JPH0235014B2 - NAMARINOKANSHIKISEISEIHO - Google Patents

NAMARINOKANSHIKISEISEIHO

Info

Publication number
JPH0235014B2
JPH0235014B2 JP18604682A JP18604682A JPH0235014B2 JP H0235014 B2 JPH0235014 B2 JP H0235014B2 JP 18604682 A JP18604682 A JP 18604682A JP 18604682 A JP18604682 A JP 18604682A JP H0235014 B2 JPH0235014 B2 JP H0235014B2
Authority
JP
Japan
Prior art keywords
lead
weight
salt
soda
soda salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18604682A
Other languages
Japanese (ja)
Other versions
JPS5976835A (en
Inventor
Yasuhiro Okajima
Yasuhiro Tsugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP18604682A priority Critical patent/JPH0235014B2/en
Publication of JPS5976835A publication Critical patent/JPS5976835A/en
Publication of JPH0235014B2 publication Critical patent/JPH0235014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鉛中に含有されたSn等の有価金属を
ソーダ塩として分離する方法に関し、特に分離さ
れた有価金属のソーダ塩からの有価金属の回収を
容易とさせる粒子形状のソーダ塩を形成される鉛
の乾式精製法に関する。 鉛中に含有された有価金属の回収あるいは不純
物の除去方法としては含有される元素の種類や量
によつて種々の方法が採用されている。一般に鉛
中に含まれている元素としてはCu、Te、Zn、
Sn、As、Sb、Bi、Ag、Auなど多種類にわたつ
ているが、これらの元素の分離法としては大別し
て乾式法と湿式法がある。湿式法は電解法が主で
あり乾式法ほどには処理法に差はない。乾式法に
よる鉛の精製法としては除去すべき元素の種類に
応じて、溶離、酸化さらには亜鉛、カルシウム等
を添加する方法など種々の方法が提案されてい
る。通常先ず溶離でCu、Teが除去され、次いで
Sn、As、Sbの除去が行なわれる。このSn、As、
Sbを鉛から除去する方法としては酸化法が採用
されるが、ソーダ塩を添加することによつて酸化
反応を促進させ、且つ除去した有価金属を回収す
ることのできる方法としてハリス法がある。この
ハリス法の原理はハリス鍋というソーダ塩と鉛が
良く接触するように工夫された鍋を用いて溶融粗
鉛に苛性ソーダ(NaOH)、硝石(NaNO3)、食
塩(NaCl)などを添加して溶融鉛上面に流動性
を液状溶融塩層を生成せしめ、その溶融塩層中に
Sn、As、Sbを酸化吸収させるものである。ハリ
ス法は他の酸化法に比べて燃料費、労務費が安い
ほか、煙灰処理が不要であり揮発損失が少ない等
の利点がある。しかしハリス法によつて生成され
る前記有価金属塩(以下ハリス塩という)は冷却
固化すると極めて硬く、且つ吸湿性があるので保
管取扱い上の欠点がある。特にハリス塩に含有さ
れているSn等の有価金属の回収に当つて、水抽
出する際、粉砕工程において強アルカリ性の粉塵
が発生し、また表面の吸湿部分によつて粉砕篩別
系統が閉塞する。 本発明は上記の欠点を解消し、潮解性が低く取
扱いが容易で且つ粉砕せずにそのままSn等の有
価金属の抽出回収処理に供し得る粒子形状のソー
ダ塩を直接生成させることのできる鉛の乾式精製
法を提供することを目的とする。 本発明によれば、Snを含む有価金属含有の溶
融鉛中に硫黄または硫黄化合物の硫黄含有量0.05
〜1重量%の割合で含有させ、温度を450〜550℃
に保持して空気又は酸化剤とソーダ塩を添加撹拌
して酸化することにより前記有価金属のソーダ塩
を直接粒子形状で生成させることができる。 本発明者等はあらかじめCuの大部分を除去し
たPb90.5重量%、Sn4.5重量%、As0.5重量%、
Sb4.0重量%の組成の溶融粗鉛に、あらかじめ粗
鉛中の硫黄含有量を種々変化させた硫黄または硫
黄の化合物を添加して、例えば、特開昭56−
150140号公報に記載されたインペラーとインペラ
ーの軸を取り囲んでインペラー直近にのびる空気
吸入管を備えた撹拌機を設けた鍋を用いて約500
℃の温度に加熱し、該温度で苛性ソーダを添加、
撹拌して、SnおよびAsの除去試験を行なつた。
なお、苛性ソーダの添加量は従来のハリス法にお
いて適用される次式によつた。 添加NaOH量(Kg)=1.92×〔鉛中のSn量(Kg)〕 +2.90×〔鉛中のAs量(Kg)〕 その結果を第1図および第1表に示す。第1図
は生成鉛中のSn、As、Sbの含有量の撹拌時間に
対する変化の一例を、S含有量を0.5重量%とし
た場合について示したものである。Sbはほとん
ど変化しないが、SnおよびAsの含有量はほぼ直
線的に低下しており、SnとAsの除去が効果的に
行なわれている。 第1表は生成するソーダ塩の性状と粗鉛のS含
有量および撹拌機の回転数の関係を示すものであ
る。
The present invention relates to a method for separating valuable metals such as Sn contained in lead as soda salts, and in particular, a method for forming soda salts in the form of particles that facilitate the recovery of valuable metals from the separated soda salts. Concerning the dry refining method of lead. Various methods are used to recover valuable metals or remove impurities contained in lead, depending on the type and amount of elements contained. Generally, elements contained in lead include Cu, Te, Zn,
There are many different types such as Sn, As, Sb, Bi, Ag, and Au, and the separation methods for these elements can be roughly divided into dry methods and wet methods. The wet method is mainly an electrolytic method, and there is no difference in treatment method compared to the dry method. Various methods have been proposed for refining lead using a dry method, depending on the type of element to be removed, such as elution, oxidation, and addition of zinc, calcium, etc. Usually, Cu and Te are removed by elution first, and then
Sn, As, and Sb are removed. This Sn, As,
An oxidation method is adopted as a method for removing Sb from lead, and the Harris method is a method that accelerates the oxidation reaction by adding soda salt and recovers the removed valuable metal. The principle of the Harris method is to add caustic soda (NaOH), saltpeter (NaNO 3 ), common salt (NaCl), etc. to molten crude lead using a Harris pot, which is designed to allow good contact between soda salt and lead. The fluidity creates a liquid molten salt layer on the top surface of the molten lead, and
It oxidizes and absorbs Sn, As, and Sb. Compared to other oxidation methods, the Harris method has advantages such as lower fuel and labor costs, no need for smoke ash treatment, and less volatilization loss. However, the valuable metal salts produced by the Harris method (hereinafter referred to as Harris salts) are extremely hard and hygroscopic when solidified by cooling, and therefore have disadvantages in storage and handling. In particular, when recovering valuable metals such as Sn contained in Harris salt, strong alkaline dust is generated during the crushing process during water extraction, and the crushing and sieving system is clogged by the moisture-absorbing parts on the surface. . The present invention solves the above-mentioned drawbacks, and makes it possible to directly produce soda salt in the form of particles that have low deliquescent properties, are easy to handle, and can be directly used for the extraction and recovery treatment of valuable metals such as Sn without being crushed. The purpose is to provide a dry refining method. According to the present invention, the sulfur content of sulfur or sulfur compounds in molten lead containing valuable metals including Sn is 0.05.
~1% by weight, and the temperature was 450~550℃.
The sodium salt of the valuable metal can be directly produced in the form of particles by adding and stirring air or an oxidizing agent and soda salt while maintaining the temperature. The present inventors have developed Pb90.5% by weight, Sn4.5% by weight, and As0.5% by weight from which most of the Cu has been removed in advance.
By adding sulfur or sulfur compounds in which the sulfur content in the crude lead has been varied in advance to molten crude lead having a composition of 4.0% by weight of Sb, for example,
Using a pot equipped with the impeller described in Publication No. 150140 and a stirrer equipped with an air suction pipe that surrounds the impeller shaft and extends directly to the impeller, approximately 500
heating to a temperature of °C and adding caustic soda at that temperature;
After stirring, Sn and As removal tests were conducted.
The amount of caustic soda added was determined according to the following formula, which is applied in the conventional Harris method. Amount of added NaOH (Kg) = 1.92 x [Amount of Sn in lead (Kg)] + 2.90 x [Amount of As in lead (Kg)] The results are shown in Figure 1 and Table 1. FIG. 1 shows an example of changes in the content of Sn, As, and Sb in the produced lead with respect to stirring time when the S content is 0.5% by weight. Although Sb hardly changed, the contents of Sn and As decreased almost linearly, indicating that Sn and As were effectively removed. Table 1 shows the relationship between the properties of the soda salt produced, the S content of crude lead, and the rotation speed of the stirrer.

【表】 ×:粒状にならず液体状となる。
○:2〜3mm径の粒状ソーダ塩となる。
この結果によれば、粒状のソーダ塩が生成する
条件は撹拌機回転数とS含有量に依存し、撹拌機
の回転数は高い程良いが実操業の撹拌機の回転数
を考慮すればS含有量が0.05重量%以下であるこ
とが粒状のソーダ塩を安定して得るために必要で
ある。またS含有量が1重量%を超えると嵩高の
ソーダ塩が生成して取扱いが困難となり、且つソ
ーダ塩中に包含される鉛の量も増加するので好ま
しくない。したがつて粒状のソーダ塩を得るため
には0.05〜1重量%のS含有量が適当な範囲であ
る。 また添加する硫黄の化合物はSnSあるいはPbS
が効果的であり単体硫黄でもよいが、Cu2Sおよ
びSb2S3は粒状ソーダ塩を生成させるには効果が
なかつた。 反応温度としては450〜550℃、好ましくは450
〜500℃が適当である。450℃以下ではSn等の除
去速度が遅く、550℃以上ではPbOの生成が多く
なり、過剰のPbOがソーダ塩と混合して団子状に
なるので不適当である。また500℃を超えると生
成したソーダ塩の表面で燃焼が起るので、最も好
ましいのは450〜500℃である。 添加するソーダ塩は前記した空気吸入管を有す
る撹拌機を使用すれば苛性ソーダ(NaOH)が
適当であるが、従来のハリス法と同様に硝石
(NaNO3)、食塩(NaCl)を併用することもでき
る。 なお、最初に添加したSは上記した精製操作の
中でNa2Sとなつて生成した粒状のソーダ塩中に
混入されるので精製後の鉛中に残留することはな
い。 このようにして生成した粒状ソーダ塩はバケツ
ト等ですくい取ることができ、溶融鉛と容易に分
離する。 この粒状ソーダ塩は潮解性がなく、しかも粉砕
することなくそのまま水でリパルプし撹拌、固液
分離の操作を経てSn等の有価金属を水浸出する
ことにより高い収率で回収することが可能であ
る。 以上、詳細に説明したように本発明の鉛の乾式
精製法によれば、粗鉛中に含まれる有価金属、特
にSn、Asを効果的に除去して鉛を精製させるこ
とができ、且つ除去されたSn等を含有する生成
ソーダ塩は潮解性のない粒状のものが得られるの
保管取扱いに便利であり、特に生成ソーダ塩から
Sn等を回収する際に粉砕する必要がない点で大
きな効果がある。 以下、本発明を実施例により説明する。 実施例 1 Pb90.5.重量%、Sn4.5重量%、As0.5重量%、
Sb4.0重量%の組成の溶融鉛8.5tに鉛中のS含有
量が0.35重量%になる量でPbSを添加し、インペ
ラーと空気吸入管を備えた撹拌機を設けた鍋中に
てNaOH420Kgを添加し撹拌した。反応温度は
450〜500℃になるように鍋の外部から加熱し、撹
拌は4時間継続した。撹拌機の回転数は155rpm
とした。 生成物としてSn0.25重量.%、As0.05重量%の
鉛7.5tとSn26重量%の粒状ソーダ塩1.4tを得た。
溶融鉛上に浮上した粒状ソーダ塩の粒度は2〜3
mm径のペレツト状のものが大部分であり、バケツ
ト式かきあげ器で容易に分離することができた。 この粒状ソーダ塩を300g/のバルブ濃度で
水浸出した結果、Sn77.3g/、As2.43g/、
Sb0.03g/、Pb<0.01g/の浸出液を得た。
Snの水浸出率は99%以上であつた。また粒状ソ
ーダ塩をそのまま1ケ月放置しても溶解しなかつ
た。 実施例 2 Pb90.5重量%、Sn4.5重量%、As0.5重量%、
Sb4.0重量%の組成の溶融鉛55tに鉛中のS含有量
が0.30重量%になるようにPbSを添加し、インペ
ラーと空気吸入管を備えた撹拌機を設けて鍋中に
てNaOH3.3tを添加し撹拌した。反応温度は450
〜475℃になるように鍋の外部から加熱し、撹拌
は10時間継続した。撹拌機の回転数は155rpmと
した。 生成物としてSn0.05重量.%、As0.05重量%の
鉛48tとSn24.8重量%の粒状ソーダ塩10tを得た。
粒状ソーダ塩の粒度は2〜3mm径のペレツト状の
ものが大部分であつた。 この粒状ソーダ塩を300g/のバルプ濃度で
水浸出した結果、Sn73.7g/、As2.50g/、
Sb0.02g/、Pb<0.01g/の浸出液を得た。
Snの水浸出率は99%以上であつた。なお、粒状
ソーダ塩は1ケ月間放置してもほとんど潮解性は
観察されなかつた。 実施例 3 Pb90.5重量%、Sn4.5重量%、As0.5重量%、
Sb4.0重量%の組成の溶融鉛55tに鉛中のS含有量
が0.30重量%になるようにSnSを添加し、インペ
ラーと空気吸入管を備えた撹拌機を設けた鍋中に
てNaOH2.8t、NaNO30.56tおよびNaCl0.93tを添
加し撹拌した。反応温度は450〜475℃になるよう
に鍋の外部から加熱し、撹拌は9時間継続した。
撹拌機の回転数な155rpmとした。 生成物としてSn0.01重量%、As0.05重量%の鉛
47tとSn22.7重量%の粒状ソーダ塩12tを得た。粒
状ソーダ塩の粒度は2〜3mm径のペレツト状のも
のが大部分であつた。 この粒状ソーダ塩をパルプ濃度300g/で水
浸出した結果、Sn67.5g/、As2.40g/、
Sb0.04g/、Pb<0.01g/の浸出液を得た。
Snの水浸出率は99%以上であつた。また、粒状
ソーダ塩は1ケ月放置しても殆んど潮解性は観察
されなかつた。 比較例 Pb91.0重量%、Sn3.5重量%、As0.30重量%、
Sb4.0重量%、S0.01重量%の溶解鉛8.5tをインペ
ラーと空気吸入管を備えた撹拌機を設けた鍋中に
入れ、NaOH420Kgを添加し撹拌した。反応温度
は450〜475℃に保持し、撹拌は6時間継続した。
撹拌機の回転数は155rpmとした。 生成したソーダ塩は粒状とならず液体状のまま
であり、ソーダ塩のミストが飛散し環境不良であ
つた。得られた鉛のSn含有量は1.0重量%であつ
た。
[Table] ×: Not granular but liquid.
○: Particulate soda salt with a diameter of 2 to 3 mm.
According to these results, the conditions for the formation of granular soda salt depend on the stirrer rotation speed and the S content, and the higher the stirrer rotation speed, the better. It is necessary for the content to be 0.05% by weight or less in order to stably obtain granular soda salt. Moreover, if the S content exceeds 1% by weight, bulky soda salt is produced, which becomes difficult to handle, and the amount of lead included in the soda salt also increases, which is not preferable. Therefore, in order to obtain granular soda salt, an S content of 0.05 to 1% by weight is a suitable range. The sulfur compound added is SnS or PbS.
is effective and elemental sulfur may be used, but Cu 2 S and Sb 2 S 3 were not effective in producing granular soda salt. The reaction temperature is 450-550℃, preferably 450℃
~500°C is suitable. Below 450°C, the removal rate of Sn, etc. is slow, and above 550°C, PbO is produced in large quantities, and excess PbO mixes with soda salt and becomes lump-like, which is unsuitable. Moreover, if the temperature exceeds 500°C, combustion will occur on the surface of the generated soda salt, so the most preferable temperature is 450 to 500°C. As the soda salt to be added, caustic soda (NaOH) is suitable if the agitator with the air suction pipe described above is used, but saltpeter (NaNO 3 ) and common salt (NaCl) can also be used together as in the conventional Harris method. can. Incidentally, the S added at the beginning becomes Na 2 S during the above-mentioned refining operation and is mixed into the granular soda salt, so it does not remain in the lead after refining. The granular soda salt thus produced can be scooped out with a bucket or the like and easily separated from the molten lead. This granular soda salt has no deliquescent properties, and can be recovered at a high yield by repulping it with water without pulverizing it, stirring it, solid-liquid separation, and leaching valuable metals such as Sn with water. be. As explained in detail above, according to the lead dry refining method of the present invention, lead can be purified by effectively removing valuable metals, especially Sn and As, contained in crude lead. The generated soda salt containing Sn, etc. is convenient for storage and handling as it is obtained in the form of non-deliquescent granules.
This method has a great effect in that it does not require pulverization when recovering Sn, etc. The present invention will be explained below using examples. Example 1 Pb90.5% by weight, Sn4.5% by weight, As0.5% by weight,
PbS was added to 8.5 tons of molten lead with a composition of 4.0% by weight of Sb in an amount such that the S content in the lead was 0.35% by weight, and 420kg of NaOH was added in a pot equipped with a stirrer equipped with an impeller and an air suction pipe. was added and stirred. The reaction temperature is
The pot was heated externally to 450-500°C and stirring continued for 4 hours. Stirrer rotation speed is 155rpm
And so. Sn0.25 weight as product. %, 7.5 t of lead with 0.05 wt % of As and 1.4 t of granular soda salt with 26 wt % of Sn were obtained.
The particle size of the granular soda salt floating on the molten lead is 2 to 3.
Most of the material was in the form of pellets with a diameter of mm, and could be easily separated using a bucket scraper. As a result of leaching this granular soda salt with water at a bulb concentration of 300g/, Sn77.3g/, As2.43g/,
A leachate with Sb0.03g/ and Pb<0.01g/ was obtained.
The water leaching rate of Sn was 99% or more. Further, even if the granular soda salt was left as it was for one month, it did not dissolve. Example 2 Pb90.5% by weight, Sn4.5% by weight, As0.5% by weight,
PbS was added to 55 tons of molten lead with a composition of 4.0% by weight of Sb so that the S content in the lead was 0.30% by weight, and a stirrer equipped with an impeller and an air suction pipe was installed to dissolve NaOH3 in a pot. 3t was added and stirred. Reaction temperature is 450
The pot was heated externally to ~475°C and stirring continued for 10 hours. The rotation speed of the stirrer was 155 rpm. Sn0.05 weight as product. %, 48 t of lead with 0.05 wt % of As and 10 t of granular soda salt with 24.8 wt % of Sn were obtained.
Most of the granular soda salts were pellet-like with a diameter of 2 to 3 mm. As a result of leaching this granular soda salt with water at a bulk concentration of 300g/, Sn73.7g/, As2.50g/,
A leachate with Sb0.02g/ and Pb<0.01g/ was obtained.
The water leaching rate of Sn was 99% or more. Incidentally, even when the granular soda salt was left for one month, almost no deliquescent property was observed. Example 3 Pb90.5% by weight, Sn4.5% by weight, As0.5% by weight,
SnS was added to 55 tons of molten lead with a composition of 4.0% by weight of Sb so that the S content in the lead was 0.30% by weight, and NaOH2 was added in a pot equipped with a stirrer equipped with an impeller and an air suction pipe. 8t, NaNO 3 0.56t and NaCl 0.93t were added and stirred. The reaction temperature was heated from the outside of the pot to 450-475°C, and stirring was continued for 9 hours.
The rotation speed of the stirrer was set to 155 rpm. Sn0.01wt%, As0.05wt% lead as product
12 tons of granular soda salt containing 47 tons and 22.7% by weight of Sn were obtained. Most of the granular soda salts were pellet-like with a diameter of 2 to 3 mm. As a result of leaching this granular soda salt with water at a pulp concentration of 300g/, Sn67.5g/, As2.40g/,
A leachate with Sb0.04g/ and Pb<0.01g/ was obtained.
The water leaching rate of Sn was over 99%. Further, even when the granular soda salt was left for one month, almost no deliquescent property was observed. Comparative example Pb91.0wt%, Sn3.5wt%, As0.30wt%,
8.5 tons of dissolved lead containing 4.0% by weight of Sb and 0.01% by weight of S was placed in a pot equipped with a stirrer equipped with an impeller and an air suction pipe, and 420 kg of NaOH was added and stirred. The reaction temperature was maintained at 450-475°C and stirring continued for 6 hours.
The rotation speed of the stirrer was 155 rpm. The generated soda salt did not become granular but remained liquid, and a mist of soda salt was scattered, resulting in a poor environment. The Sn content of the obtained lead was 1.0% by weight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の鉛の乾式精製法を実施した場
合の鉛中のSn、As、Sbの含有量の変化の一例を
示す図である。
FIG. 1 is a diagram showing an example of changes in the contents of Sn, As, and Sb in lead when the lead dry refining method of the present invention is carried out.

Claims (1)

【特許請求の範囲】[Claims] 1 Snを含む有価金属含有の溶融鉛中に硫黄ま
たは硫黄化合物を硫黄含有量0.05〜1重量%の割
合で含有させ、温度を450〜550℃に保持して空気
又は酸化剤とソーダ塩を添加、撹拌して酸化する
ことにより上記有価金属のソーダ塩を粒子形状で
生成させることを特徴とする鉛の乾式精製法。
1 Add sulfur or sulfur compounds to molten lead containing valuable metals including Sn at a sulfur content of 0.05 to 1% by weight, maintain the temperature at 450 to 550°C, and add air or an oxidizing agent and soda salt. A method for dry refining lead, characterized in that the sodium salt of the valuable metal is produced in the form of particles by stirring and oxidizing.
JP18604682A 1982-10-25 1982-10-25 NAMARINOKANSHIKISEISEIHO Expired - Lifetime JPH0235014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18604682A JPH0235014B2 (en) 1982-10-25 1982-10-25 NAMARINOKANSHIKISEISEIHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18604682A JPH0235014B2 (en) 1982-10-25 1982-10-25 NAMARINOKANSHIKISEISEIHO

Publications (2)

Publication Number Publication Date
JPS5976835A JPS5976835A (en) 1984-05-02
JPH0235014B2 true JPH0235014B2 (en) 1990-08-08

Family

ID=16181447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18604682A Expired - Lifetime JPH0235014B2 (en) 1982-10-25 1982-10-25 NAMARINOKANSHIKISEISEIHO

Country Status (1)

Country Link
JP (1) JPH0235014B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706220B2 (en) * 1994-08-30 1998-01-28 株式会社大阪鉛錫精錬所 Nickel removal method from lead by dry refining.
JP4876221B2 (en) * 2005-05-18 2012-02-15 Dowaメタルマイン株式会社 Metal recovery method
JP6959169B2 (en) * 2018-03-15 2021-11-02 Jx金属株式会社 Sn removal method and Pb manufacturing method

Also Published As

Publication number Publication date
JPS5976835A (en) 1984-05-02

Similar Documents

Publication Publication Date Title
CN102286665B (en) Comprehensive recovery method for complicated materials containing arsenic and valuable metal slag dust
CN102703719B (en) Technology for recovering valuable metals from noble metal slag
AU3178593A (en) Method for the recovery of zinc oxide
CN106834707A (en) A kind of method of arsenic-containing material synthetical recovery and arsenic recycling
US3969202A (en) Process for the recovery of antimony values from ores containing sulfo-antimony compounds of copper, and arsenic
JPH0235014B2 (en) NAMARINOKANSHIKISEISEIHO
CN106834709A (en) A kind of arsenic-containing smoke dust comprehensive utilization and the method for the solid arsenic mineral of precipitation transformation method synthesis
CN106834676B (en) A kind of method that valuable metal and arsenic recycling harmlessness disposing are reclaimed from arsenic-containing smoke dust
CA1157665A (en) Low temperature, non-so.sub.2 polluting, kettle process for separation of lead from lead sulfide- containing material
CN106756059A (en) A kind of method for reclaiming valuable metal and the solid arsenic mineral of precipitation transformation method synthesis from arsenic-containing smoke dust
US4057422A (en) Ore treatment process
US3940265A (en) Recovery of lead from battery scrap
CN112695206B (en) Fire refining decoppering agent for lead bullion, preparation method and application
JPH0765123B2 (en) Method for producing zinc-containing composition
US3052535A (en) Recovering lead from by-product lead materials
US4333762A (en) Low temperature, non-SO2 polluting, kettle process for the separation of antimony values from material containing sulfo-antimony compounds of copper
CN1233857C (en) Decoppering refining agent in use for fire refining of non-ferrous metal with low melting point and technical procedure
US4108635A (en) Solder skimmings recovery process
EP0588235A1 (en) Process for recovering lead from lead-containing raw materials
US5100466A (en) Process for purifying lead using calcium/sodium filter cake
US6077328A (en) Process for reducing the dioxin and furan content in waste gases from furnaces, and use of the filter dusts produced thereby
JPS5920739B2 (en) How to remove arsenic from lead containing tin
JPS5956536A (en) Separation of elementary lead from lead mass in blast furna-ce
US1360271A (en) Process of extracting bismuth
US1098854A (en) Process for separating bismuth from copper.