JPH0235004B2 - - Google Patents

Info

Publication number
JPH0235004B2
JPH0235004B2 JP57224667A JP22466782A JPH0235004B2 JP H0235004 B2 JPH0235004 B2 JP H0235004B2 JP 57224667 A JP57224667 A JP 57224667A JP 22466782 A JP22466782 A JP 22466782A JP H0235004 B2 JPH0235004 B2 JP H0235004B2
Authority
JP
Japan
Prior art keywords
molten metal
crucible
desulfurization
temperature
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57224667A
Other languages
Japanese (ja)
Other versions
JPS59116311A (en
Inventor
Shigeyuki Shigihara
Masahiro Tadokoro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP57224667A priority Critical patent/JPS59116311A/en
Priority to US06/561,650 priority patent/US4512801A/en
Priority to DE8383307664T priority patent/DE3379275D1/en
Priority to EP83307664A priority patent/EP0116221B1/en
Publication of JPS59116311A publication Critical patent/JPS59116311A/en
Publication of JPH0235004B2 publication Critical patent/JPH0235004B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/451Magnetic mixers; Mixers with magnetically driven stirrers wherein the mixture is directly exposed to an electromagnetic field without use of a stirrer, e.g. for material comprising ferromagnetic particles or for molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/45Mixing in metallurgical processes of ferrous or non-ferrous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/0806Charging or discharging devices
    • F27B2014/0812Continuously charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B2014/0887Movement of the melt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【発明の詳細な説明】 この発明は溶融と脱硫剤とを電磁的に撹拌する
ことにより溶湯内の硫黄を取り除く電磁脱硫装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic desulfurization apparatus for removing sulfur from a molten metal by electromagnetically stirring the molten metal and a desulfurization agent.

鋳鉄工場等においては溶湯を得る手段としてキ
ユポラが広く利用されているが、キユポラには燃
料としてコークスが用いられているため、キユポ
ラを使つて溶解した溶融は高密度の硫黄を含んで
しまう。一方、高品質の鋳鉄として球状黒鉛鋳鉄
の需要、生産がますます増加しているが、キユポ
ラ溶湯を用いた場、含有硫黄成分のために、球状
化剤の添加による黒鉛球状化がうまくいかず、こ
のため、キユポラ溶湯を使う球状黒鉛鋳鉄の製造
においては、球状化剤添加前に脱硫工程を設ける
のが一般的である。この脱流工程は粉粒状の脱硫
剤を溶湯に添加し、化学反応により脱硫を行う工
程であり、脱粒剤としてなカルシウムカーバイト
や酸化カルシウム等が用いられる。ここで、カル
シウムカーバイトを用いた場合の脱硫過程を示す
と、 CaC2+S→CaS+2C ……(1) となる。この(1)式におけるCaSはいわゆるスラグ
そなつて溶湯の上部に浮上し、溶湯温度が高いと
きには気化して大気中に離散する。上述の脱硫工
程においては脱硫剤の比重が小さいので、反応促
進のために溶湯の撹拌を行う必要があり、この撹
拌方法として従来はポーラスプラグ法、ガスイン
ジエクシヨン法等が用いられていた。しかしなが
ら、これらの撹拌方法は撹拌による溶湯の温度低
下が大きいので、脱硫後の溶湯を昇温する必要が
あり、この昇温のための昇温炉(例えば溝型誘導
炉)を別途に設けなければならず、特に小規模の
生産工場においては昇温設備のための経費比率が
大となり、問題であつた。
Cupora is widely used as a means of obtaining molten metal in iron foundries, etc., but since cupola uses coke as a fuel, the molten metal melted using cupola contains high-density sulfur. On the other hand, demand and production of spheroidal graphite cast iron as a high-quality cast iron are increasing, but when using Kyupora molten metal, graphite spheroidization by adding a spheroidizing agent is not successful due to the sulfur content. Therefore, in the production of spheroidal graphite cast iron using Kyupora molten metal, a desulfurization step is generally provided before adding the spheroidizing agent. This deflowing step is a step in which a powdery desulfurizing agent is added to the molten metal and desulfurization is carried out through a chemical reaction, and calcium carbide, calcium oxide, etc. are used as the degranulating agent. Here, the desulfurization process when calcium carbide is used is as follows: CaC 2 +S→CaS+2C (1). CaS in equation (1) floats to the top of the molten metal as a so-called slag, and when the molten metal temperature is high, it vaporizes and disperses into the atmosphere. In the above-mentioned desulfurization process, since the specific gravity of the desulfurization agent is small, it is necessary to stir the molten metal to promote the reaction, and the porous plug method, gas injection method, etc. have conventionally been used as the stirring method. However, with these stirring methods, the temperature of the molten metal decreases significantly due to stirring, so it is necessary to raise the temperature of the molten metal after desulfurization, and a heating furnace (for example, a groove-type induction furnace) must be separately installed to raise the temperature. This has always been a problem, especially in small-scale production plants, where the expense ratio for heating equipment becomes large.

そこで、本出願人は上述の問題を解決するため
に、昇温と撹拌とを同時に行える電磁脱硫装置を
先に開発した。第1図イはこの電磁脱硫装置の構
成を示す断面図、第1図ロは同図イに示すA−A
線矢視図である。この図において1は水平断面が
同図ロに示すような型となつている坩堝であり、
2はこの坩堝1の底部に連通して垂直上方に延び
る円筒上の連通路である。坩堝1と連通路2とは
各々コイル5が巻回されている円筒状のコイル用
路材11の内側に耐火材3を用いて形成されてい
る。6はコイル5の外周に同図ロに示すように放
射状に配置されている継鉄であり、コイル5の外
側の磁路を形成し、コイル5からの漏洩磁束をし
やへいして装置外側を構成している鋼材(図示
略)のうず電流による発熱を防止するものであ
る。上述したコイル5の上端の高さは、溶湯の吐
出口15の部分以外では坩堝1内の溶湯のレベル
と等しくなつており、吐出口15の部分ではこの
吐出口15の厚さ分だけ下方に位置している。こ
のようにコイル5の上端位置を吐出口15の部分
以外で溶湯のレベルと等しくしたのは、誘導効率
を高め、かつ大きな撹拌流を得るためである。例
えば、コイル5の上端が溶湯レベルより低いと誘
導効率は良くなるが溶湯表面付近の溶湯が電磁誘
導されないので、この部分の溶湯の静圧のために
撹拌流が溶湯表面付近において弱くなつてしま
い、また、コイル5の上端が溶湯レベルより高い
と誘導効率そのものが悪くなつてしまう。また、
このコイル5は中空銅管で形成され、稼動時には
中空部に水を流して強制水冷が行なわれる。7は
キユポラから連続的に供給されるキユポラ溶湯、
8はその主成分がカルシウムカーバイトや酸化カ
ルシムウである脱硫剤である。
Therefore, in order to solve the above-mentioned problem, the present applicant first developed an electromagnetic desulfurization device that can raise the temperature and stir at the same time. Figure 1A is a cross-sectional view showing the configuration of this electromagnetic desulfurization equipment, and Figure 1B is A-A shown in Figure A.
It is a line arrow view. In this figure, 1 is a crucible whose horizontal cross section is of the type shown in B of the figure.
Reference numeral 2 denotes a cylindrical communication passage communicating with the bottom of the crucible 1 and extending vertically upward. The crucible 1 and the communication path 2 are each formed using a refractory material 3 inside a cylindrical coil path material 11 around which a coil 5 is wound. The yoke 6 is arranged radially around the outer circumference of the coil 5 as shown in FIG. This prevents heat generation due to eddy current in the steel materials (not shown) that make up the structure. The height of the above-mentioned upper end of the coil 5 is equal to the level of the molten metal in the crucible 1 except for the molten metal discharge port 15, and the height of the upper end of the coil 5 is equal to the level of the molten metal in the crucible 1 at the portion where the molten metal is discharged. positioned. The reason why the upper end position of the coil 5 is made equal to the level of the molten metal except at the discharge port 15 is to improve the induction efficiency and obtain a large stirring flow. For example, if the upper end of the coil 5 is lower than the molten metal level, the induction efficiency will improve, but the molten metal near the molten metal surface will not be electromagnetically induced, and the stirring flow will become weak near the molten metal surface due to the static pressure of the molten metal in this area. Moreover, if the upper end of the coil 5 is higher than the molten metal level, the induction efficiency itself will deteriorate. Also,
This coil 5 is formed of a hollow copper tube, and during operation, forced water cooling is performed by flowing water through the hollow part. 7 is Kyupora molten metal continuously supplied from Kyupora,
8 is a desulfurizing agent whose main ingredients are calcium carbide and calcium oxide.

上述した構成においてコイル5に交流電流を供
給すると、誘電炉等と同様に、坩堝1内には図に
矢印で示すような溶湯の流れが発生し、また同時
に、坩堝内溶湯にうず電流による発熱が起る。こ
のようにして坩堝内溶湯の撹拌、脱流、昇温が行
なわれ、脱流された溶湯10が連通路2を通つて
外部へ排出される。
When an alternating current is supplied to the coil 5 in the above-described configuration, a flow of molten metal is generated in the crucible 1 as shown by the arrow in the figure, similar to an induction furnace, etc., and at the same time, heat is generated in the molten metal in the crucible due to eddy current. happens. In this way, the molten metal in the crucible is stirred, drained, and heated, and the drained molten metal 10 is discharged to the outside through the communication path 2.

このように、本出願人が先に開発した電磁脱硫
装置によれば、撹拌と昇温とが同時に行えるの
で、経済的効果は極めて大であつた。
As described above, the electromagnetic desulfurization apparatus previously developed by the present applicant had an extremely large economic effect because stirring and temperature raising could be performed simultaneously.

ところで、同一の効果を上げる装置であれば、
大きさの小さい方が、製作費、維持費、保守作
業、設置スペース等の面で極めて有利である。
By the way, if the device has the same effect,
A smaller size is extremely advantageous in terms of production costs, maintenance costs, maintenance work, installation space, etc.

この発明は上記事情に鑑み、先に開発した電磁
脱硫装置をさらに一歩押し進め、必要最小限の大
きさでありながら溶湯の脱硫、撹拌、昇温を効率
よく行うことができる電磁脱硫装置を提供するも
ので、入湯流量と坩堝容量との比で決定される溶
湯の平均滞留時間が5〜10分となるように前記坩
堝容量を設定するとともに、前記平均滞留時間に
おける前記溶湯の上昇温度が50〜100℃となる電
力を誘導コイルに供給した場合に、前記坩堝内溶
湯の表面盛上り高さが8〜16cmとなるように前記
坩堝の直径・深さ比を設定することを特徴として
いる。
In view of the above circumstances, the present invention takes the previously developed electromagnetic desulfurization device one step further, and provides an electromagnetic desulfurization device that can efficiently desulfurize, stir, and raise the temperature of molten metal while having the minimum necessary size. The crucible capacity is set so that the average residence time of the molten metal is 5 to 10 minutes, which is determined by the ratio of the inlet flow rate to the crucible capacity, and the temperature rise of the molten metal during the average residence time is 50 to 10 minutes. It is characterized in that the diameter/depth ratio of the crucible is set so that when electric power at 100° C. is supplied to the induction coil, the surface height of the molten metal in the crucible is 8 to 16 cm.

以下図面を参照してこの発明の実施例について
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

この発明の一実施例における機械的構成は本出
願人が先に開発した電磁脱硫装置と同様の構成で
あり、すなわち、第1図イ,ロに示すものと同様
である。ただし、この実施例においては装置各部
の大きさの関係が、各々後述する関係になつてお
り、最大効率でありながら最小の大きさとなつて
いる。
The mechanical configuration in one embodiment of the present invention is similar to that of the electromagnetic desulfurization apparatus previously developed by the applicant, that is, the same as that shown in FIGS. 1A and 1B. However, in this embodiment, the size relationships of the various parts of the device are as described below, and the size is the minimum while achieving the maximum efficiency.

次に、この実施例における装置各部の寸法の導
き方について説明する。
Next, how to derive the dimensions of each part of the device in this embodiment will be explained.

第1図イに示すキユポラ溶湯7は、キユポラの
特性上その流量がキユポラ容量で決まり、常に一
定の流量とみなすことができる。そして、キユポ
ラ溶湯7が坩堝1内に滞留している時間T〔min〕
は、キユポラ溶湯7の流入量Q〔Kg/min〕と坩
堝1が収納し得る溶湯量(以下坩堝容量と称す)
W〔Kg〕とによつて決まり、 T=W/Q ……(2) となる。この滞留時間T〔min〕は(1)式で示した
脱硫反応が行なわれる時間であり、脱硫工程にお
いては極めて重要な要素である。そして、発明者
による実験の結果、効率よく脱硫反応が完結する
のは、滞留時間Tが5〜10分の時であることが判
明し、このことから効率の良い脱流を行うには(2)
式におけるTが5〜10となるように坩堝容量Wを
設定すればよいことが分る。
Due to the characteristics of the cupola, the flow rate of the cupola molten metal 7 shown in FIG. Then, the time T [min] during which the Kyupora molten metal 7 stays in the crucible 1
is the inflow amount Q [Kg/min] of the Kyupora molten metal 7 and the amount of molten metal that the crucible 1 can accommodate (hereinafter referred to as crucible capacity)
It is determined by W [Kg], and T=W/Q...(2). This residence time T [min] is the time during which the desulfurization reaction shown by equation (1) is carried out, and is an extremely important element in the desulfurization process. As a result of experiments conducted by the inventor, it was found that the desulfurization reaction is efficiently completed when the residence time T is 5 to 10 minutes. )
It can be seen that the crucible capacity W may be set so that T in the equation is 5 to 10.

次に、坩堝1内の溶湯をどのくらい昇温すれば
よいかを説明する。
Next, how much the temperature of the molten metal in the crucible 1 should be raised will be explained.

一般的なキユポラ操業でのダクタイル鋳鉄の生
産工程ではキユポラ1530℃出湯→従来の 脱硫装置(1500℃) ―――――→ 1450℃球状化処理(1480℃) ―――――→ 1400℃鋳造…
…最終鋳型の鋳造 (1420℃) 1350℃ という工程になる。この図示において( )内に
示す温度は最終鋳型における適切な鋳造温度から
逆算した各工程での必要温度、( )のない温度
は実際に現われる温度であり、実際温度があきら
かに低下しすぎていることが分る。このために、
従来は脱硫装置の後に昇温炉を設けたりしてお
り、ことことが、キユポラ操業によるダクタイル
生産における経済的な問題となつていることはす
でに述べた。したがつて、脱硫装置においては前
記図示に示すように最低でも50℃の昇温を行なわ
ねばならない。また、工場の事情によつてはさら
に大きな昇温が必要な場合もあるが、一般には50
〜100℃の範囲の昇温で充分といえる。
In the production process of ductile cast iron in a typical cupola operation, cupola taps at 1530℃ → conventional desulfurization equipment (1500℃) ――――――→ 1450℃ spheroidization treatment (1480℃) ――――――→ 1400℃ casting …
...Final mold casting (1420℃) 1350℃ process. In this diagram, the temperatures shown in parentheses are the required temperatures for each process calculated backward from the appropriate casting temperature in the final mold. Temperatures without parentheses are the actual temperatures, and the actual temperatures are clearly too low. I understand. For this,
Conventionally, a heating furnace has been installed after the desulfurization equipment, which has already been described as an economic problem in ductile production using cupola operation. Therefore, in the desulfurization equipment, the temperature must be raised by at least 50°C as shown in the diagram above. In addition, depending on the circumstances of the factory, even larger temperature increases may be necessary, but generally 50
It can be said that a temperature increase in the range of ~100°C is sufficient.

ところで、鋳鉄の比熱は一般に P100=21〔kwh/ton〕 ……(3) と表わされるが、これは1tonの溶湯を100℃だけ
昇温させるのに必要なエネルギーは21kwhである
ことを示す。したがつて、滞留溶湯を△Te(50≦
△Te≦100)だけ昇温させるのに必要な電力P
〔kw〕は、流入量をQ′〔ton/min〕とすれば。
By the way, the specific heat of cast iron is generally expressed as P 100 = 21 [kwh/ton] ...(3), which indicates that the energy required to raise the temperature of 1 ton of molten metal by 100℃ is 21 kwh. . Therefore, the retained molten metal is △Te (50≦
The power P required to raise the temperature by △Te≦100)
[kw] is if the inflow is Q′ [ton/min].

P=21×△Te/100×T/60×60×Q′ =0.21△Te・T・Q′ ……(4) となり、この(4)式におけるQ′〔ton/min〕をQ
〔Kg/min〕に変換して、定数部分をK1とおくと P=K1・△Te・T・Q ……(5) のなる。したがつて、この(5)式により算出される
電力が坩堝内溶湯に誘導されればよいので、コイ
ル5に供給すべき電力は(5)式に示すPに対応して
決定される。なお、この種の装置においては坩堝
内溶湯に誘導される電力の全んどが熱となり、撹
拌エネルギーになるのは全体の0.1%以下である
ことは周知の通りである。
P=21×△Te/100×T/60×60×Q′ =0.21△Te・T・Q′ ……(4), and Q′ [ton/min] in this equation (4) is
Converting to [Kg/min] and setting the constant part as K 1 , we get P=K 1・△Te・T・Q ……(5). Therefore, since it is sufficient that the electric power calculated by this equation (5) is induced into the molten metal in the crucible, the electric power to be supplied to the coil 5 is determined in accordance with P shown in the equation (5). It is well known that in this type of apparatus, all of the electric power induced into the molten metal in the crucible becomes heat, and less than 0.1% of the total becomes stirring energy.

次に、第2図は坩堝1を円筒形に見たてたモデ
ル系であり、dが内径、lが深さである。この深
さlは連通路2(第1図イ)の開口部高さで決ま
る。コイル5に電力が供給されると、坩堝内溶湯
には図に矢印で示す撹拌流が発生することはすで
に述べたが、この時、坩堝内溶湯の上面は上方に
開放されているので、図に示すように盛り上る。
この盛上り高さをh〔cm〕とすれば、hは次の式
で示されることが知られている。
Next, FIG. 2 shows a model system in which the crucible 1 is viewed as a cylinder, where d is the inner diameter and l is the depth. This depth l is determined by the height of the opening of the communication path 2 (FIG. 1A). As already mentioned, when power is supplied to the coil 5, a stirring flow is generated in the molten metal in the crucible as shown by the arrow in the figure.At this time, the top surface of the molten metal in the crucible is open upward, so It becomes exciting as shown in .
It is known that if this raised height is h [cm], h is expressed by the following formula.

なお、 ρ〔Ω−cm〕:溶湯の電気比抵抗 P〔kw〕:溶湯に誘電される電力 s〔g/cm3〕:溶湯の比重 〔Hz〕:コイル5に供給される電源の周波数であ
る。
In addition, ρ [Ω-cm]: Electric specific resistance of the molten metal P [kw]: Power induced in the molten metal s [g/cm 3 ]: Specific gravity of the molten metal [Hz]: At the frequency of the power supply supplied to the coil 5. be.

この盛上り高さhが撹拌流の強さに対応するこ
とは容易に理解できるが、発明者の実験による
と、盛上り高さhが8〜16cmの場合に脱硫反応の
促進に必要十分な撹拌流が得られると判明した。
また、(6)式からは、撹拌力が投入電力に比例し、
坩堝の直径と深さに反比例することが理解でき
る。そして、(6)式における定数部分(ρ、、
π、s、3.16、103)をK2とおき、dl=ηとおく
と h=K2P/η ……(7) となり、この(7)式のhに8〜16を代入し、Pに昇
温温度により決定される電力値を代入すると、必
要十分な撹拌流を与えるη(すなわちd・l)を
得ることができる。一方、坩堝容積Vは第2図か
ら V=πd2/4・l ……(8) と表わせるから、前述した坩堝容積Wは W=πd2/4・l・S×10-3 ……(9) と表わすことができ、この式の定数部分をK3
おくと W=K3・η・d ……(10) と表わすことができる。
It is easy to understand that this height h corresponds to the strength of the stirring flow, but according to the inventor's experiments, when the height h is 8 to 16 cm, it is necessary and sufficient to promote the desulfurization reaction. It was found that a stirred flow was obtained.
Also, from equation (6), the stirring power is proportional to the input power,
It can be seen that it is inversely proportional to the diameter and depth of the crucible. Then, the constant part (ρ, ,
If we set π, s, 3.16, 10 3 ) as K 2 and dl=η, we get h=K 2 P/η ...(7), and substitute 8 to 16 for h in equation (7), By substituting the power value determined by the heating temperature into P, it is possible to obtain η (that is, d·l) that provides a necessary and sufficient stirring flow. On the other hand, the crucible volume V can be expressed as V=πd 2 /4・l...(8) from Figure 2, so the crucible volume W mentioned above is W=πd 2 /4・l・S×10 -3 ... It can be expressed as (9), and if the constant part of this equation is set as K 3 , it can be expressed as W=K 3・η・d (10).

さて上述したように、滞留時間Tを5〜10分、
昇温温度△Teを50〜100℃、盛上り高さhを8〜
16cmに各々設定すると、以下に示す手順により坩
堝1の必要最小限でありながら、脱硫、撹拌、昇
温の各効率を最大にする内径dと深さlを求める
ことができる。
Now, as mentioned above, the residence time T is 5 to 10 minutes,
The heating temperature △Te is 50 to 100℃, and the height of the rise h is 8 to 100℃.
When each is set to 16 cm, the inner diameter d and depth l that maximize the efficiency of desulfurization, stirring, and temperature increase while being the minimum necessary for the crucible 1 can be determined by the procedure shown below.

:前述の(5)式から坩堝内溶湯に誘導されるべき
電力Pが一義的に求まる。
: The electric power P to be induced into the molten metal in the crucible can be uniquely determined from the above-mentioned equation (5).

:で求めたPを用いて(7)式により必要十分な
撹拌流を与えるηが求まる。
: Using P obtained in equation (7), η that provides a necessary and sufficient stirring flow is determined.

:(2)式から使用するキユポラの能力に対応する
必要最小限の坩堝容量Wが一義的に求まる。
: From equation (2), the minimum required crucible capacity W corresponding to the capacity of the cupola to be used can be uniquely determined.

:で求めたηとで求めたWを用いて(10)式か
ら坩堝1の内径dが求まる。
: The inner diameter d of the crucible 1 is determined from equation (10) using η determined by and W determined by .

:で求めたdとで求めたWを用いて(9)式か
ら坩堝深さlが一義的に求まる。
: The crucible depth l can be uniquely determined from equation (9) using d determined by and W determined by.

以上のようにして、昇温に必要な電力によつて
適切な撹拌力が得られ、かつ、脱硫反応が充分得
られる滞留時間を得るための坩堝1の容積、内
径、および深さを算出することができる。
As described above, the volume, inner diameter, and depth of crucible 1 are calculated in order to obtain an appropriate stirring power with the electric power required for temperature rise, and to obtain a residence time that allows sufficient desulfurization reaction. be able to.

以上説明したようにこの発明によれば、入湯流
量と坩堝容量との比で決定される溶湯の平均滞留
時間が5〜10分となるように前記坩堝容量を設定
するとともに、前記平均滞留時間における前記溶
湯の上昇温度が50〜100℃となる電力を誘導コイ
ルに供給した場合に、前記坩堝溶湯の表面盛上り
高さが8〜16cmとなるように前記坩堝の直径・深
さ比を設定するようにしたので、必要最小限の大
きさでありながら、溶湯の脱硫、撹拌、昇温を効
率よく行い得る利点が得られる。
As explained above, according to the present invention, the crucible capacity is set so that the average residence time of the molten metal is 5 to 10 minutes, which is determined by the ratio of the inlet flow rate to the crucible capacity, and The diameter/depth ratio of the crucible is set so that when power is supplied to the induction coil so that the temperature of the molten metal rises from 50 to 100°C, the surface height of the molten metal in the crucible is 8 to 16 cm. As a result, it is possible to efficiently desulfurize, stir, and raise the temperature of the molten metal while maintaining the minimum necessary size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イは本出願人が先に開発した電磁脱硫装
置の構成を示す断面図、第1図ロは同図イに示す
A−A線矢視図、第2図は坩堝1を円筒形に見た
てた場合のモデル系を示す概略構成図である。 1……坩堝、d……直径、l……深さ、h……
盛上り高さ。
Figure 1A is a cross-sectional view showing the configuration of an electromagnetic desulfurization device previously developed by the applicant, Figure 1B is a view taken along the line A-A shown in Figure A, and Figure 2 shows the crucible 1 in a cylindrical shape. FIG. 2 is a schematic configuration diagram showing a model system when viewed from above. 1... Crucible, d... Diameter, l... Depth, h...
climax height.

Claims (1)

【特許請求の範囲】 1 溶湯が連続的に供給される坩堝と、この坩堝
の底部に連通するとともに開口部が前記底部より
上方にあつて脱硫後の溶湯を外部へ排出する連通
路とを各々筒状に巻回された誘導コイルの内部に
設け、電磁誘導により前記坩堝内溶湯の昇温と撹
拌とを同時に行う電磁脱硫装置において、 (a) 前記坩堝は、入湯流量と前駆坩堝容量との比
で決定される溶湯の平均滞留時間が5〜10分と
なる容量を有するとともに、前記平均滞留時間
における前記溶湯の上昇温度が50〜100℃とな
る電力を前記誘導コイルに供給した場合に、前
記坩堝内溶湯の表面盛上り高さが8〜16cmとな
る直径・深さ比を有し、 (b) 前記誘導コイルはその上端位置が前記坩堝内
溶湯の上面の平均的高さと一致またはそれ以下
とすることを特徴とする電磁脱硫装置。
[Scope of Claims] 1. A crucible to which molten metal is continuously supplied, and a communication path that communicates with the bottom of the crucible and has an opening above the bottom to discharge the molten metal after desulfurization to the outside. In an electromagnetic desulfurization device that is installed inside an induction coil wound in a cylindrical shape and simultaneously raises the temperature and stirs the molten metal in the crucible by electromagnetic induction, (a) the crucible has the following characteristics: When the induction coil has a capacity such that the average residence time of the molten metal determined by the ratio is 5 to 10 minutes, and power is supplied to the induction coil such that the temperature rise of the molten metal during the average residence time is 50 to 100 ° C. (b) The induction coil has a diameter/depth ratio such that the surface height of the molten metal in the crucible is 8 to 16 cm; An electromagnetic desulfurization device characterized by the following:
JP57224667A 1982-12-21 1982-12-21 Electromagnetic desulfurizer Granted JPS59116311A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57224667A JPS59116311A (en) 1982-12-21 1982-12-21 Electromagnetic desulfurizer
US06/561,650 US4512801A (en) 1982-12-21 1983-12-15 Apparatus for and method of desulfurizing and heating molten metal
DE8383307664T DE3379275D1 (en) 1982-12-21 1983-12-16 Apparatus for and method of desulfurizing and heating molten metal
EP83307664A EP0116221B1 (en) 1982-12-21 1983-12-16 Apparatus for and method of desulfurizing and heating molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224667A JPS59116311A (en) 1982-12-21 1982-12-21 Electromagnetic desulfurizer

Publications (2)

Publication Number Publication Date
JPS59116311A JPS59116311A (en) 1984-07-05
JPH0235004B2 true JPH0235004B2 (en) 1990-08-08

Family

ID=16817323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224667A Granted JPS59116311A (en) 1982-12-21 1982-12-21 Electromagnetic desulfurizer

Country Status (1)

Country Link
JP (1) JPS59116311A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223918A (en) * 1985-07-24 1987-01-31 Shinko Electric Co Ltd Electromagnetic desulfurizing device

Also Published As

Publication number Publication date
JPS59116311A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
US20150023384A1 (en) Channel electric inductor assembly
US2319402A (en) Desulphurizing apparatus
US3737302A (en) Method of treatment of liquid steel under vacuum
JPH0235004B2 (en)
CN201217071Y (en) Electric furnace apparatus for thermal insulation of nodular cast iron original iron liquor and pre-spheroidizing processing
US4512801A (en) Apparatus for and method of desulfurizing and heating molten metal
CN101646621B (en) Silicon refining equipment
CA1116865A (en) In situ furnace metal desulfurization/nodularization by high purity magnesium
CA1137273A (en) Horizontal continuous casting process and apparatus for continuously producing bolts, rolled plates, and bands
US3700779A (en) Method of treatment of liquid steel under vacuum
US6240120B1 (en) Inductive melting of fine metallic particles
JPS62289363A (en) Pressurization type pouring furnace
CN1470343A (en) High-smelting point thixotropic metal bland and composite material intermittent preparing process and apparatus
CA1085613A (en) Metal-melting furnace
US3413113A (en) Method of melting metal
US4363653A (en) Method and apparatus for melting solid pieces of metal
RU2092761C1 (en) Induction furnace
JPS5953217B2 (en) Manufacturing method of molten iron oxide
JPH0126158B2 (en)
JPH01142016A (en) Continuous vacuum degassing apparatus for molten copper
JP2004069219A (en) Waste melting treatment furnace
JPH0421115B2 (en)
JPH0235003B2 (en)
RU2061057C1 (en) Equipment with electric heater for treatment of metal with gases
JPH0353363B2 (en)