
JPS6035944U (en) 1985-03-12

Similar Documents

Publication Publication Date Title
JP2571149B2 (en) 2-mass flywheel
US5140868A (en) Viscous and rubber-type torsional damper
US4739866A (en) Apparatus for damping torsional vibrations in the power trains of motor vehicles
US3296887A (en) Vibration damper
US5515745A (en) Flywheel assembly with annular elastic body for reducing vibrations
US9506524B2 (en) Lock-up device for fluid coupling
JP2730942B2 (en) Elastic coupling
CA1317321C (en) Bush type hydraulically damped engine or transmission mount
JPH0315056B2 (en)
US20060185959A1 (en) Double mass flywheel
US5245890A (en) Resilient coupling with relative rotation limitation
GB2327999A (en) Mechanism, such as a friction clutch with a balancing system
US6053295A (en) Torsional vibration damper
US5653639A (en) Vibration dampening torque transmitting coupling disc which enables varying of the damping cross section of the circumferential gaps as a function of the angle of rotation
US5562541A (en) Folded flat-spring and device into which the folded flat-spring is incorporated
US5213313A (en) Fluid-filled cylindrical elastic mount having lateral and radial elastic walls for desired axial and diametric spring characteristics
US7438166B2 (en) Flywheel assembly
JPH0235074Y2 (en)
JPS6316615B2 (en)
JPH0949531A (en) Viscosity resistance generating mechanism
JP3455601B2 (en) Lockup clutch for torque converter
JP2996566B2 (en) Bent leaf spring and damper disk using the same
JP3542186B2 (en) Lockup clutch for torque converter
JP3462594B2 (en) Bent leaf spring and damper disk assembly
JPH0430425Y2 (en)