JPH0234405B2 - ONDOHYUUZUYOGOKIN - Google Patents

ONDOHYUUZUYOGOKIN

Info

Publication number
JPH0234405B2
JPH0234405B2 JP2392783A JP2392783A JPH0234405B2 JP H0234405 B2 JPH0234405 B2 JP H0234405B2 JP 2392783 A JP2392783 A JP 2392783A JP 2392783 A JP2392783 A JP 2392783A JP H0234405 B2 JPH0234405 B2 JP H0234405B2
Authority
JP
Japan
Prior art keywords
temperature
melting point
weight
liquidus
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2392783A
Other languages
Japanese (ja)
Other versions
JPS59149620A (en
Inventor
Kozo Kashiwagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2392783A priority Critical patent/JPH0234405B2/en
Publication of JPS59149620A publication Critical patent/JPS59149620A/en
Publication of JPH0234405B2 publication Critical patent/JPH0234405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Landscapes

  • Fuses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、加熱している物体の温度を測定する
温度ヒユーズ用合金に係り、特に加熱している物
体が所望の温度以上に達した時に溶けてその温度
に達したことを示す温度ヒユーズ用合金に関する
ものである。 従来より温度ヒユーズ用合金としては、種々有
るが夫々一長一短があつて、充分満足できるもの
が無い。 温度ヒユーズとして最も重要な要件は、 長時間融点以下でしかも融点に近い温度に於
いて、組成の溶け分かれが生じないこと。 融点に達したならば速やかに溶けること。 の2点である。 そこで本発明者はこの2点を満足する温度ヒユ
ーズ用合金を開発すべく鋭意試験研究の結果、満
足できる温度ヒユーズ用合金を見い出した。 本発明の温度ヒユーズ用合金は、Ag35〜75重
量%と、Pd3〜35重量%と、Cu15〜40重量%と、
不可避不純物より成り、融点が800〜1000℃であ
る。 本発明の温度ヒユーズ用合金に於いて、Agを
35〜75重量%添加する理由は、前述の温度ヒユー
ズとしての重要な要件を満たす為で、35重量%未
満では融点が1000℃を超え、75重量%を超えると
融点が800℃未満となるからであり、しかもAg35
〜75重量%の範囲を外れると、液相線温度と固相
線温度の差が大きくなり、成分の溶け分れが生じ
るからである。またPd3〜35重量%添加する理由
は、前述の温度ヒユーズとしての重要な要件を満
たす為で、3重量%未満では融点が800℃未満と
なり、35重量%を超えると融点が1000℃を超える
からであり、しかもPd3〜35重量%の範囲を外れ
ると、液相線温度と固相線温度の差が大きくな
り、成分の溶け分れが生じるからである。さらに
Cu15〜40重量%添加する理由はコストの低減を
図る為で、この範囲を外れると液相線温度と固相
線温度の差が大きくなり過ぎて好ましくない。 前記成分組成の本発明の温度ヒユーズ用合金に
あつては、液相線温度と固相線温度の差が70℃以
内となり、長時間融点以下の融点に近い温度での
加熱に於いて組成の溶け分かれが無く、融点に達
すると速かに溶けるものである。 次に本発明の温度ヒユーズ用合金の効果を明瞭
にする為にその具体的な実施例と比較例について
説明する。 下記の表の左欄に示す成分組成の実施例1〜6
及び比較例1〜3の温度ヒユーズ用合金の液相線
温度と液相線温度を測定した処、下記の表の中央
欄に示す結果を得た。 然してこれらの温度ヒユーズ用合金を、夫々の
液相線温度−10℃にて不活性ガス中で170時間加
熱した時に溶けるか否かの第1試験と、夫々の液
相線温度+10℃にてアルゴンガス中で10秒間加熱
した時に溶けるか否かの第2試験を行つた処、下
記の表の右欄に示すような結果を得た。
The present invention relates to an alloy for a temperature fuse that measures the temperature of a heated object, and in particular, an alloy for a temperature fuse that melts when the heated object reaches a desired temperature or higher and indicates that the temperature has been reached. It is related to. There have been various alloys for temperature fuses, but each has its own merits and demerits, and none are fully satisfactory. The most important requirement for a temperature fuse is that the composition does not melt at temperatures below the melting point for a long period of time and close to the melting point. It should melt quickly once it reaches its melting point. There are two points. Therefore, the inventor of the present invention conducted extensive testing and research to develop an alloy for a temperature fuse that satisfies these two points, and as a result, discovered an alloy for a temperature fuse that satisfies these two points. The alloy for a temperature fuse of the present invention contains 35 to 75% by weight of Ag, 3 to 35% by weight of Pd, and 15 to 40% by weight of Cu.
It consists of unavoidable impurities and has a melting point of 800-1000℃. In the temperature fuse alloy of the present invention, Ag is
The reason for adding 35 to 75% by weight is to satisfy the important requirements as a temperature fuse mentioned above; if it is less than 35% by weight, the melting point will exceed 1000℃, and if it exceeds 75% by weight, the melting point will be less than 800℃. And, moreover, Ag35
This is because when the amount is outside the range of 75% by weight, the difference between the liquidus temperature and the solidus temperature becomes large, and the components dissolve in portions. Also, the reason for adding 3 to 35% by weight of Pd is to satisfy the important requirements as a temperature fuse mentioned above.If it is less than 3% by weight, the melting point will be less than 800℃, and if it exceeds 35% by weight, the melting point will exceed 1000℃. Moreover, if Pd is out of the range of 3 to 35% by weight, the difference between the liquidus temperature and the solidus temperature will become large and the components will dissolve. moreover
The reason for adding 15 to 40% by weight of Cu is to reduce costs; outside this range, the difference between the liquidus temperature and the solidus temperature becomes too large, which is undesirable. In the alloy for temperature fuses of the present invention having the above-mentioned composition, the difference between the liquidus temperature and the solidus temperature is within 70°C, and the composition changes when heated at a temperature close to the melting point below the long-term melting point. There is no dissolution, and it melts quickly once it reaches its melting point. Next, in order to clarify the effects of the alloy for temperature fuses of the present invention, specific examples and comparative examples will be described. Examples 1 to 6 of the component compositions shown in the left column of the table below
The liquidus temperature and liquidus temperature of the alloys for temperature fuses of Comparative Examples 1 to 3 were measured, and the results shown in the center column of the table below were obtained. However, the first test was to determine whether or not these temperature fuse alloys would melt when heated in an inert gas for 170 hours at a temperature of -10°C below their liquidus temperature, and a test at a temperature of +10°C above their liquidus temperature. A second test was conducted to determine whether the material would melt when heated for 10 seconds in argon gas, and the results shown in the right column of the table below were obtained.

【表】 上記の表で明らかなように比較例1〜3の温度
ヒユーズ用合金は、液相線温度と固相線温度との
差が150〜200℃もあるのに対し実施例1〜6の温
度ヒユーズ用合金は液相線温度と固相線温度との
差が5〜50℃と極めて小さいことが判る。また比
較例1〜3の温度ヒユーズ用合金は、各々の液相
線温度よりも10度低い温度で170時間加熱すると
溶けたのに対し、実施例1〜6の温度ヒユーズ用
合金は、各々の液相線よりも10度低い温度で170
時間加熱しても全く溶けなかつた。そして実施例
1〜12の温度ヒユーズ用合金は、比較例1〜3の
温度ヒユーズ用合金と同様各々の液相線温度より
も10度高い温度で10秒間加熱した処、直ちに溶け
た。 以上詳記した通り本発明の温度ヒユーズ用合金
は、液相線温度と固相線温度との差が小さく、長
時間融点以下の融点に近い温度で加熱されても組
成の溶け分かれが生ぜず、融点に達すると速やか
に溶けるので、温度ヒユーズとしての最も重要な
要件を満たす優れた温度ヒユーズ用合金と言え
る。
[Table] As is clear from the above table, the temperature fuse alloys of Comparative Examples 1 to 3 have a difference of 150 to 200°C between the liquidus temperature and the solidus temperature, whereas the temperature fuse alloys of Examples 1 to 6 have a difference of 150 to 200°C. It can be seen that the difference between the liquidus temperature and the solidus temperature of the temperature fuse alloy is extremely small at 5 to 50°C. In addition, the temperature fuse alloys of Comparative Examples 1 to 3 melted when heated for 170 hours at a temperature 10 degrees lower than their respective liquidus temperatures, whereas the temperature fuse alloys of Examples 1 to 6 melted at temperatures 10 degrees lower than their respective liquidus temperatures. 170 at a temperature 10 degrees below liquidus
Even after heating for a long time, it did not melt at all. Similarly to the temperature fuse alloys of Comparative Examples 1 to 3, the temperature fuse alloys of Examples 1 to 12 immediately melted when heated for 10 seconds at a temperature 10 degrees higher than their respective liquidus temperatures. As detailed above, the temperature fuse alloy of the present invention has a small difference between the liquidus temperature and the solidus temperature, and even when heated at a temperature below the melting point or close to the melting point for a long period of time, the composition does not melt and separate. Since it melts quickly when it reaches its melting point, it can be said to be an excellent alloy for temperature fuses, satisfying the most important requirements for temperature fuses.

Claims (1)

【特許請求の範囲】[Claims] 1 Ag35〜75重量%と、Pd3〜35重量%と、
Cu15〜40重量%と、不可避不純物より成り、融
点が800〜1000℃である温度ヒユーズ用合金。
1 Ag35-75% by weight, Pd3-35% by weight,
An alloy for temperature fuses consisting of 15-40% by weight of Cu and unavoidable impurities, with a melting point of 800-1000℃.
JP2392783A 1983-02-16 1983-02-16 ONDOHYUUZUYOGOKIN Expired - Lifetime JPH0234405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2392783A JPH0234405B2 (en) 1983-02-16 1983-02-16 ONDOHYUUZUYOGOKIN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2392783A JPH0234405B2 (en) 1983-02-16 1983-02-16 ONDOHYUUZUYOGOKIN

Publications (2)

Publication Number Publication Date
JPS59149620A JPS59149620A (en) 1984-08-27
JPH0234405B2 true JPH0234405B2 (en) 1990-08-03

Family

ID=12124155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2392783A Expired - Lifetime JPH0234405B2 (en) 1983-02-16 1983-02-16 ONDOHYUUZUYOGOKIN

Country Status (1)

Country Link
JP (1) JPH0234405B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308974B1 (en) * 2001-07-18 2004-12-01 Nec Schott Components Corporation Thermal fuse

Also Published As

Publication number Publication date
JPS59149620A (en) 1984-08-27

Similar Documents

Publication Publication Date Title
US5378294A (en) Copper alloys to be used as brazing filler metals
US4311522A (en) Copper alloys with small amounts of manganese and selenium
JP2009506203A (en) Solder alloy
WO2015019876A1 (en) Cu-ADDED Ni-Cr-Fe-BASED ALLOY BRAZING MATERIAL
US4062676A (en) Gold alloy for firing on porcelain for dental purposes
JPH09155587A (en) Tin-zinc based leadless solder
US2196307A (en) Silver alloy
US7335269B2 (en) Pb-free solder alloy compositions comprising essentially Tin(Sn), Silver(Ag), Copper(Cu), and Phosphorus(P)
US4399096A (en) High temperature brazing alloys
US4539176A (en) Low gold dental alloys
US5130090A (en) Copper alloys to be used as brazing filler metals
US2768893A (en) Brazing alloys
JPH0234405B2 (en) ONDOHYUUZUYOGOKIN
US2072911A (en) Alloy
US3369893A (en) Copper-zinc alloys
US5178827A (en) Copper alloys to be used as brazing filler metals
US2554233A (en) Brazing alloys
JPS63131421A (en) Alloy for temperature fuse
JPS63213628A (en) Copper alloy for fuse
US2196304A (en) Copper silver alloy
JPS6330381B2 (en)
JP3166826B2 (en) Solder alloy
US1932843A (en) Aluminum alloys
US2072910A (en) Alloy
JPS6330382B2 (en)