JPH0234596Y2 - - Google Patents

Info

Publication number
JPH0234596Y2
JPH0234596Y2 JP7091783U JP7091783U JPH0234596Y2 JP H0234596 Y2 JPH0234596 Y2 JP H0234596Y2 JP 7091783 U JP7091783 U JP 7091783U JP 7091783 U JP7091783 U JP 7091783U JP H0234596 Y2 JPH0234596 Y2 JP H0234596Y2
Authority
JP
Japan
Prior art keywords
waveform
sampling
disk
time
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7091783U
Other languages
Japanese (ja)
Other versions
JPS59175120U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7091783U priority Critical patent/JPS59175120U/en
Publication of JPS59175120U publication Critical patent/JPS59175120U/en
Application granted granted Critical
Publication of JPH0234596Y2 publication Critical patent/JPH0234596Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【考案の詳細な説明】 本考案は回転体に取付けた供試体に起因する現
象で、回転変動を伴う計測データをサンプリング
する場合のパルス発生用円板に関するものであ
る。
[Detailed Description of the Invention] The present invention relates to a pulse generation disk for sampling measurement data accompanied by rotational fluctuations, which is a phenomenon caused by a specimen attached to a rotating body.

従来回転軸に取付けたプロペラ等の供試体の動
きにより変化する現象(例えば圧力変動)の計測
波形を周波数解析する場合、上記現象に起因しな
いノイズを除去する為、数回転分のデータの平均
をとる場合が多かつた。
Conventionally, when frequency-analyzing the measured waveform of a phenomenon (for example, pressure fluctuation) that changes due to the movement of a specimen such as a propeller attached to a rotating shaft, it is necessary to average the data of several rotations in order to remove noise that is not caused by the above-mentioned phenomenon. There were many cases where it was taken.

即ち、通常のFFT解析(高速フーリエ級数展
開)の場合、まず、解析する一回転前の1回転分
の時間を計測し、この時間を2n(nは整数)個に
分割し、サンプリング時間を求めこのサンプリン
グ時間で次の一回転分あるいは数回転の時間をサ
ンプリングしていた。
In other words, in the case of normal FFT analysis (fast Fourier series expansion), first, the time for one revolution before the analysis is measured, this time is divided into 2 n (n is an integer), and the sampling time is At this sampling time, the next rotation or several rotations were sampled.

第1図は、プロペラ回転による圧力変動の計測
装置の従来例で、01はモータ、02は回転軸、
03は軸受、04は回転軸02の端部に取付けら
れたプロペラ,05はプロペラ04の外側近傍に
設置された圧力変動計測用のセンサである。この
ような回転軸02に取付けたプロペラ04の動き
による圧力変動を圧力変換器05が感知して第2
図の計測波形08が得られる。
Figure 1 shows a conventional example of a device for measuring pressure fluctuations due to propeller rotation, where 01 is a motor, 02 is a rotating shaft,
03 is a bearing, 04 is a propeller attached to the end of the rotating shaft 02, and 05 is a sensor for measuring pressure fluctuations installed near the outside of the propeller 04. The pressure transducer 05 senses the pressure fluctuation caused by the movement of the propeller 04 attached to the rotating shaft 02, and the second
Measurement waveform 08 shown in the figure is obtained.

第2図において、08は計測波形、09は解析
する計測波形101の一回転前の波形(但し、解
析時間の関係で二回転以上前の波形を用いる場合
がある)102の周期、10はサンプリング間
隔、11は解析する計測波形101の周期、06
は時間軸、07は計測波形の圧力レベル軸であ
る。
In Fig. 2, 08 is the measurement waveform, 09 is the waveform one revolution before the measurement waveform 101 to be analyzed (however, due to analysis time, a waveform two or more revolutions ago may be used), the period of 102, and 10 is the sampling. Interval, 11 is the period of the measurement waveform 101 to be analyzed, 06
07 is the time axis, and 07 is the pressure level axis of the measurement waveform.

この計測波形08を周波数解析する場合、解析
する計測波形101の一回転前の波形102の周
期09を計測し、これを2n個に分割してサンプリ
ング時間10を求め、このサンプリング時間10
で解析する計測波形101をサンプリングして周
波数解析している。
When frequency-analyzing this measured waveform 08, measure the period 09 of the waveform 102 one revolution before the measured waveform 101 to be analyzed, divide it into 2 n pieces to find the sampling time 10, and calculate the sampling time 10.
The measured waveform 101 to be analyzed is sampled and frequency analyzed.

然し、この方法には、 (1) 回転数に変動がある場合、等間隔のサンプリ
ング間隔10が一定の位相角と対応しなくなり
周波数解析に誤差が生じる。即ち回転数に変動
がない場合、サンプリング時間は一定の位相角
に対応するので問題ないが回転数の変動がある
場合はサンプリング時間が一定であるため、逆
に各サンプリングデータは一定の位相角に対応
しなくなり計測波形の解析に誤差が生じる。
However, this method has the following problems: (1) If there is a fluctuation in the rotational speed, the equally spaced sampling intervals 10 no longer correspond to a constant phase angle, causing an error in frequency analysis. In other words, if there is no fluctuation in the rotation speed, the sampling time corresponds to a constant phase angle, so there is no problem. However, if there is a fluctuation in the rotation speed, the sampling time is constant, and conversely, each sampling data corresponds to a constant phase angle. This will result in an error in the analysis of the measured waveform.

(2) 計測波形08を1回転あるいは2回転おきに
しか解析出来ない。
(2) Measured waveform 08 can only be analyzed every one or two revolutions.

という欠点があつた。本考案は上記欠点を解
消し、回転数の変動がある場合でも一回転分の
計測波形を等位相角毎に、しかも連続的にサン
プリングできるようにすることを目的とし、周
りに複数列のスリツト孔又はスリツト窓を設け
た円板と光源及び光電素子センサを組み合わせ
てサンプリングパルスを発生させるようにした
ものである。
There was a drawback. The purpose of this invention is to eliminate the above-mentioned drawbacks and to make it possible to continuously sample the measurement waveform of one rotation at equal phase angles even when the rotation speed varies. A sampling pulse is generated by combining a disk provided with holes or slit windows, a light source, and a photoelectric element sensor.

すなわち本考案は光源と光電変換器との間に配
設され、計測すべき物体が固設された回転軸に固
設され、且つ円周方向に複数のスリツト孔を備え
た高速フーリエ変換される前記物体の回転により
変化する現象のデータをサンプリングするための
パルス発生用円板において、前記スリツト孔を同
一円周上、等間隔に2n個設けたことを特徴として
いる。
That is, the present invention is arranged between a light source and a photoelectric converter, the object to be measured is fixed to a fixed rotating shaft, and the object is fast Fourier transformed with a plurality of slit holes in the circumferential direction. The pulse generating disk for sampling data of phenomena that change due to the rotation of the object is characterized in that 2 n slit holes are provided at equal intervals on the same circumference.

以下、本考案の実施例を第3図ないし第7図に
より説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 7.

第3図は本考案によるプロペラ変動圧力計測装
置の側面図、第4図は第3図に示す円板26の拡
大正面図、第5図は前記円板26の設置状況の詳
細図、第6図は本装置により発生するパルス波形
の説明図、第7図は本装置により計測された計測
波形図の一例である。第3図ないし第5図におい
て、26は円板、27は光電素子センサ、28は
スリツト孔、29は光源としての発光ダイオー
ド、30は光電変換器としてのフオトトランジス
タである。
3 is a side view of the propeller fluctuation pressure measuring device according to the present invention, FIG. 4 is an enlarged front view of the disk 26 shown in FIG. 3, FIG. 5 is a detailed view of the installation situation of the disk 26, and FIG. The figure is an explanatory diagram of a pulse waveform generated by this device, and FIG. 7 is an example of a measurement waveform diagram measured by this device. In FIGS. 3 to 5, 26 is a disk, 27 is a photoelectric element sensor, 28 is a slit hole, 29 is a light emitting diode as a light source, and 30 is a phototransistor as a photoelectric converter.

なお、符号1,2,3,4,5は従来の01,
02,03,04,05のものと均等物である。
Note that the codes 1, 2, 3, 4, and 5 are the conventional 01,
These are equivalent to those of 02, 03, 04, and 05.

円板26は回転軸2に固定されており、不透明
な材質の円板26のまわりにスリツト孔28が設
けてある。このスリツト孔28は円板26の1周
に等間隔に2n個設けてあり、半径方向には2列以
上設けてある。各列のスリツト孔28はそれぞれ
異なる数の2n個である。
The disk 26 is fixed to the rotating shaft 2, and a slit hole 28 is provided around the disk 26 made of an opaque material. 2 n slit holes 28 are provided at equal intervals around one circumference of the disk 26, and are provided in two or more rows in the radial direction. Each row has a different number of 2n slit holes 28.

光電素子センサ27は発光ダイオード29とフ
オトトランジスタ30とにより構成されている。
この光電素子センサ27は発光ダイオード29と
フオトトランジスタ30とにより第6図に示すパ
ルス波形31を発生する。すなわち、発光ダイオ
ード29とフオトトランジスタ30との間を、ス
リツト孔28を有する円板26が回転することに
よりスリツト孔28部分とスリツト孔28でない
部分とが交互に通過することによりパルス波形3
1が発生する。従つて、モーター01を回転させ
ると円板26及びプロペラ4が回転し、センサー
5及び光電素子27には各々第7図に示すように
位相角6に対応する計測波形36とサンプリング
パルス39が発生する。
The photoelectric element sensor 27 is composed of a light emitting diode 29 and a phototransistor 30.
This photoelectric element sensor 27 generates a pulse waveform 31 shown in FIG. 6 using a light emitting diode 29 and a phototransistor 30. That is, as the disc 26 having the slit hole 28 rotates between the light emitting diode 29 and the phototransistor 30, the slit hole 28 portion and the non-slit hole 28 portion alternately pass, thereby forming the pulse waveform 3.
1 occurs. Therefore, when the motor 01 is rotated, the disk 26 and the propeller 4 are rotated, and a measurement waveform 36 and a sampling pulse 39 corresponding to the phase angle 6 are generated in the sensor 5 and the photoelectric element 27, respectively, as shown in FIG. do.

第6図ないし第7図において、31はパルス波
形、32は発光ダイオード29の光が円板26の
スリツト孔28を通過してフオトトランジスタ3
0に入射した時間(感知時間)に対応する位相
角、33はフオトトランジスタ30が光を感知し
ない時間に対応する位相角、7はパルス波形の圧
力レベル、6は位相角、36は計測波形、37は
1回転の時間(周期)に対応する位相角すなわち
360度、10はサンプリング間隔、39はサンプ
リングパルスである。
In FIGS. 6 and 7, reference numeral 31 indicates a pulse waveform, and reference numeral 32 indicates a pulse waveform when the light from the light emitting diode 29 passes through the slit hole 28 of the disk 26 and is output to the phototransistor 3.
0 is the phase angle corresponding to the time of incidence (sensing time), 33 is the phase angle corresponding to the time when the phototransistor 30 does not detect light, 7 is the pressure level of the pulse waveform, 6 is the phase angle, 36 is the measurement waveform, 37 is the phase angle corresponding to the time (period) of one rotation, i.e.
360 degrees, 10 is the sampling interval, and 39 is the sampling pulse.

このように本考案によれば、供試体の回転速度
に関係なく、一定の位相角に対応するサンプリン
グデータが得られるので、 (1) 回転変動が生じても計測波形のサンプリング
位相角は等間隔になりサンプリングデータの平
均化上問題は生じない。
In this way, according to the present invention, sampling data corresponding to a constant phase angle can be obtained regardless of the rotational speed of the specimen. (1) Even if rotational fluctuations occur, the sampling phase angle of the measurement waveform can be maintained at equal intervals. Therefore, there is no problem in averaging the sampling data.

(2) 連続してサンプリングできるので解析も連続
的にできる。
(2) Since continuous sampling is possible, analysis can be performed continuously.

(3) 更に、円板の最外周には512個のスリツト孔、
外から2列目には、256個、3列目には128個…
…とそれぞれ個数の異る2n個のスリツト孔を配
し、この列数に対応して発光ダイオードとフオ
トトランジスタを複数対設けておけば、計測条
件に応じてパルス数を変更可能。
(3) Furthermore, there are 512 slit holes on the outermost circumference of the disc.
The second row from the outside has 256 pieces, and the third row has 128 pieces...
By arranging 2 n slit holes with different numbers, and by providing multiple pairs of light emitting diodes and phototransistors corresponding to the number of rows, the number of pulses can be changed according to the measurement conditions.

(4) また、波形データを分析するために高速フー
リエ変換法が用いられるが、スリツト孔を同一
円周上等間隔に2n個設けることにより、解析の
ためのデータも2n個得られ、解析計算時間が大
幅に短縮される。
(4) In addition, the fast Fourier transform method is used to analyze waveform data, but by providing 2 n slit holes at equal intervals on the same circumference, 2 n pieces of data for analysis can be obtained. Analysis calculation time is significantly reduced.

等の効果を得ることが出来る。Effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプロペラ変動圧力計測装置の側
面図、第2図は従来装置による計測波形の1例、
第3図は本考案に係る一実施例であるプロペラ変
動圧力計測装置の側面図、第4図はその要部であ
るスリツト付円板の拡大正面図、第5図は前記ス
リツト付円板の設置状況詳細図、第6図は、本考
案に係る一実施例の装置により発生するパルス波
形の説明図、第7図は本考案に係る一実施例の装
置により計測された計測波形図の一例である。 1……モーター、2……回転軸、3……軸受、
4……プロペラ、5……圧力変換器、26……円
板、27……光電素子センサ、28……スリツト
孔、6……位相角、7……パルス波形の圧力レベ
ル、10……サンプリング間隔、29……光源と
しての発光ダイオード、30……光電変換器とし
てのフオトトランジスタ、31……パルス波形、
32……発光ダイオード29の光が円板26のス
リツト28を通過してフオトトランジスタ30に
入射した時間(感知時間)、33……フオトトラ
ンジスタ30が光を感知しない時間、36……計
測波形、37……1回転の時間(周期)、39…
…サンプリングパルス。
Figure 1 is a side view of a conventional propeller fluctuation pressure measuring device, Figure 2 is an example of a measurement waveform by the conventional device,
Fig. 3 is a side view of a propeller fluctuation pressure measuring device which is an embodiment of the present invention, Fig. 4 is an enlarged front view of the main part of the slitted disc, and Fig. 5 is an enlarged front view of the slitted disc. A detailed diagram of the installation situation, FIG. 6 is an explanatory diagram of a pulse waveform generated by a device according to an embodiment of the present invention, and FIG. 7 is an example of a measurement waveform diagram measured by a device according to an embodiment of the present invention. It is. 1...Motor, 2...Rotating shaft, 3...Bearing,
4... Propeller, 5... Pressure transducer, 26... Disk, 27... Photoelectric element sensor, 28... Slit hole, 6... Phase angle, 7... Pressure level of pulse waveform, 10... Sampling Interval, 29...Light emitting diode as a light source, 30...Phototransistor as a photoelectric converter, 31...Pulse waveform,
32... Time when the light from the light emitting diode 29 passes through the slit 28 of the disk 26 and enters the phototransistor 30 (sensing time), 33... Time during which the phototransistor 30 does not sense the light, 36... Measured waveform, 37...Time for one rotation (period), 39...
...sampling pulse.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光源と光電変換器との間に配設され、計測すべ
き物体が固設された回転軸に固設され、且つ円周
方向に複数のスリツト孔を備えた高速フーリエ変
換される前記物体の回転により変化する現象のデ
ータをサンプリングするためのパルス発生用円板
において、前記スリツト孔を同一円周上、等間隔
に2n個設けたことを特徴とするパルス発生用円
板。
The rotation of the object to be fast Fourier transformed is provided between a light source and a photoelectric converter, the object to be measured is fixedly attached to a rotating shaft, and provided with a plurality of slit holes in the circumferential direction. What is claimed is: 1. A pulse generating disk for sampling data of a phenomenon that changes due to a pulse generating disk, characterized in that 2 n slit holes are provided at equal intervals on the same circumference.
JP7091783U 1983-05-10 1983-05-10 Pulse generation disc Granted JPS59175120U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7091783U JPS59175120U (en) 1983-05-10 1983-05-10 Pulse generation disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7091783U JPS59175120U (en) 1983-05-10 1983-05-10 Pulse generation disc

Publications (2)

Publication Number Publication Date
JPS59175120U JPS59175120U (en) 1984-11-22
JPH0234596Y2 true JPH0234596Y2 (en) 1990-09-18

Family

ID=30201068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7091783U Granted JPS59175120U (en) 1983-05-10 1983-05-10 Pulse generation disc

Country Status (1)

Country Link
JP (1) JPS59175120U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072761B2 (en) * 2008-07-31 2012-11-14 三菱重工業株式会社 Propeller pressure fluctuation estimation apparatus and method, and program
JP5188561B2 (en) * 2010-10-22 2013-04-24 中国電力株式会社 Apparatus, system, method and program for supporting acoustic diagnosis
JP6459321B2 (en) * 2014-09-05 2019-01-30 株式会社ジェイテクト Flow velocity measurement method

Also Published As

Publication number Publication date
JPS59175120U (en) 1984-11-22

Similar Documents

Publication Publication Date Title
US7987725B2 (en) Method of matching sensors in a multi-probe turbine blade vibration monitor
Sweeney et al. Gear transmission error measurement using phase demodulation
US5257540A (en) Portable apparatus for measuring force and power supplied to a pedal-driven cycle
JPH0454803B2 (en)
US4148222A (en) Apparatus and method for measuring torsional vibration
US4320662A (en) Failure detection analyzer
JPH05215757A (en) Wheel bearing apparatus having number of revolutions detector
US10539588B2 (en) Method for reducing error in rotor speed measurements
KR960007827B1 (en) Method for eliminating sensor drift in a vibration monitoring system
JPH0234596Y2 (en)
JP2002090138A (en) Measuring method and measuring device for axial elongation of rotating shaft
CN203908522U (en) Spindle revolution error measuring device capable of separating mounting eccentricity
CN108593955A (en) For moment rotatation speed test method in the case of cyclic irregularity
US4827435A (en) Blade pitch measurement apparatus and method
CN101907633B (en) High-resolution rotation-speed measuring device
JPH07311082A (en) Failure diagnostic device of rotating equipment
JPH0682208A (en) Device for detecting number of revolution or position of rotating transmitter section in noncontact type
US5031459A (en) Turbine generator shaft torsion monitor
JPH1151608A (en) Angular position detector
GB2143037A (en) Vibration monitoring in rotary bladed machines
JPH04297802A (en) Taper measuring instrument
JP2820697B2 (en) Non-repetitive rotation accuracy measurement method for bearings
JP5466104B2 (en) Rotation detection apparatus and method
JP3997936B2 (en) Rotational accuracy measuring method and rotational accuracy measuring device
JP3824546B2 (en) Rotational accuracy measuring device